
HAL Id: hal-02289552
https://hal.science/hal-02289552

Submitted on 2 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Structural accessibility and structural observability of
nonlinear networked systems

Marco Tulio Angulo, Andrea Aparicio, Claude H. Moog

To cite this version:
Marco Tulio Angulo, Andrea Aparicio, Claude H. Moog. Structural accessibility and structural ob-
servability of nonlinear networked systems. IEEE Transactions on Network Science and Engineering,
2020, �10.1109/TNSE.2019.2946535�. �hal-02289552�

https://hal.science/hal-02289552
https://hal.archives-ouvertes.fr


1

Structural accessibility and structural
observability of nonlinear networked systems

Marco Tulio Angulo∗, Andrea Aparicio, and Claude
H. Moog

Abstract—The classical notions of structural controllability
and structural observability are receiving increasing attention in
Network Science, as they provide a mathematical basis to under-
stand how the network structure of a dynamic system affects its
controllability and observability properties. However, these two
notions are formulated assuming systems with linear dynamics,
which significantly limits their applicability. To overcome this
limitation, here we introduce and fully characterize the notions
of “structural accessibility” and “structural observability” for the
broad class of nonlinear systems with meromorphic dynamics. We
show how nonlinearities render easier the problem of controlling
and observing networked systems, in the sense that meromorphic
nonlinearities reduce the number of variables that are necessary
to directly control and directly measure. Our results contribute to
clarify the role that the network structure and the nonlinearities
play in our ability to control and observe complex dynamic
systems.

Index Terms—network science; nonlinear systems; accessibil-
ity; observability; controllability.

I. INTRODUCTION

In a world where complex networks underlie most biolog-
ical, social and technological systems that shape the human
experience [1, 2], one central research program is finding prin-
ciples that help us to control and observe complex networked
systems. When all that its known about a dynamical system is
its network structure (i.e., a graph of the interactions between
its variables), the theoretical basis for this research program
has been the classical notions of “structural controllability”
and “structural observability” of linear systems [3]. These
two notions characterize the conditions under which almost
all linear dynamical systems whose structure matches a given
network are controllable or observable, respectively [4]. Thus,
linear structural controllability and structural observability
provide a mathematical formalism to predict how changes in
the network structure of a system impact its controllability
and observability properties. For example, linear structural
controllability was applied to predict and then experimentally
validate how removing different neurons (i.e., removing nodes
in the network) affects the locomotion of the roundworm C.
elegans [5]. Additionally, over the last few years, a central
line of research has been characterizing minimal sets of
“driver nodes” and “sensor nodes” that render a complex
networked system linearly controllable or linearly observable,
respectively [3].

The conditions of linear structural controllability and linear
structural observability can be stronger than necessary when
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applied to systems with nonlinear dynamics, resulting in over-
conservative predictions. Such over-conservative predictions
happen because, for nonlinear systems, their lack of linear
controllability (resp. linear observability) does not imply their
lack of controllability (resp. observability). Nonlinear systems
can be controllable or observable thanks to higher-order terms.
An everyday example of this fact is a car, which is controllable
but not linearly controllable because it cannot move in the
direction of the axis defined by its rear wheels. Despite the
ubiquity of nonlinear systems in nature and technology, the
effects of nonlinearities in our ability to efficiently control and
observe complex networked systems remain poorly understood
[6–11].

Given that most systems in nature contain nonlinearities, in
this paper we introduce and fully characterize the notions of
nonlinear “structural accessibility” and nonlinear “structural
observability” as counterparts of linear structural controlla-
bility and linear structural observability. These two notions
characterize the conditions under which almost all nonlinear
systems whose structure matches a given network are locally
accessible almost everywhere or locally weakly observable
almost everywhere, respectively. Local accessibility and local
weak observability are nonlinear generalizations of linear
controllability and linear observability, which have played
a central role in nonlinear control theory [12]. Our graph
characterization provides, for the first time, necessary and
sufficient conditions for structural observability or structural
accessibility for the broad class of nonlinear systems with
meromorphic dynamics. A meromorphic function is the quo-
tient of analytic functions, such as x1x2/(1 + x2 sin(x1))
in the variables x1 and x2. Thus, the class of meromorphic
systems is general enough to include the dynamic models
used in most scientific disciplines [13], including ecology
(e.g., the Generalized Lotka-Volterra equations), biochemistry
(e.g., the Michaelis-Menten equations), neuroscience (e.g.,
the Wilson-Cowan model), and engineering (e.g., the Euler-
Lagrange equations for robots). The results presented here
extend our previous work that only considered ecological
dynamics [14, 15].

Somewhat counter-intuitively, we find that nonlinearities
render the problem of controlling or observing a networked
system significantly easier. Specifically, for the class of non-
linear systems with meromorphic dynamics, we prove that the
conditions for nonlinear structural accessibility and observ-
ability are essential in the sense that they are contained in the
conditions for linear structural controllability and observabil-
ity. In other words, the necessary and sufficient conditions for
nonlinear meromorphic dynamics are only necessary and no
longer sufficient for linear dynamics. The additional condition
required for linear dynamics is rather “accidental” because it
applies to the special subclass of linear dynamics. A direct
consequence of this analysis is that the sets of driver and
sensor nodes are smaller when compared to those necessary
for linear structural controllability and linear structural observ-
ability.

The organization of this paper is as follows. We start
in Section II summarizing the network characterization of
structural controllability and structural observability for linear
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systems, serving as a comparison point to our results. Sec-
tion III contains our problem statement and main results for
nonlinear systems, as well as a case of study applying our
structural accessibility theory to the locomotion of C. elegans.
We collect the proofs of our claims in Sections IV and V. We
end discussing some limitations of our approach in Section
VI.

