

New detection thresholds and stop rules for CUSUM online detection

Nassim Sahki, Anne Gégout-Petit, Sophie Wantz-Mézières

▶ To cite this version:

Nassim Sahki, Anne Gégout-Petit, Sophie Wantz-Mézières. New detection thresholds and stop rules for CUSUM online detection. ENBIS 2019 - 19th Annual Conference of the European Network for Business and Industrial Statistics., Sep 2019, Budapest, Hungary. hal-02289501

HAL Id: hal-02289501

https://hal.science/hal-02289501

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Institut Élie Cartan de Lorraine Inria Bigs Team

ENBIS-19 in Budapest 2 - 4 September 2019

New Detection Thresholds and Stop Rules for CUSUM Online Detection

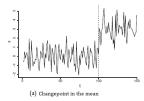
Nassim Sahki, Anne Gégout-Petit, Sophie Wantz-Mézières

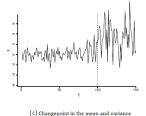
03 September 2019

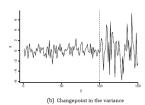
Outline

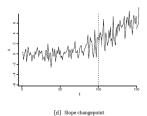
- Preamble
- 2 Online change-point detection
- New detection threshold
- Simulation results
- Perspectives

Change-point







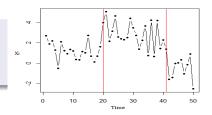


Preamble Online change-point detection New detection threshold Simulation results Perspectives

Context of analysis

Offline context :

- All data are received and processed in one go;
- The primary aim is accurate detection of changes;
- Inference about all change-points simultaneously.



Online context:

- Data arrives either as single data-points or in batches;
- Data must be processed quickly before new data arrives;
- The aim is the quickest detection of a change after it has occurred:
- Inference about most recent change only.

Preamble

Hypothesis test

Let $\{X_i\}_{i=1,\ldots,n}$ a series of observations sequentially observed.

 X_n is the last observed point in the dataset.

Statistically, the problem of change-point detection is to sequentially test for each new observation x_n , the hypotheses:

$$\left\{ \begin{array}{ll} H_{0,n}: v > n & X_i \sim f_0(\cdot) & \forall \ i=1,...,n \\ H_{1,n}: \exists \ v \leq n, & X_i \sim f_0(\cdot) & \forall \ i=1,...,(v-1) \\ X_i \sim f_1(\cdot) & \forall \ i=v,...,n \end{array} \right.$$

Where ("distribution pre-change") $f_0 \neq f_1$ ("distribution post-change")

$$L_i = \log(\Lambda_i) = \log\left(\frac{f_1(x_i)}{f_0(x_i)}\right), \quad i \ge 1$$

Hypothesis test

Let $\{X_i\}_{i=1,\ldots,n}$ a series of observations sequentially observed.

 X_n is the last observed point in the dataset.

Statistically, the problem of change-point detection is to sequentially test for each new observation x_n , the hypotheses:

$$\left\{ \begin{array}{ll} H_{0,n}: v > n & X_i \sim f_0(\cdot) & \forall i = 1, ..., n \\ H_{1,n}: \exists \ v \leq n, & X_i \sim f_0(\cdot) & \forall i = 1, ..., (v-1) \\ X_i \sim f_1(\cdot) & \forall i = v, ..., n \end{array} \right.$$

Where ("distribution pre-change") $f_0 \neq f_1$ ("distribution post-change")

The "instantaneous" Log Likelihood Ratio (LLR) is defined by :

$$L_i = \log(\Lambda_i) = \log\left(\frac{f_1(x_i)}{f_0(x_i)}\right), \quad i \ge 1$$

Recursive detection statistics

• The Cumulative Sum "CUSUM" statistics is written recursively [Page(1954)]:

$$W_n = \max\{0, W_{n-1} + L_n\}, \qquad n \ge 1, \quad W_0 = 0$$
 (2)

Recursive detection statistics

• The Cumulative Sum "CUSUM" statistics is written recursively [Page(1954)]:

$$W_n = \max\{0, W_{n-1} + L_n\}, \qquad n \ge 1, \quad W_0 = 0$$
 (2)

When the two distributions f_0 and f_1 are unknown;

 \Rightarrow [Tartakovsky, A. G. and all (2006)] suggests replacing the log likelihood ratio L_n through a score function $S_n = S_n(X_1,...,X_n)$.

