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Change-point
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Context of analysis

Offline context :

All data are received and processed in one go ;

The primary aim is accurate detection of changes ;

Inference about all change-points simultaneously.

Online context :

Data arrives either as single data-points or in batches ;

Data must be processed quickly before new data arrives ;

The aim is the quickest detection of a change after it has
occurred ;

Inference about most recent change only.
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Online change-point detection
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Hypothesis test

Let {Xi}i=1,..,n a series of observations sequentially observed.

Xn is the last observed point in the dataset.

Statistically, the problem of change-point detection is to sequentially test for each new observation
xn, the hypotheses :

H0,n : v > n Xi ∼ f0(·) ∀ i = 1, ..., n

H1,n : ∃ v ≤ n, Xi ∼ f0(·) ∀ i = 1, ..., (v − 1)
Xi ∼ f1(·) ∀ i = v, ..., n

(1)

Where (”distribution pre-change”) f0 6= f1 (”distribution post-change”)

The ”instantaneous” Log Likelihood Ratio (LLR) is defined by :

Li = log(Λi) = log
(
f1(xi)

f0(xi)

)
, i ≥ 1
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Recursive detection statistics

The Cumulative Sum ”CUSUM” statistics is written recursively [Page(1954)] :

Wn = max{0, Wn−1 + Ln}, n ≥ 1, W0 = 0 (2)

When the two distributions f0 and f1 are unknown ;

⇒ [Tartakovsky, A. G. and all (2006)] suggests replacing the log likelihood ratio Ln through a score
function Sn = Sn(X1, .., Xn).
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Score function

The score Sn is defined for a mean and variance change-point detection by :

Sn(δ, q) = C1 · Yn + C2 · Y 2
n − C3 (3)

Yn = (Xn − µ0)/σ0 : the centered and standardized
data under H0.

C1 = δ · q2, C2 = 1−q2
2

, C3 = δ2·q2
2
− log(q)

δ = (µ1 − µ0)/σ0 q = σ0/σ1

δ : minimum level of change in the mean that is
required to be detected.

No changepoint detection on the mean :

µ1 = µ0⇒ δ = 0, therefore C1 = 0.

q : minimum level of change in the variance that
is required to be detected.

No changepoint detection on the variance :

σ2
1 = σ2

0 ⇒ q = 1, therefore C2 = 0.
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Statistics model

Note

The score function can only be used to the knowledge of the parameters mean and variance of
pre-change data µ0, σ2

0 .

Use a portion of observed data on the normal state without change-point

⇒ Estimate µ0 and σ2
0 .

Depending on the objective (mean and/ or variance) and level of change that we want to
detect : δ = (µ1 − µ0)/σ0, q = σ0/σ1

⇒ Fixed µ1 and σ2
1 .
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Stopping rule

The statistics is calculated recursively :

Wn = max{0,Wn−1 + Sn}, n ≥ 1, W0 = 0

Online detection is based on a Stopping Rule :

Th = min{n ≥ 1 : Wn ≥ h }, h ≥ 0 : threshold.

When W exceeds the threshold h :

⇒ The procedure triggers an alarm (Stopping Time) to si-
gnal that a change-point has occurred.
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Stopping rule

Denote T a stopping time, such as :

T = min{i ≥ 1 : Wi ≥ h}

∗ T ≥ v : detection with a delay (T − v).

∗ T < v : false alarm.

∗ T = +∞ : non detection.
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Detection parameters

Let P0[.], E0[.] : respectively the probability and the expectation before the change-point v.
Let P1[.], E1[.] : respectively the probability and the expectation after the change-point v.

Parameters evaluated under P0 .

Mean Time Between False Alarm (MTBFA)

MTBFA = E0 [T ] (4)

Instantaneous False Alarm Rate (IFAR)

α =
1

E0 [T ]
(5)

Parameter evaluated under P1.

Average Detection Delay (ADD)

ADD = E1 [T ] (6)
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Detection threshold

The conventional detection threshold used in the literature is based on the Wald’s inequality [
Egea-Roca et al (2017) ].

