VIRTUAL EXPERIMENTATION AS A COMPLEMENT TO OBSERVATION

APPLICATION TO THE ASSESSMENT OF THE FUTURE AND POTENTIAL FOR ADAPTATION OF ATLANTIC SALMON FACING CLIMATE CHANGE IN SOUTHERN EUROPE

Etienne Prévost^{1,2}, Mathieu Buoro^{1,2}, Cyril Piou & Julien Papaïx

¹UMR INRA/UPPA Ecobiop, Saint-Pée-sur-Nivelle, France

²Pôle Gest'Aqua, INRA/ONEMA, France

Atlantic salmon life cycle

Climate Change: an additional stress in Southern Europe

- > Salmon: a poikilotherm and cold water species
- > France (& Spain): southern edge of species distribution
 - → Salmon could be strongly impacted by CC in Southern Europe
- > Salmon is an emblematic and threatened species
 - → Strong demand from society and management bodies for assessing the future and potential adaptation of salmon to CC

How to assess <u>future CC effects</u> on A. salmon at the population scale?

- Real world experiment: impossible
- In silico experiments with virtual population: an alternative option
 - Test diverse CC scenarios
 - Replication of experiments under a given CC scenario
 - Complementary to broad-scale approaches such as niche modelling that ignore behavioural and evolutionary processes
- INRA has developed a salmon population simulator for virtual experimentation of CC: IBASAM (Individual Based Atlantic Salmon Model)

Piou & Prévost, 2012. Ecological Modelling, 231: 37-52

IBASAM: population simulator for the study of CC effects on Atlantic salmon

- Mimics a small population typical of french coastal streams
- CC is multiform
 - In rivers:
 - ¬ water T°
 - ¬ variability of flow
 - •
 - At sea:

 - •
- Connect demo-genetic dynamics with riverine (T°, flow) and marine factors (conditions for growth)

IBASAM

Every individual of a population is explicitly represented and followed through its life up to reproduction and/or death
Reproduction

- Summarizes and articulates available knowledge on demo-evolutionary processes in A. salmon
 - Emphasis on the plasticity of the species: individuals adjust phenotype to yearly environmental variations
 - Explicitly represents individual genetic variability which control plasticity mechanisms
 - Accounts for environmental and demographic stochasticity in population dynamics
 - Explicitly represents the link between climate related forcing factors and individuals
- Calibrated against 15 years series of real population databases (Scorff river, Brittany, France)

First virtual experiments of CC with IBASAM Combining riverine and marine changes

- 27 CC scenarios tested
 - ¬ river water T° (3 modalities)
 - ¬ river flow variability (3 modalities)

- –
 \(\sigma\) conditions for growth (3 modalities)
- Time horizon: 3 decades (~2045)
- 300 replicates per scenario
 - Initial size ~215 adults returning from the sea
 → small population

Potential CC effect on salmon population persistence

- Apart from worst case scenario, extinction risk is low at the 2045 horizon
- From the scenarios tested:
 - Marine conditions have the strongest effect
 - Synergetic effect of flow variability with marine conditions
 - ¬ river water T° mitigates the effect of the other 2 factors

First virtual experiments with IBASAM CC & selective exploitation

- Selective exploitation is commonplace in salmon
 - Larger adults (maturing after 2 years at sea) are selectively harvested compared to smaller ones (maturing after 1 year at sea)
- CC and selective exploitation occur simultaneously → How to compare their respective effects while assessing their interactions?
- A virtual experimentation plan:
 5 CC scenarios X 5 exploitation scenarios
 - CC → only \(\sigma\) conditions for growth (main driver of CC effects)
 - Time horizon: 3 decades (~2045)
 - 30 replicates per scenario

CC vs selective exploitation Phenotypic plasticity vs genetic evolution

<u>Phenotype</u> Prop. 2 years at sea

<u>Genotype</u> Genetic threshold triggering sexual maturation in females

CC only

100

40

Mostly plastic response Little genetic evolution

Selective fishing only 15% expl. rate 1 year at sea \nearrow expl. rate 2 years at sea 15 \rightarrow 75%

Stronger genetic evolution

Selective exploitation for adaptation to CC

- Exploitation is an evolutionary force: could it be used on purpose to foster adaptation?
 - SALMOCLIM Project (INRA funded)
- Virtual experimental design:
 1 CC scenario X 6 selective exploitation scenarios
 - CC at sea and in river (strong)
 - Time horizon: 3 décades (~2045)
 - 100 replicates par scenario
- New version of IBASAM: includes genetic heritability of growth and a survival/growth trade-off

Selective exploitation for adaptation to CC

CC → ↓ pop size → ↑ variability Selective expl.: No gain ↑ increased gap if fishing targets MSW fish

No genetic evolution

Demo-genetic simulation: a tool for making scientific progress

- Demo-genetic simulation: a powerful approach to explore CC consequences on A. salmon populations
 - No substitute for assessing the outcome of an unprecedented climatic future at scales which prevent real world experimentation
- CC consequences cannot be appraised by mere intuition
 - The effects of CC are mediated by a complex array of interacting biological traits which outcome is the resultant of contradictory forces
- IBASAM:
 - a tool for better understanding of these interactions
 - A tool for management advice ? → Be patient and very cautious

Demo-genetic simulation for assessing adaption of A. salmon to CC Where are we? Where to go?

- It is just the beginning → field of active research but still scientifically immature
- Lack of understanding → any prediction is currently surrounded by (too) broad uncertainty (to be useful)
 - Acknowledge Science has still little to say to advise managers
 → despite strong demand for answers science must be cautious not to oversell preliminary results
- Not at the edge of population extinctions even in Southern Europe → must take advantage of the next two decades to improve :
 - Understanding of CC effects on A. salmon with IBASAM: considerable room for improvement
 - Improving realism of genetics of plastic traits → age at maturity reaction norm
 - Interacting populations → metapopulations
 - Scientific advice to A. salmon population management
 - Conceive management options that are robust to uncertainties
 - Exploring consequences of portfolio effects

First virtual experiments with IBASAM What have we learned?

- Some qualitative (not quantitive) results :
 - Complexity of interactions network → unexpected and non-intuitive outcomes
 - e.g. first results on population viability
 - CC may have strong/rapid demographic and phenotypic effects with (too?) little/slow genetic evolution
 - Selective exploitation :
 - might not be a way to foster adaptation
 - may well worthen CC effects