II. PRELIMINARIES: RECALL OF RESULTS FOR LINEAR
SYSTEMS

The network or graph of a system with N state vari-
ables, M inputs, and P outputs is a directed graph G =
(V,E). The vertex set V = X ∪ Y ∪ U contains state nodes
X = {x1, · · · , xN}, output nodes Y = {y1, · · · , yP }, and
input nodes U = {u1, · · · , uM}, see Fig. 1a. The edge set
E = A ∪ B ∪ C contains edges (xj → xi) ∈ A to denote that
the i-th state variable directly depends on the j-th one, edges
(xj → yi) ∈ C to denote that the i-th measured output directly
depends on the j-th state variable, and edges (uj → xi) ∈ B to
denote that the i-th state variable directly depends on the j-th
input. Graphs with empty output or input node sets represent
systems without outputs or inputs, respectively.

A. Linear structural controllability and linear structural ob-
servability.

In the framework of linear structural controllability and
linear structural observability the system dynamics is of course
assumed linear. Then the controllability and observability of
the set of all linear systems whose structure matches a given
graph G is analyzed. More precisely, the system dynamics is
assumed to have the form

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1)

where x(t) ∈ RN , u(t) ∈ RM and y(t) ∈ RP are the state,
input, and output of the system at time t, respectively. Here
A = (aij) ∈ RN×N , B = (bij) ∈ RN×M and C = (cij) ∈
RP×N are matrices of parameters.

The structure of Eq. (1) is determined by the zero/non-zero
pattern of these three matrices. Thus, given a graph G, the
class DL(G) of all linear systems whose structure matches G
is defined as all systems of the form (1) such that: aij 6= 0
if (xj → xi) ∈ A, bij 6= 0 if (uj → xi) ∈ B, and cij 6= 0 if
(xj → yi) ∈ C. Note that the edges (xj → xi) and (uj → xi)
are encoded by differential equations. By contrast, the edges
(xj → yi) are encoded by algebraic equations. These output
edges have direction because the output map is not necessarily
one-to-one (e.g., the output y1 = x1 + x2 correspond to the
edges x1 → y1 and x2 → y1). In other words, the class DL(G)
describes the set of all linear dynamics that a system can take
if its structure matches G.

The class DL(G) is said linearly structurally controllable
(resp. linearly structurally observable) if almost all systems
it contains are controllable (resp. observable) [4]. This means
that any of its systems is either controllable (resp. observable),
or becomes controllable (resp. observable) by an infinitesimal
change in the nonzero entries of the matrices A, B or C.
Remarkably, it turns out that when one system in DL(G) is

linearly controllable (resp. linearly observable), then almost
all other systems in DL(G) are linearly controllable as well
(resp. linearly observable as well) [4, 16].

A central result, which can be traced back to the pioneering
work of Lin in the 70’s [16], is the following graph character-
ization of linear structural controllability and linear structural
observability:

Theorem 1. (see, e.g., [4]) The class DL(G) of linear systems
is:

a. linearly structurally controllable if and only if: (i) each
state node is the end-node of a path that starts in U; and
(ii) there is a disjoint union of cycles and paths starting
in U that covers X.

b. linearly structurally observable if and only if: (i) each
state node is the start-node of a path that ends in Y; and
(ii) there is a disjoint union of cycles and paths ending
in Y that covers X.

A path is a sequence of nodes v1 → v2 → · · · → vn where
vi ∈ X ∪ Y ∪ U. The start-node of this path is v1 and its
end-node is vn. A cycle is a path that starts and ends in the
same node (i.e., vn = v1). Two paths are disjoint if they have
disjoint sets of nodes. A set of edges E′ covers X if each node
xi ∈ X is either the tip or the tail of some edge e ∈ E′.

Theorem 1 shows that, excepting a zero-measure set of
singularities, the graph G of a linear system determines its
controllability and observability properties. Note that, for lin-
ear structural controllability, it is not sufficient that the control
inputs can propagate their “influence” to all state nodes (i.e.,
that there is a path from some input node to each state node).
Similarly, for linear structural observability, it is not sufficient
that each state node can propagate its state to some output
(i.e., that there is a path from each state node to some output
node). Both notions require that the graph G contains enough
“independent paths” that propagates these effects, encoded as
the disjoint union of cycles and paths that covers all state
nodes.

Example 1. For the graph G of Fig. 1a, the class DL(G)
contains all linear systems of the form

ẋ1(t) = b11u1(t),

ẋ2(t) = b21u1(t),

y1(t) = c11x1(t) + c12x2(t),

(2)

with nonzero constants b11, b21, c11 and c12. Recall that:
1. Together with isolated nodes in G, the main obstacle

for linear structural controllability is the presence of
so-called “dilations” [16]. An elementary example of a
dilation is when two nodes with identical dynamics are
controlled by the same input, as in the top in Fig. 1a.
A dilation makes G not structurally controllable because
it is impossible to obtain a disjoint union of paths and
cycles that covers X. For Fig. 1a, all systems in DL(G)
are uncontrollable because their state is constrained to
the plane b11x2(t)− b21x1(t) = b11x2(0)− b21x1(0) for
all inputs u1(t) and time t (Fig. 1b).

2. Analogously, the so-called “contractions” in G are the
main obstacle for linear structural observability. An ele-
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Fig. 1. (Color online) a. Graph of a system. Here the input, state and output
nodes are U = {u1}, X = {x1, x2} and Y = {y1}, respectively. b. The
graph of panel a is not linearly structurally controllable, meaning that no
linear system with this graph is controllable. We illustrate this with five
trajectories (colors) of the linear dynamics of Eq. (2) with initial condition
x(0) = (1, 1)ᵀ (black dot), parameters b11 = 0.5 and b12 = 1, and random
inputs u1(t). The lack of controllability constrains the system to the plane
{x ∈ R2|b21x1 − b11x2 = b21x1(0)− b11x2(0)} for all time and inputs,
representing the autonomous element of this system. Consequently, the system
is not accessible and not controllable. c. The graph of panel a is not linearly
structurally observable, meaning that no linear system with this graph is
observable. We illustrate this using the linear dynamics of Eq. (2), where
five different trajectories (colors) with different initial conditions (dots) give
exactly the same projection in the output y1 because they are all vertically
aligned. This is characterized by the hidden element ζ = c12x1−c11x2 which
is orthogonal to the output and its derivatives. Consequently, the system is
not linearly observable and not locally weakly observable. d. The nonlinear
dynamics of Eq. (4) is accessible because it lacks autonomous elements,
illustrated here by five trajectories (colors) that are not constrained to any low-
dimensional manifold. Parameters are as in panel b and ε = 0.5. This shows
that the graph in panel a is structurally accessible. e. The nonlinear dynamics
of Eq. (4) is locally weakly observable since different trajectories (colors)
corresponding to different initial conditions (dots) give different projections
in the output y1. Parameters are as in panel d and ε = 0.5. This shows that
the graph in panel a is structurally observable.

mentary example of a contraction is when two state nodes
are measured using a single output, as in the bottom in
Fig. 1a. In this case, all systems DL(G) are unobservable
because, by using y1 = c11x1 + c12x2 and k ≥ 1 of its
derivatives y(k)1 = (c11b11 + c12b12)u

(k)
1 , it is impossible

to infer the value of x1 and x2 (Fig. 1c). Indeed, there is
only one equation (y1) and two unknowns (x1 and x2).