Score function

The score \boldsymbol{S}_n is defined for a mean and variance change-point detection by :

$$S_n(\delta, q) = C_1 \cdot Y_n + C_2 \cdot Y_n^2 - C_3 \tag{3}$$

 $Y_n = (X_n - \mu_0)/\sigma_0$: the centered and standardized data under ${\rm H}_0.$

$$C_1 = \delta \cdot q^2$$
, $C_2 = \frac{1-q^2}{2}$, $C_3 = \frac{\delta^2 \cdot q^2}{2} - \log(q)$

$$\delta = (\mu_1 - \mu_0)/\sigma_0 \qquad q = \sigma_0/\sigma_1$$

 δ : minimum level of change in the mean that is required to be detected.

No changepoint detection on the mean:

$$\mu_1 = \mu_0 \Rightarrow \delta = 0$$
, therefore $C_1 = 0$.

 q: minimum level of change in the variance that is required to be detected.

No changepoint detection on the variance :

$$\sigma_1^2 = \sigma_0^2 \Rightarrow q = 1$$
, therefore $C_2 = 0$.

Statistics model

Note

The score function can only be used to the knowledge of the parameters **mean and variance of pre-change data** μ_0 , σ_0^2 .

- Use a portion of observed data on the normal state without change-point
 - \Rightarrow Estimate μ_0 and σ_0^2
- Depending on the objective (mean and/ or variance) and level of change that we want to detect : $\delta = (\mu_1 \mu_0)/\sigma_0, q = \sigma_0/\sigma_1$
 - \Rightarrow **Fixed** μ_1 and σ_1^2 .

Preamble

Note

The score function can only be used to the knowledge of the parameters **mean and variance of pre-change data** μ_0, σ_0^2 .

- Use a portion of observed data on the normal state without change-point
 - \Rightarrow **Estimate** μ_0 and σ_0^2 .
- Depending on the objective (mean and/ or variance) and level of change that we want to detect : $\delta=(\mu_1-\mu_0)/\sigma_0, q=\sigma_0/\sigma_1$
 - \Rightarrow **Fixed** μ_1 and σ_1^2 .

Stopping rule

The statistics is calculated recursively :

$$W_n = \max\{0, W_{n-1} + S_n\}, \quad n \ge 1, \quad W_0 = 0$$

Online detection is based on a Stopping Rule :

$$T_h = \min\{n \geq 1 : W_n \geq h \}, h \geq 0 : \text{threshold.}$$

When W exceeds the threshold h.

⇒ The procedure triggers an alarm (Stopping Time) to sianal that a change-point has occurred.

Preamble

Denote T a stopping time, such as :

$$T = \min\{i \ge 1 : W_i \ge h\}$$

- $*T \ge v$: detection with a delay (T-v).
- *T < v: false alarm.
- $*T = +\infty$: non detection.

Detection parameters

Let $\mathbb{P}_0[.]$, $\mathbb{E}_0[.]$: respectively the probability and the expectation **before** the change-point v. Let $\mathbb{P}_1[.]$, $\mathbb{E}_1[.]$: respectively the probability and the expectation **after** the change-point v.

Parameters evaluated under \mathbb{P}_0 .

Mean Time Between False Alarm (MTBFA)

$$MTBFA = \mathbb{E}_0[T]$$
 (4)

Instantaneous False Alarm Rate (IFAR)

$$\alpha = \frac{1}{\mathbb{E}_0[T]} \tag{5}$$

Parameter evaluated under \mathbb{P}_1 .

Average Detection Delay (ADD)

$$ADD = \mathbb{E}_1 [T] \tag{6}$$

Detection threshold

Preamble

The conventional detection threshold used in the literature is based on the Wald's inequality [Egea-Roca et al (2017)].