B. Driver and sensor nodes for linear systems.

Theorem 1 provides a theoretical basis for the very active
research line aiming to identify the “driver” and “sensor”
nodes that render a system linearly structurally controllable
and linearly structurally observable, respectively (see, e.g.,

[2, 3]). More precisely, consider a graph G(X,A) with only
state nodes X and edges (xi → xj) ∈ A. Then define:

Definition 1.
(i) XD ⊆ X is a set of driver nodes if there exists a set U

of input nodes and a set B of edges of the form (ui →
xj) such that: (i) the graph G(X ∪ U,A ∪ B) is linearly
structurally controllable; and (ii) all and only the driver
nodes have incoming edges from the input nodes (i.e.,
(ui → xj) ∈ B if xj ∈ XD).

(ii) XS ⊆ X is a set of sensor nodes if there exists a set
Y of output nodes and a set C of edges of the form
(xi → yj) such that: (i) the graph G(X ∪ Y,A ∪ C) is
linearly structurally observable; and (ii) all and only the
sensor nodes have outgoing edges to the output nodes
(i.e., (xi → yj) ∈ C if xi ∈ XS).

A set of driver nodes or sensor nodes is called minimal if it
has the minimal cardinality among all sets of driver nodes or
sensor nodes, respectively. The conditions in Theorem 1 allow
finding a minimal set of driver nodes (resp. a minimal set of
sensor nodes) by mapping the satisfaction of these conditions
into solving a maximum matching problem on the graph G
(resp. Gᵀ obtained from G by reversing the direction of all its
edges), see [3].

III. PROBLEM STATEMENT AND MAIN RESULTS FOR
NONLINEAR SYSTEMS

Here we generalize the analysis of Section II by enlarging
the class of dynamics that the system can take to include
arbitrary meromorphic nonlinearities. The main result is that
the conditions (i) and (ii) in Theorem 1 do not have the same
level of importance: one is essential and must be preserved,
while the other is not essential and can be dropped.

Specifically, we now consider nonlinear systems of the form

ẋ(t) = f (x(t), u(t)) , y(t) = h(x(t)), (3)

where f : RN × RM → RN and h : RN → RP are arbitrary
meromorphic functions of their arguments (i.e., each of their
entries is the quotient of analytic functions). An instrumental
property of meromorphic functions is that they are either
identically zero (written as “≡ 0”), or they are different from
zero in an open dense subset of their domain (written as
“6≡ 0”), see [12, Chapter 1]. This property allows us to define:

Definition 2. Given a meromorphic pair {f, h}, its graph
Gf,h = (X ∪ Y ∪ U,Af ∪ Bf ∪ Ch) has the edge-set defined
as: (xj → xi) ∈ Af if ∂fi/∂xj 6≡ 0; (uj → xi) ∈ Bf if
∂fi/∂uj 6≡ 0; and (xj → yi) ∈ Ch if ∂hi/∂xj 6≡ 0.

We say that two pairs {f, h} and {f̃ , h̃} are graph-
equivalent if Gf,h = Gf̃ ,h̃. Since any pair is graph-equivalent
to itself, graph-equivalence is an equivalence relation. Thus,
given a graph G, we can define the equivalence class

D(G) := {all meromorphic {f, h} such that Gf,h = G}.

The class D(G) represents all meromorphic nonlinear dynam-
ics that a system can have given that its graph is G. Note that
DL(G) ⊂ D(G).
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As the nonlinear counterparts of linear controllability and
linear observability, we consider the concepts of local ac-
cessibility and local weak observability. We introduce these
concepts through a mathematical formalism based on differ-
ential algebra (we refer the reader to [12] for technical details).
Consider the field of meromorphic functions K in the variables
{x, u, u̇, ü, · · · , y, ẏ, ÿ, · · · }, and the sets of differential sym-
bols dx = (dx1, · · · ,dxN )ᵀ, du(`) = (du

(`)
1 , · · · ,du(`)M )ᵀ,

` ≥ 0, and dy(k) = (dy
(k)
1 , · · · ,dy(k)P )ᵀ, k ≥ 0. For

a function ϕ ∈ K, its differential is defined as dϕ =
(∂ϕ/∂x)ᵀdx + (∂ϕ/∂u)ᵀdu. More generally, functions in
the vector space spanned over K by the symbols of
{dx, du, · · · ,du(`),dy, · · · ,dy(k)} are called one-forms. In-
tuitively, these vector spaces represent “all functions” that
can be written in terms of the symbols that they contain.
For example, one may consider that X = spanK{dx} rep-
resents “all functions of the state variables”, that Y(k) =
spanK{dy, · · · ,dy(k)} represents “all function of the output
and its first k derivatives”, and analogously for U (`) =
spanK{du, · · · ,du(`)}.

Based on the above framework, we introduce the following
notions:

Definition 3.
(i) An autonomous element of a system is a non-constant

meromorphic function ξ(x) such that its k-th time deriva-
tive ξ(k) is independent of u for all k ≥ 0, i.e.,

∂ξ(k)/∂u ≡ 0, ∀k ≥ 0.