 \Rightarrow This threshold is constant. It is given after fixing α "the tolerated *IFAR*", by :

$$h_{\alpha} \le -\ln(\alpha) \tag{7}$$

Daniel Egea-Roca, Gonzalo Seco-Granados, and Jose A Lopez-Salcedo. Comprehensive overview of quickest detection theory and its application to GNSS threat detection. Gyroscopy and Navigation, 8(1): 1-14, 2017.

Abraham Wald. Sequential tests of statistical hypotheses. The annals of mathematical statistics, 16(2): 117-186, 1945.

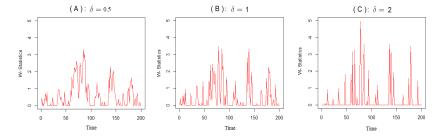
Perspectives

2 New stopping rules by modifying the classical rule.

Preamble

CUSUM statistics under pre-change regime

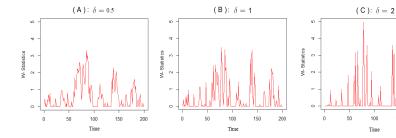
- Simulate a series X_n of n=200 observations of Gaussian distribution ($\mu_0=0$ et $\sigma_0^2=1$);
- Compute W- statistics according to different levels of $\delta,$ (q=1).



The behavior (variability) of the W-statistics depends on the level of δ ;

CUSUM statistics under pre-change regime

- Simulate a series X_n of n=200 observations of Gaussian distribution ($\mu_0=0$ et $\sigma_0^2=1$);
- Compute W- statistics according to different levels of δ , (q=1).



The behavior (variability) of the W-statistics depends on the level of δ ;

 \Rightarrow Build thresholds according to δ .

Time

150 200

Empirical constant threshold

Empirical method : perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps

Preamble

① Under \mathbb{P}_0 : simulate B series of n observation

$$\{X_i^j\}_{i=1,..,n;\ j=1,..,E}$$

Empirical constant threshold

Empirical method : perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

 $\bigcirc \hspace{0.5cm} \text{Under } \mathbb{P}_0 : \text{simulate } B \text{ series of } n \text{ observations}$

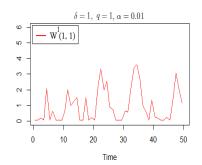
$$\{X_i^j\}_{i=1,..,n;\ j=1,..,B}.$$

Empirical method: perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

Preamble

- ① Under \mathbb{P}_0 : simulate B series of n observations $\{X_i^j\}_{i=1...n:\ j=1...B}$.
- 2 Choice of the objective of detection (δ, q) and compute $w_i^j(\delta,q)$;
- Choice of instantaneous false alarm rate α tolerated:



Simulation results

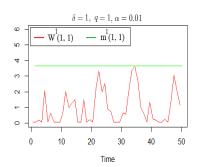
Empirical method : perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

Preamble

- Under \mathbb{P}_0 : simulate B series of n observations $\{X_i^j\}_{i=1...n}$: i=1...B.
- **2** Choice of the objective of detection (δ, q) and compute $w_i^j(\delta, q)$;
- 3 Choice of instantaneous false alarm rate α tolerated:
- For each series $\{x_i^j\}_{1 \le i \le n}$, compute the maximum of statistics :

$$\mathsf{m}^{j}(\delta, q) = \max_{1 \le i \le n} w_{i}(\delta, q).$$



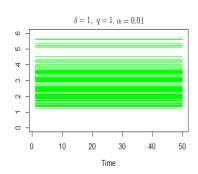
Empirical constant threshold

Empirical method : perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

- Under \mathbb{P}_0 : simulate B series of n observations $\{X_i^j\}_{i=1,..,n}, j=1,..,B$.
- ② Choice of the objective of detection (δ,q) and compute $w_i^j(\delta,q)$;
- 3 Choice of instantaneous false alarm rate α tolerated:
- **4** For each series $\{x_i^j\}_{1 \leq i \leq n}$, compute the maximum of statistics :

$$\mathsf{m}^j(\delta,q) = \max_{1 \le i \le n} w_i(\delta,q).$$



Preamble

Empirical method : perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

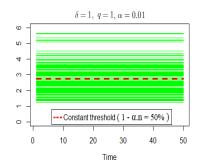
Construction steps:

- Under \mathbb{P}_0 : simulate B series of n observations $\{X_i^j\}_{i=1,..,n}$: j=1,..,B.
- **2** Choice of the objective of detection (δ, q) and compute $w_i^j(\delta, q)$;
- $\begin{tabular}{ll} \textbf{3} & \textbf{Choice of instantaneous false alarm rate } \alpha \\ & \textbf{tolerated:} \\ \end{tabular}$
- For each series $\{x_i^j\}_{1 \leq i \leq n}$, compute the maximum of statistics :

$$\mathsf{m}^{j}(\delta, q) = \max_{1 \leq i \leq n} w_{i}(\delta, q).$$

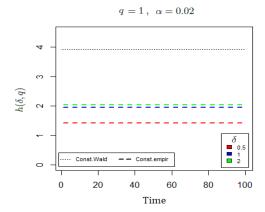
The constant threshold would be the empirical quantile of order $(1-\alpha n)$:

$$h(\delta,q) = \mathbf{q}_{(1-n\cdot\alpha)} \left[\left(m^j(\delta,q) \right)_{1 < j < B} \right]$$



Empirical constant threshold

Preamble



Empirical instantaneous threshold

Construction steps:

Preamble

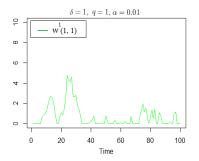
① Under \mathbb{P}_0 : simulate B series of n observations

$$\{X_i^j\}_{i=1,..,n;\ j=1,..,B}.$$

Empirical instantaneous threshold

Construction steps:

- ① Under \mathbb{P}_0 : simulate B series of n observations $\{X_i^j\}_{i=1,..,n;\ j=1,..,B}.$
- 2 Choice of the objective of detection (δ, q) and compute $w_i^j(\delta,q)$;
- Choice of instantaneous false alarm rate α tolerated:



Simulation results

Empirical instantaneous threshold

Construction steps:

- ① Under \mathbb{P}_0 : simulate B series of n observations ${X_i^j}_{i=1,.,n;\ j=1,.,B}$
- 2 Choice of the objective of detection (δ, q) and compute $w_i^j(\delta,q)$;
- Choice of instantaneous false alarm rate α tolerated:



Simulation results

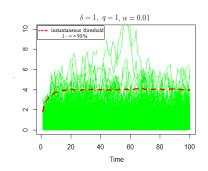
Empirical instantaneous threshold

Construction steps:

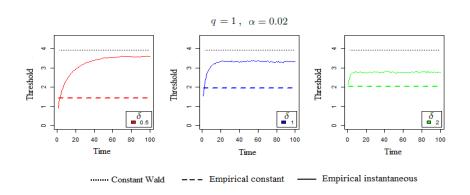
- ① Under \mathbb{P}_0 : simulate B series of n observations $\{X_i^j\}_{i=1...n}$: i=1...B.
- 2 Choice of the objective of detection (δ,q) and compute $w_i^j(\delta,q)$;
- 3 Choice of instantaneous false alarm rate α tolerated;
- 4 The instantaneous threshold would be the empirical quantile of order $(1-\alpha)$:

$$h_t(\delta, q) = \mathbf{q}_{(1-\alpha)} \left[\left(w_t^j(\delta, q) \right)_{1 \le j \le B} \right],$$

$$t = 1, \dots n$$



Preamble

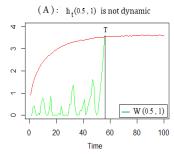


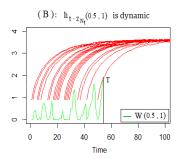
Preamble

 \Rightarrow Propose a dynamic instantaneous threshold (data-driven) : $h_{t-Z_{N_{+}}}(\delta,q)$

- Use the built instantaneous threshold and adapt it to the behavior of the statistic;
- Moving the threshold whenever statistics returns to its initial value (zero).