(ii) A hidden element of a system is a non-constant meromor-
phic function ζ(x) that is independent of {y, · · · , y(k)}
and {u, · · · , u(`)} for all k, ` ≥ 0, i.e.,

dζ /∈ Y(k) ∪ U (`), ∀k, ` ≥ 0.

An autonomous element constrains the state of the system to
a low-dimensional manifold for all control inputs [12, pp. 47],
just as in an uncontrollable linear system its state is constrained
to a hyperplane. In this paper, we introduce the notion of a
“hidden element” as an internal variable of the system whose
value cannot be inferred from measured information. In other
words, a hidden element cannot be rewritten as a function of
the outputs and inputs and their derivatives. A non-constant
function that is not a hidden element is called observable.

With these notions a system is called locally accessible if it
does not have autonomous elements [12]. By analogy, we call
a system locally weakly observable if it does not have hidden
elements. Note that this definition is equivalent to the standard
definition of local weak observability [12, Definition 4.7, pp.
57]. In terms of the systems’ trajectories, local accessibility
means that, for almost all initial states, the set of reachable
states has dimension N . Local weak observability means that,
in an open and dense subset of the state space, any state can
be distinguished from its neighbors by measuring the output
and input only.

Local accessibility and local weak observability are funda-
mental properties of nonlinear systems as they characterize the
solution to fundamental problems like exact linearization by
feedback control, calculating controllability and observability

indices for nonlinear systems, among others [12]. For simplic-
ity, in the rest of this paper we write “accessible” for locally
accessible, and “observable” for locally weakly observable.

For linear systems, the lack of autonomous elements is
equivalent to linear controllability, and the lack of hidden
elements is equivalent to linear observability [12]. For exam-
ple, all linear systems of Eq. (2) are not controllable because
ξ(x) = b21x1 − b11x2 is an autonomous element for all of
them. Indeed ξ(k) ≡ 0, which is independent of u for all k ≥ 1.
Similarly, ζ(x) = c12x1 − c11x2 is a hidden element for all
those linear systems because it cannot be written as a function
of the output y1 = c11x1+c12x2 and/or the input u1 and their
derivatives. Actually, since y

(k)
1 = (c11b11 + c12b12)u

(k−1)
1 ,

the output derivatives contain no information of the state
at all. Hence, we conclude that dζ 6∈ Y(k)

1 ∪ U (`)
1 for all

k, ` ≥ 0. In this sense, the above definitions of accessibility
and observability provide nonlinear generalizations of linear
controllability and linear observability.

A. Structural accessibility and structural observability for
nonlinear systems.

In analogy to the case of linear dynamics [4], for nonlinear
systems we say that “almost all” systems in the class D(G)
have certain property (e.g., accessibility or observability) if
the subset of systems having that property is open and dense
everywhere. We use this concept to define:

Definition 4. The class D(G) is:
(i) structurally accessible if almost all systems it contains

are accessible.
(ii) structurally observable if almost all systems it contains

are observable.

Structural accessibility (resp. structural observability) im-
plies that accessible systems (resp. observable systems) are
generic in the class D(G), while non-accessible systems
(resp. non-observable systems) are not and thus are “hard to
find”. Consequently, if D(G) is structurally accessible (resp.
structurally observable), any of its systems is either accessible
(resp. observable) or becomes accessible (resp. observable) by
some arbitrarily small change of its dynamics (see Example 2
below). In what follows, when D(G) is structurally accessible
(resp. structurally observable), we also call the graph G
structurally accessible (resp. structurally observable).

Our first main result proves that, as in the case of linear
systems, if at least one system in D(G) is accessible (resp.
observable) then almost all other systems in D(G) are also
accessible (resp. observable), see Lemma 1 in Section IV
and Lemma 4 in Section V. This first result is instrumental
because it allows us to prove that certain D(G) is structurally
accessible (or structurally observable) by showing that one of
its systems is accessible (or observable).

Based on the above first result, our second main result
provides necessary and sufficient conditions for structural
accessibility and structural observability for the general class
of meromorphic nonlinear systems:

Theorem 2. The class D(G) is:
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a. structurally accessible if and only if each state node is
the end-node of a path that starts in U.

b. structurally observable if and only if each state node is
the start-node of a path that ends in Y.

Proof. See Proposition 2 in Section IV for item a, and
Proposition 3 in Section V for item b.

Although the observability of a nonlinear system may de-
pend on the applied inputs, Theorem 2 shows that its structural
observability is independent of such inputs. This situation
happens because removing all edges that connect the inputs to
the state variables will not change if the condition of Theorem
2b is satisfied or not. More generally, note that including
edges in a graph cannot damage its structural accessibility
or structural observability. Note also that a “duality” similar
to the case of linear systems remains: a graph is structurally
accessible if and only if its “dual graph” (with reversed edges
and the labels of input and output nodes interchanged) is
structurally observable.

Additionally and somewhat counterintuitively, Theorem 2
shows that meromorphic nonlinearities make it easier to “con-
trol” and “observe” networked systems because Theorem 1
contains the conditions of Theorem 2. We illustrate this point
by revisiting Example 1 now considering nonlinear dynamics:

Example 2. For the graph in Fig. 1a, the class D(G) contains
all nonlinear systems of the form

ẋ1(t) = b11u1(t) + ε,

ẋ2(t) = b21u1(t) + εu31(t),

y1(t) = c11x1 + c12x2 + εx1(t)x2(t),

(4)

with nonzero b11, b21, and ε. Note that Eq. (4) is an “ε-
change” of Eq. (2) because making ε = 0 renders Eq. (4)
equal to Eq. (2). Note also:

1. In the dilation of Fig. 1a, the nonlinearities in D(G)
eliminate the autonomous element that was present in
DL(G). That is, the function ξ(x) = b21x1 − b11x2 that
was an autonomous element for all linear dynamics of
Eq. (2) is no longer an autonomous element for Eq. (4)
because ξ̇ = −εb11u31 depends on u1. This proves that
D(G) is structurally accessible. Actually, the trajectories
of Eq. (4) are no longer constrained to a low-dimensional
manifold (Fig. 1d).

2. In the contraction of Fig. 1a, the nonlinearities in
D(G) also eliminate the hidden element that was present
in DL(G). To see this, compute ẏ1 = α0(u1) +
εα1(u1)x1 + εα2(u1)x2, where α0(u1) = c11[b11u1 +
εp1] + c12[b21u1 + εu31], α1(u1) = b21u1 + εu31 and
α2(u1) = b11u1 + εp1. Crucially, note that α1 6≡ 0 and
α2 6≡ 0 for almost all u1, implying that ẏ1 now depends
on the state variables x1 and x2 (compare to the case
of linear dynamics, where ẏ1 was independent of x). The
Jacobian(

∂y1/∂x
∂ẏ1/∂x

)
=

(
c11 + εx2 c12 + εx1
εα1 εα2

)
,

is nonsingular almost everywhere in R2. The Implicit
Function Theorem thus implies that we can locally write

x1 and x2 in terms of y1 and ẏ1. Therefore, the function
ζ(x) = c12x1 − c11x2 that was a hidden element for the
linear system of Eq. (2) is no longer a hidden element
for Eq. (4). This proves that Eq. (4) is observable (Fig.
1e), and that D(G) is structurally observable.

B. Minimal sets of driver/sensor nodes and input/output nodes
for nonlinear systems.

As in Section II-B, consider a graph G(X,A) consisting of
state nodes X and edges (xi → xj) ∈ A. We can extend the
notion of driver nodes of Definition 1 to nonlinear systems
by requiring that a set of driver nodes XD ⊆ X renders
G(X ∪ U,A ∪ B) structurally accessible. Similarly, a set of
sensor nodes XS ⊆ X must render G(X∪U,A∪C) structurally
observable. Then, Theorem 2 has the following implication:

Proposition 1.
(i) A minimal set of driver nodes is given by arbitrar-

ily choosing one node in each root strongly-connected-
component of G(X,A).

(ii) A minimal set of sensor nodes is given by arbitrar-
ily choosing one node in each top strongly-connected-
component of G(X,A).

A strongly connected component (SCC) of G is a maximal
subgraph such that there is a directed path in both directions
between any two of its nodes [17, pp. 552-557]. A root SCC
is an SCC without incoming edges, and a top SCC is an SCC
without outgoing edges. Recall that any directed graph can be
decomposed into an acyclic graph between its SCCs, with root
and top SCCs at the start and end of this graph, respectively
[17]. Let m be the number of root SCCs and p the number
of top SCCs of G(X,A). Then, Proposition 1-(i) is obtained
because if a single input node u is connected to one arbitrary
node xj of each root SCC (i.e., u → xj , j = 1, · · · ,m),
the decomposition into the acyclic graph of SCC implies that
the graph satisfies the condition of Theorem 2a. Analogously,
Proposition 1-(ii) is obtained from the fact that if a single
output node y is connected with one arbitrary node xj of
each top SCC (i.e., xj → y, j = 1, · · · , p), this will yield a
graph that satisfies the condition of Theorem 2b. An additional
consequence of this argument is the following:

Corollary 1.
(i) The minimal number of driver nodes of any graph is its

number of root SCCs, and the minimal number of sensor
nodes is its number of top SCCs.

(ii) The minimal number of input nodes that renders any
graph structurally accessible is always one, and the
minimal number of output nodes that renders any graph
structurally observable is also one.

The second statement in the above Corollary generalizes
the result of Ref. [18] to structural systems and to the case of
observability.

All minimal sets of driver or sensor nodes of arbitrary
graphs can be found in linear time because the SCCs can
be computed in linear time [17, pp. 35]. By contrast, in the
case of linear structural accessibility (resp. linear structural
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observability), solving the maximum-matching problem to find
one set of driver nodes (resp. sensor nodes) takes polynomial
time. Actually, for linear dynamics, identifying all sets of
driver nodes (resp. sensor nodes) is intractable for large graphs.
Note that the decomposition of a graph into its SCCs has also
been leveraged when assuming linear dynamics (see, e.g., [19]
or [20]).

C. Application to the locomotion of C. elegans.

In this final subsection, we contrast the predictions of linear
structural controllability and (nonlinear) structural accessibil-
ity using the locomotion of C. elegans as a case of study.

In a recent pioneering work [5], Gan et al. analyzed the
control properties of the C. elegans nervous system from a
network perspective. For this aim, the authors modeled the
connectome underlying the nervous system of C. elegans as
a directed graph G. In this graph, state nodes X correspond
to neurons and muscles, input nodes U represent the external
stimuli applied to the touch neurons, and the output nodes
Y are muscle cells. Edges in G correspond to electrical
and chemical junctions between the neurons, and between
neurons and muscles. The analysis aims to understand how
the structure of this network impacts the ability to control the
muscle cells (i.e., outputs) from external stimuli (i.e., inputs).
A key finding was that ablating (i.e., deleting) the neuron
marked as “PDB” generates a dilation in G. Importantly,
the ablation of PDB does not disconnect any neuron or
muscle from the network. However, assuming that the nervous
system is approximately linear as in Eq. (1), linear structural
controllability predicts that ablating PDB damages the linear
controllability of the nervous system because it generates a
dilation [5].

Neural systems, however, can have strong nonlinear behav-
iors [21]. For example, in computational neuroscience, the
elementary Wilson-Cowan (WC) model [22] describes the
input activity xi of the i-th neurons as [23]:

ẋi = −xi +
N∑
j=1

aij
1

1 + exp(−τ(xj − µ))
.

Here, τ > 0 and µ > 0 characterize the steepness of the acti-
vation function and the firing-rate threshold, respectively. The
parameters A = (aij) ∈ RN×N characterize the interaction
strength between neurons (e.g., xj → xi if aij 6= 0). Note
that the WC model has meromorphic dynamics. However,
presumably, the nervous system of C. elegans may be governed
by more complicated dynamics than the WC model.