Where
$$N_t = \sum\limits_{i=1}^t \mathbf{1}_{\{W_i=0\}}$$
 , and $Z_{N_t} = \inf\{i \geq Z_{N_t-1}; W_i = 0\}$ (renewal process)





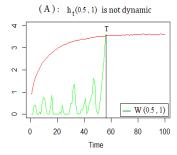
Simulation results

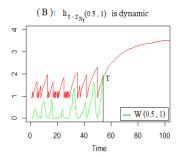
Dynamic instantaneous threshold

 \Rightarrow Propose a dynamic instantaneous threshold (data-driven) : $h_{t-Z_{N_t}}(\delta,q)$

- Use the built instantaneous threshold and adapt it to the behavior of the statistic;
- Moving the threshold whenever statistics returns to its initial value (zero).

Where
$$N_t=\sum\limits_{i=1}^t\mathbf{1}_{\{W_i=0\}},$$
 and $Z_{N_t}=\inf\{i\geq Z_{N_t-1};W_i=0\}$ (renewal process)



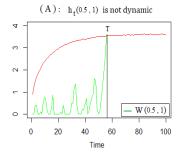


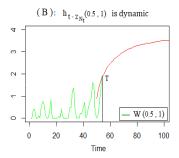
Dynamic instantaneous threshold

 \Rightarrow Propose a dynamic instantaneous threshold (data-driven) : $h_{t-Z_{N_t}}(\delta,q)$

- Use the built instantaneous threshold and adapt it to the behavior of the statistic;
- Moving the threshold whenever the statistical returns to its initial value (zero).

Where
$$N_t=\sum\limits_{i=1}^t\mathbf{1}_{\{W_i=0\}},$$
 and $Z_{N_t}=\inf\{i\geq Z_{N_t-1};W_i=0\}$ (renewal process)





Simulation

Preamble

Objective

Evaluate the different detection thresholds.

Data simulation

Objective of detection

Objective

- Evaluate the different detection thresholds.

Data simulation

- Choice of real pre-change regime \mathbb{P}_0^R : μ_0^R , σ_0^R (supposed known);
- Choice of real post-change regime \mathbb{P}^R_1 : μ^R_1, σ^R_1 (and fixed δ^R, q^R).
- Objective of detection
 - Choice the type and level of the expected change (δ, q)
- Estimation of MTBFA, α and ADL
 - Knowing that we simulated series limited to n = 100 observations each, we used ar empirical estimate taking into account the censoring (survival analysis).

Objective

Evaluate the different detection thresholds.

Data simulation

- Choice of real pre-change regime \mathbb{P}_0^R : μ_0^R , σ_0^R (supposed known);
- Choice of real post-change regime \mathbb{P}_1^R : μ_1^R , σ_1^R (and fixed δ^R , q^R).

Objective of detection

- Choice the type and level of the expected change (δ, q) .

Objective

Evaluate the different detection thresholds.

Data simulation

- Choice of real pre-change regime \mathbb{P}_0^R : μ_0^R , σ_0^R (supposed known);
- Choice of real post-change regime \mathbb{P}_1^R : μ_1^R , σ_1^R (and fixed δ^R , q^R).

Objective of detection

- Choice the type and level of the expected change (δ, q) .

Estimation of MTBFA, α and ADD

- Knowing that we simulated series limited to n = 100 observations each, we used an empirical estimate taking into account the censoring (survival analysis).

TABLE –
$$B = 100000, n = 100, \alpha = 0.02$$

Threshold		δ	MTBFA	$\widehat{\alpha}$	Nbr. FA
Ī		0.5	779	0.001	12156
Wald	3.91	1	318	0.003	27125
		2	239	0.004	34283

• The more the objective δ is large, the more we have false alarms.