In particular, by applying our structural accessibility theory,
we can assume that an arbitrary nonlinear system with mero-
morphic dynamics as in Eq. (3) governs the nervous system
of the C. elegans. In such a case, our theory implies that the
dilation caused by ablating PBD cannot damage the structural
accessibility of the C. elegans connectome. Hence, by using
the definition of accessibility in terms of trajectories of the
system [12, pp. 47], our theory predicts that the nervous system
of an ablated worm can reach the same set of states as those
of normal worms. In other words, our structural accessibility
theory predicts that PDB ablated worms can still adopt each

body pose that a non-ablated worm can adopt. More generally,
we predict that the ability of a worm to adopt a body pose
is preserved as long as the ablated interneurons do not fully
disconnect an input (i.e., a sensory neuron) or an output (i.e., a
muscle cell). However, the loss of linear controllability implies
that ablated worms may use different trajectories to reach
desired states (e.g., by using different paths in the connec-
tome). This prediction agrees with the experimental results [5],
as ablated worms are not reported to have reduced mobility
but rather a different pattern of locomotion characterized by
significantly larger negative values of the first “eigenworm”.

The following two Sections build the proofs for our main
results.

IV. PROOF OF THE STRUCTURAL ACCESSIBILITY
THEOREM

Given a graph G = (X ∪ U,A ∪ B), here we consider the
class D(G) of all controlled systems

ẋ(t) = f(x(t), u(t)), (5)

such that Gf = G.
Our first result shows that once D(G) has at least one

accessible system, then D(G) is structural accessible (i.e.,
accessible systems are generic). To prove this first result, we
show that once D(G) contains one accessible system, the
“line” connecting this accessible system to any other system
in D(G) consists of accessible systems and eventually some
isolated non-accessible systems (Fig. 2a).

Specifically, we construct the argument to prove this result
using the notion of the k-jets fk of a meromorphic function
f —informally defined as taking the first k-terms of its
Taylor expansion— and the resulting topology —the so-called
“Whitney Ck topologies”. We refer the reader to [24, Section
2.1] and [25, Chapter II.3] for further details. Specifically,
the topology we use is defined from the notion of an open
ball of radius ε ≥ 0 centered at a meromorphic f0. This
ball consists of all meromorphic f ’s such that the Euclidean
distance between the first ` Taylor coefficients of f0 and f is
less than ε for all ` ≥ 0.

Lemma 1. If D(G) contains at least one accessible system,
then this class is structurally accessible. That is:
(i) the subset of accessible systems is dense everywhere;

(ii) the subset of accessible systems is open; and
(iii) the subset of non-accessible systems is not dense.

Proof. Although (iii)⇒ (i) because D(G) is the disjoint union
of accessible and non-accessible systems, an independent
proof of each statement is provided:
(i) Let f∗ ∈ D(G) be the accessible system and choose

arbitrary any other f ∈ D(G). Define the convex com-
bination fλ = λf∗ + (1 − λ)f , which parametrizes the
“line” passing between f∗ and f . Note that fλ ∈ D(G)
for almost all λ ∈ [0, 1]. To prove the claim, our objective
is to show that almost all systems in {fλ}, λ ∈ [0, 1], are
accessible. Note also that for λ = 1 we have f1 = f∗,
implying that f1 is accessible. Consequently, due to the
generic properties of meromorphic functions and the
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Fig. 2. (Color online) Figures for the proof of Lemma 1. a. Accessible systems
are dense. b. The subset of accessible systems is open. c. Contradiction
obtained by assuming that the subset of non-accessible systems is dense,
proving that non-accessible systems are not dense.

Accessibility rank condition [12], the family of systems
{fλ} are accessible for almost all λ ∈ [0, 1], completing
the proof.

(ii) We prove that any accessible f ∈ D(G) has a neighbor-
hood consisting only of accessible systems. Since f is
meromorphic, we can rewrite this function as the Taylor-
expansion f(x, u) = α0(x)+

∑∞
i=1 αi(x)u

i with αi ∈ K.
Note that the accessibility of f implies there exists a k ∈
N such that the k-jet fk(x, u) := α0(x) +

∑k
i=1 αi(x)u

i

is accessible. Indeed, since f is accessible there cannot
be autonomous elements ξ ∈ K, implying that dξ is not
orthogonal to at least some αk, k ∈ N. This implies that
no (non-constant) ξ ∈ K can be an autonomous element
for fk, making the k-jet fk accessible.
Recall that this k-jet represents the first k terms of the
Taylor expansion of f , implying we can associate fk to
a point in RK for some K that depends on k (right in
Fig. 2b). Next we regard fk as a polynomial function of
its Taylor coefficients, so that the generic properties of
meromorphic functions imply that fk has a neighborhood
Nfk ⊆ RK of accessible systems. All f̃ ∈ D(G) such
that their k-jets f̃k satisfy f̃k ∈ Nfk will form the open
neighborhood of f of accessible systems.

(iii) We prove by contradiction, assuming that D(G) is struc-
turally accessible but that it contains an open set N such
that non-accessible systems are dense on it (pink in Fig.
2c). Since D(G) is structurally accessible and accessible
systems are dense due to Lemma 1-(i), then N contains
at least one accessible system f (blue in Fig. 2c). Now
choose k ≥ 0 large enough such that the k-jet fk of the
accessible system f is accessible. The k-jets f̃k of all
non-accessible systems f̃ ’s remain non-accessible. Since

the fk and the f̃k’s represent the first k terms of the
Taylor expansion of f and the f̃ ’s, we can associate each
of them to a point in RK corresponding to the value of
the first k coefficients of their Taylor expansion (here
again K is some constant that depends on k). Since N
is a neighborhood of f , all its elements are mapped to
a corresponding neighborhood of fk in RK such that
the points corresponding to non-accessible systems are
dense (Fig. 2c). Considering now that fk is accessible and
that it is a polynomial function of its Taylor coefficients,
the generic properties of meromorphic functions imply
that there exists a neighborhood Nfk ⊆ RK of fk
such that all its corresponding elements are accessible
(blue neighborhood in Fig. 2c). This gives the desired
contradiction, since it contradicts the fact that the non-
accessible systems were dense.

The next result allows us to analyze the structural acces-
sibility of a graph from its spanning subgraphs, which will
be instrumental for the proof of the main result. Recall that a
subgraph G̃ of G is spanning when G̃ includes all nodes of
G.

Lemma 2. Let G̃ ⊆ G be any spanning subgraph of G. If
D(G̃) is structurally accessible then D(G) is also structurally
accessible.

Proof. Since D(G̃) is structurally accessible, it contains one
system ẋ = f(x, u) which is accessible. Notice that starting
from G̃, we can recover G by adding some edges. Suppose
that the edge xj → xi is added to G̃ to obtain G. Then D(G)
contains the systems

ẋi = fi(x, u) + αxj , (6)

for any constant α 6= 0. Similarly, if the edge uj → xi is
added D(G) contains the systems

ẋi = fi(x, u) + αuj . (7)

For α = 0 the systems of Eqs. (6) or (7) are accessible.
Additionally, their right-hand side is a meromorphic function
of α. Thus, due to the generic properties of meromorphic
functions [12], both systems are accessible for almost all
α ∈ R. Therefore, the class D(G) is structurally accessible.
Repeating the same argument for all other edges completes
the proof.

Now consider a meromorphic function ϕ(x, u) : RN ×
RM → RN and a subset of nodes V ⊆ X ∪ U. We write ϕ ∈ S
if ϕ(x) depends on all variables vi for all vi ∈ V. With this
notation, an autonomous element of Eq. (5) is a non-constant
meromorphic function ϕ(x) such that ϕ(k) 6∈ U for all k ≥ 0.

Example 3. For the graph of Fig. 1a with the linear dynamics
of Eq. (2) we have that ξ = b11x2 − b21x1 satisfies ξ(k) = 0
for all k ≥ 1. Thus we have that ξ(k) 6∈ U for all k and hence
ξ is an autonomous element.

Next, for a set S of state nodes, define its “tail-set”
T (S) ⊆ V ∪ U as all nodes which point to S (Fig. 3a). We
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Fig. 3. (Color online) a. A tree graph G where each state node has only one
incoming edge and its root is an input node. A set S and its tail-sets T (S)
and T 2(S) are marked in green, orange and purple, respectively. b. From the
graph G with M = 2 input nodes (dark and light edges), a spanning subgraph
G̃ (dark edges) is obtained that has M disjoint trees, one incoming edge per
state node, and roots at the input nodes.

denote T k(S) := T (T k−1(S)). In the next result we prove
the structural accessibility of a special class of graphs. We
prove this result by leveraging Lemma 1 and exhibiting one
accessible system in this class of graphs.

Lemma 3. Assume that the graph G is a (connected) directed
tree with each state node xi having a single incoming edge,
and rooted at a single input node u1. Then D(G) is structurally
accessible.

Proof. For this graph, note that the state nodes can be orga-
nized into L layers according to their distance to the input
node, with the first layer being all state nodes with distance
one (Fig. 3a). To prove the claim, we show that the following
system with polynomial dynamics is accessible:

ẋi = (fT (i))
pi . (8)

Above, fT (i) = xT (i) if xi is in layer ≥ 2, and fT (i) = u1
otherwise. The vector p = (p1, · · · , pN ) ∈ NN+ contains N
different integers with mink pk large enough.

Next, note that for this graph G and the dynamics of Eq. (8),
any non-constant meromorphic function ϕ ∈ S satisfies ϕ̇ ∈
T (S) for any S ⊆ X. Namely, if ϕ depends on {xi, · · · , xk},
then ϕ̇ depends on all variables {fT (i), · · · , fT (k)}. To show
this, just note that

ϕ̇ =
∑
i∈S

∂ϕ

∂xi
ẋi =

∑
i∈S

∂ϕ

∂xi
fpiT (i) ∈ T (S),

and that no term can cancel out in the sum because they have
different exponents pi.

The above observation actually implies that this system is
accessible. To see this, take any S ⊆ X and any non-constant
meromorphic function ϕ ∈ S. The structure of G implies that
all state nodes are the end-node of a U-rooted path, so there
exists a finite k such that u1 ∈ T k(S). Since ϕ(k) ∈ T k(S),
this implies that ϕ cannot be an autonomous element.

We now have all the ingredients for proving our main result:

Proposition 2. D(G) is structurally accessible if and only if
each state node is the end-node of a path that starts in U.

Proof.
(⇐) By contradiction. If there is a state node xi that is not

the end-node of any U-rooted path, then xi itself is an
autonomous element.

(⇒) Since each state node is the end-node of a U-rooted path,
note we can always obtain a spanning subgraph G̃ of
G such that: (i) it is a disjoint union of (connected)
directed trees rooted at U; (ii) each state node has a
single incoming edge (Fig. 2b). By applying Lemma 3 to
each tree, we conclude that the class D(G) is structurally
accessible.

Remark 1. Note that in the trivial cases of an empty graph
(i.e., a graph without nodes) or a graph without state nodes
(i.e., the underlying system has no dynamics), applying Def-
inition 4 yields that both graphs are structurally accessible
because the set of autonomous element is empty.

Remark 2. Note that restricting the system dynamics of
Eq. (5) to be affine in the control input changes the graph
conditions for structural accessibility. In such case, graphs
that contains “pure dilations of the control input” as in Fig.1a
are not structurally accessible because those subgraphs only
admit linear dynamics

Remark 3. Note that the conditions for linear structural
controllability and for structural accessibility are identical
when each node of the graph has a self-loop. Indeed, in such
a case, one can use all those self-loops to construct a cycle
family that covers all state nodes.

V. PROOF OF THE STRUCTURAL OBSERVABILITY
THEOREM

We start with the following observation, which is a direct
analogy of Lemma 1 and Lemma 2:

Lemma 4.
(i) If D(G) contains at least one observable system, then

this class is structurally observable.
(ii) Let G̃ ⊆ G be any spanning subgraph of G. If D(G̃)

is structurally observable then D(G) is also structurally
observable.

Proof. A proof for item (i) follows using the exact same
argument as in the proof of Lemma 1. Similarly, item (ii)
follows using the same argument as in the proof of Lemma
2.

We next prove the structural observability of a special
class of graphs. Similar to the proof of Lemma 3, we prove
this result by leveraging Lemma 4-(i) and exhibiting one
observable system in this class.