Results under \mathbb{P}_0 : MTBFA and IFAR

TABLE –
$$B = 100000, n = 100, \alpha = 0.02$$

Threshold		δ	\widehat{MTBFA}	$\widehat{\alpha}$	Nbr. FA
Ī		0.5	779	0.001	12156
Wald	3.91	1	318	0.003	27125
		2	239	0.004	34283
Const.	1.42	0.5	35	0.028	95139
Empir	1.94	1	36	0.028	94385
<u> </u>	2.04	2	37	0.027	93740

• Similar $\widehat{\alpha}$ whatever is δ ; $\widehat{\alpha}$ slightly exceeds the tolerated α .

Results under \mathbb{P}_0 : MTBFA and IFAR

TABLE –
$$B = 100000, n = 100, \alpha = 0.02$$

Threshold		δ	\widehat{MTBFA}	$\widehat{\alpha}$	Nbr. FA
Ī		0.5	779	0.001	12156
Wald	3.91	1	318	0.003	27125
		2	239	0.004	34283
Const.	1.42	0.5	35	0.028	95139
Empir	1.94	1	36	0.028	94385
	2.04	2	37	0.027	93740
Inst.	h_t (0.5)	0.5	291	0.003	27953
Empir	h_t (1)	1	147	0.007	48564
	h_t (2)	2	73	0.014	74391

 $\begin{tabular}{ll} \bf The same behavior of Wald's threshold\\ results, with higher levels of FA but\\ always respecting the tolerated α. \end{tabular}$

Results under \mathbb{P}_0 : MTBFA and IFAR

TABLE –
$$B = 100000, n = 100, \alpha = 0.02$$

Threshold	I	δ	\widehat{MTBFA}	$\widehat{\alpha}$	Nbr FA
Ī		0.5	779	0.001	12156
Wald	3.91	1	318	0.003	27125
		2	239	0.004	34283
Const.	1.42	0.5	35	0.028	95139
Empir	1.94	1	36	0.028	94385
	2.04	2	37	0.027	93740
Inst.	$h_t(0.5)$	0.5	291	0.003	27953
Empir	$h_t(1)$	1	147	0.007	48564
	$h_t(2)$	2	73	0.014	74391
	$h_t(0.5)$	0.5	75	0.013	73466
Inst. Empir	$h_t(1)$	1	65	0.015	78544
Dynam	$h_t(2)$	2	58	0.017	81940

- More homogeneous results;
 - $\widehat{\alpha}$ is close to the tolerated one but never exceeds it.

Results under \mathbb{P}_1 : ADD

$$\mathsf{TABLE} - B = 100000, n = 100, v = 50, \alpha = 0.02$$

				$\delta^R = 1$				$\delta^R = 2$			
Thresho	old		δ	\widehat{ADD}	\widehat{Mdn}	No-detect		\widehat{ADD}	\widehat{Mdn}	No-detect	
Ī		Ī	0.5	9.45	9	0	1	4.31	4	0	
Wald	3.91		1	7.44	6	2	1	2.94	3	0	
			2	9.37	7	212		2.58	2	0	

• Detection is not so fast when $\delta^R > \delta$; The change-point is quickly detected when δ^R is large, whatever is δ .

Results under \mathbb{P}_1 : ADD

TABLE –
$$B = 100000, n = 100, v = 50, \alpha = 0.02$$

				$\delta^R = 1$				
Threshold		δ	ÂDD	\widehat{Mdn}	No-detect			
Ī	2.21	0.5	9.45	9	0			
Wald	3.91	1	7.44	6	2			
		2	9.37	7	212			
Const.	1.42	0.5	3	3	0			
Empir	1.94	1	3.62	3	0			
	2.04	2	4.54	3	0			

 $\widehat{ADD} \text{ is considerably better}; \\ \text{Change-point is quickly detected as long as } \delta^R \geqslant \delta. \\$

Results under \mathbb{P}_1 : ADD

TABLE –
$$B = 100000, n = 100, v = 50, \alpha = 0.02$$

			$\delta^R = 1$				
Threshold		δ	ÂDD	\widehat{Mdn}	No-detect		
i		0.5	9.45	9	0		
Wald	3.91	1	7.44	6	2		
		2	9.37	7	212		
Const.	1.42	0.5	3	3	0		
Empir	1.94	1	3.62	3	0		
	2.04	2	4.54	3	0		
Inst.	h _t (0.5)	0.5	8.47	8	0		
Empir	h _t (1)	1	6.22	5	0		
<u> </u>	h _t (2)	2	6.23	5	11		

Comparable to Wald's but with faster detection.