Lemma 5. Suppose that G(X ∪ Y,A ∪ C) is a (connected)
directed tree topped at a single output node y, with each state
node having a single outgoing edge. Then D(G) is structurally
observable.

Proof. From the structure of the graph we can order its nodes
by layers, where nodes with distance k to the output y belong
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to the k-th layer (Fig. 4a). We will prove the claim by induction
in the number of layers:
(i) For one layer, denote its nodes by {x1, · · · , xd1} where

d1 is the number of nodes. One particular dynamics
admissible for this graph is

ẋi = ci, i = 1, . . . , d1; y = x1x2 · · ·xd1 , (9)

with ci some non-zero constants. In the following we
show that Eq. (9) is observable by proving that the span
of dy and its derivatives dy(k) equals spanK dx. If d1 = 1
the claim follows directly, because there is only one state
variable x1 and y = x1 renders it observable. Consider
now that d1 > 1. By direct calculation we obtain

ẏ =
d

dt

(
d1∏
i=1

xi

)
=

(
d1∏
i=1

xi

)(
d1∑
i=1

ci
xi

)
= (y)

(
d1∑
i=1

ci
xi

)
.

The variable z := ẏ/y is observable from y. Therefore,
the system of Eq. (9) will be observable if the span of
dz and its derivatives dz(k) equals spanK dx. Note that

z(k) =

d1∑
i=1

(−1)kk! c
k+1
i

xk+1
i

,

so its differential is

dz(k) =

d1∑
i=1

(−1)k+1(k + 1)!
ck+1
i

xk+2
i

dxi.

Taking k = d1 +1, the set {dz, · · · ,dz(d1+1)} will con-
tain the functions {1/x2i , · · · , 1/x

di+3
i }, i = 1, · · · , d1,

whose span is spanK dx. This proves that the system of
Eq. (9) is observable, and thus that a graph G with one
layer is locally observable.

(ii) For the induction step, we show that if a graph G with L
layers is structurally observable, then a graph with L+1
layers is also structurally observable. By definition, the
nodes in the (L+1)-th layer are only connected to nodes
in the L-th layer. Furthermore, they are connected in the
same way as nodes in the first layer are connected to the
output node (Fig. 4a). Therefore, the argument in point
(i) with y replaced by the corresponding node in the L-th
layer implies that the nodes in the (L + 1)-th layer are
observable. This completes the proof.

The final result follows by decomposing the graph into
disjoint trees topped at the output nodes:

Proposition 3. D(G) is structurally observable if and only if
each state node is the start-node of a path that ends in Y.

Proof.
(⇐) By contradiction. If there is a state node xi that is not

the start-node of any Y-topped path, then xi itself is a
hidden element.

(⇒) Since each state node is the start-node of a Y-topped
path, note we can always obtain a spanning subgraph G̃
of G such that: (i) it is a disjoint union of (connected)
directed trees topped at Y; (ii) each state node has a
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no
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output
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Fig. 4. (Color online) a. A tree graph G topped at y with a single outgoing
edge per state node. b. From any graph G such that each node has a path
to y (dark and light edges), a subgraph G̃ (dark edges) can be obtained such
that it is a tree topped at y and each state node has a single outgoing edge.

single outgoing edge (Fig. 4b). By Lemma 5, D(G̃) is
structurally observable. Since G̃ ⊆ G is a spanning
subgraph, Lemma 4-(ii) implies that D(G) is structurally
observable.

Remark 4. In analogy to Remark 1, in the trivial cases of an
empty graph (i.e., a graph without nodes) or a graph without
state nodes (i.e., the underlying system has no dynamics),
applying Definition 4 yields that both graphs are structurally
observable because the set of hidden elements is empty.

VI. DISCUSSION AND CONCLUDING REMARKS

The notions of structural accessibility and structural observ-
ability that we have introduced and characterized are nonlinear
counterparts of the notions of linear structural controllability
and linear structural observability.

A limitation of our analysis is that it assumes that the
system can be any arbitrary meromorphic dynamics, which
may be unreasonable in some cases. More detailed predictions
for the impact of the network structure on the controllability
or observability properties can be obtained when the class of
dynamics that the system can take is better known —such
as neuronal, ecological, gene regulatory, or epidemic systems,
see, e.g., [13]. Such an analysis will provide graph conditions
for structural accessibility and structural observability for
each specific class of system dynamics, which are potentially
different from those of Theorem 1 and Theorem 2. Indeed,
note that the conditions of Theorem 2 are always necessary,
but they may not be sufficient when we restrict the system
dynamics to belong to a special class. For example, when we
restrict the class to linear dynamics, Theorem 1 shows that
those conditions are not sufficient. Additionally, in [14] and
[15], we analyzed the structural accessibility and structural
observability for a class of nonlinear dynamics found in
ecosystems. The considered class of ecosystem dynamics does
not include linear dynamics, as it is assumed that ecological
dynamics are always written in terms of the per-capita growth
rate ẋi/xi. Our analysis shows that the condition of Theorem
2 is again necessary but not sufficient for ecological dynamics.
We emphasize that the class of ecosystem dynamics considered
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in our previous work [14, 15] is significantly smaller than
the class of meromorphic dynamics considered in this paper.
Specifically, the considered class of ecological dynamics do
not include linear, neuronal (i.e., Wilson-Cowan dynamics),
and gene regulatory (i.e., Michelis-Menten) dynamics. We
also point out that a more detailed topological analysis could
better precise in which sense accessible (resp. observable)
systems are “generic” in a structurally accessible class (resp.
structurally observable class). This analysis would help us
understand the type of “deformations” that a system dynamics
needs to make it accessible (or observable). Such a detailed
topological analysis is out of the scope for this paper, but it
merits further study.

Finally, our results provide a broader perspective of what we
can deduce about the controllability or observability properties
of a system from knowing only its interconnection network.
We have shown that if the control inputs can reach all state
nodes through a path in the network, then almost all admissible
system dynamics are accessible. Similarly, if all state nodes
can reach an output through a path in the network, then almost
all admissible system dynamics are locally observable. These
two facts suggest that the interconnection network by itself
only encodes the essential information of the controllability
and observability properties of complex systems.
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