Results under \mathbb{P}_1 : ADD

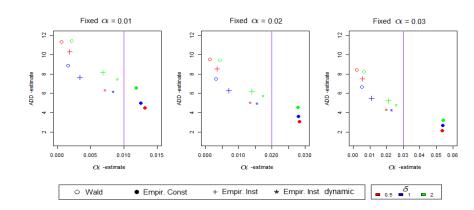
Preamble

TABLE – $B = 100000, n = 100, v = 50, \alpha = 0.02$

			$\delta^R = 1$				
Threshold	t	δ	ÂDD	\widehat{Mdn}	No-detect		
		0.5	9.45	9	0		
Wald	3.91	1	7.44	6	2		
		2	9.37	7	212		
Const.	1.42	0.5	3	3	0		
Empir	1.94	1	3.62	3	0		
	2.04	2	4.54	3	0		
Inst.	h _t (0.5)	0.5	8.47	8	0		
Empir	h _t (1)	1	6.22	5	0		
	h _t (2)	2	6.23	5	11		
	h _t (0.5)	1	5.1	4	0		
Inst. Empir	h _t (1)	2	5	4	0		
Dynam	h _t (2)	3	5.8	4	3		

 It detects more quickly than the fixed threshold and that of Wald.

Summary



Perspectives

- Theoretical study on the behavior of detection statistics (understand results given by the thresholds);
- The case where the parameters of the pre-change regime are unknown: estimation methods;
- Use the detection methods in the multivariate case;
- Thesis framework: prediction of a dreaded event during online monitoring of lung transplant patients.

Thank you!

New stopping rule

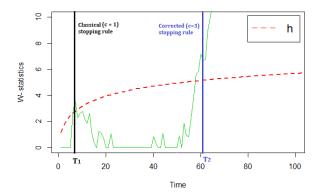
Preamble

Classical stopping rule

signals the existence of a changepoint when the detection statistic exceeds the instantaneous threshold.

Corrected stopping rule

signals the existence of a change-point when the detection statistic exceeds the instantaneous threshold during a time $c\geq 1.$



Results: corrected stop rule

TABLE – $B = 100000, n = 100, v = 50, \alpha = 0.02$

				Sous $\mathbb{P}_0:\widehat{lpha}$			Sous $\mathbb{P}_1:\widehat{ADD}$			
Threshold	Threshold		Stop rule "c"							
			1	2	3	1	2	3		
		0.5	0.001	0.0009	0.0007	9.45	10.74	11.9		
Wald	3.91	1	0.003	0.002	0.001	7.44	9.03	10.4		
		2	0.004	0.001	0.0004	9.37	13.1	15.8		
Const.	1.42	0.5	0.028	0.018	0.014	3	4.34	5.5		
empir	1.94	1	0.028	0.014	0.008	3.62	5.2	6.5		
	2.04	2	0.027	0.007	0.002	4.54	7.7	10.5		
Inst.	h_t (0.5)	0.5	0.003	0.002	0.001	8.47	9.76	10.9		
empir.	h _t (1)	1	0.007	0.003	0.002	6.22	7.82	9.2		
	h _t (2)	2	0.014	0.004	0.001	6.23	9.73	12.6		
I	h _t (0.5)	0.5	0.013	0.007	0.004	5.1	6.6	7.84		
Inst. Empir	h _t (1)	1	0.015	0.006	0.003	5	6.81	8.3		
Dynam	h _t (2)	2	0.017	0.004	0.001	5.8	9.4	12.36		