⇒ This threshold is constant. It is given after fixing α ”the tolerated IFAR”, by :

hα ≤ − ln(α) (7)

Daniel Egea-Roca, Gonzalo Seco-Granados, and Jose A Lopez-Salcedo. Comprehensive overview of quickest detection theory and its
application to GNSS threat detection. Gyroscopy and Navigation, 8(1) : 1-14, 2017.
Abraham Wald. Sequential tests of statistical hypotheses. The annals of mathematical statistics, 16(2) : 117-186, 1945.
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1 New detection thresholds constructed by an empirical method ;

2 New stopping rules by modifying the classical rule.

Nassim SAHKI

New Detection Thresholds and Stop Rules for CUSUM Online Detection



15/51

Preamble Online change-point detection New detection threshold Simulation results Perspectives

CUSUM statistics under pre-change regime

- Simulate a series Xn of n = 200 observations of Gaussian distribution (µ0 = 0 et σ2
0 = 1) ;

- Compute W- statistics according to different levels of δ, ( q = 1 ).

The behavior (variability) of the W-statistics depends on the level of δ ;
⇒ Build thresholds according to δ.
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Empirical constant threshold

Empirical method : perform simulations of the statistics under P0 and build the detection threshold
according to empirical quantile of law of the statistics under pre-change regime.

Construction steps :

1 Under P0 : simulate B series of n observations

{Xji }i=1,.,n; j=1,.,B .
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Empirical constant threshold

Empirical method : perform simulations of the statistics under P0 and build the detection threshold
according to empirical quantile of law of the statistics under pre-change regime.

Construction steps :

1 Under P0 : simulate B series of n observations

{Xji }i=1,.,n; j=1,.,B .

2 Choice of the objective of detection (δ, q) and
compute wji (δ, q) ;

3 Choice of instantaneous false alarm rate α
tolerated ;
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Empirical constant threshold
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{Xji }i=1,.,n; j=1,.,B .

2 Choice of the objective of detection (δ, q) and
compute wji (δ, q) ;

3 Choice of instantaneous false alarm rate α
tolerated ;

4 For each series {xji}1≤i≤n, compute the
maximum of statistics :

mj(δ, q) = max
1≤i≤n

wi(δ, q).
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Empirical constant threshold

Empirical method : perform simulations of the statistics under P0 and build the detection threshold
according to empirical quantile of law of the statistics under pre-change regime.

Construction steps :

1 Under P0 : simulate B series of n observations

{Xji }i=1,.,n; j=1,.,B .

2 Choice of the objective of detection (δ, q) and
compute wji (δ, q) ;

3 Choice of instantaneous false alarm rate α
tolerated ;

4 For each series {xji}1≤i≤n, compute the
maximum of statistics :

mj(δ, q) = max
1≤i≤n

wi(δ, q).

5 The constant threshold would be the empirical
quantile of order (1-αn) :

h(δ, q) = q(1−n·α)

[(
mj(δ, q)

)
1≤j≤B

]

Nassim SAHKI

New Detection Thresholds and Stop Rules for CUSUM Online Detection



21/51

Preamble Online change-point detection New detection threshold Simulation results Perspectives

Empirical constant threshold
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Empirical instantaneous threshold

Construction steps :

1 Under P0 : simulate B series of n observations

{Xji }i=1,.,n; j=1,.,B .
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Empirical instantaneous threshold

Construction steps :

1 Under P0 : simulate B series of n observations

{Xji }i=1,.,n; j=1,.,B .

2 Choice of the objective of detection (δ, q) and
compute wji (δ, q) ;

3 Choice of instantaneous false alarm rate α
tolerated ;
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Empirical instantaneous threshold

Construction steps :

1 Under P0 : simulate B series of n observations

{Xji }i=1,.,n; j=1,.,B .

2 Choice of the objective of detection (δ, q) and
compute wji (δ, q) ;

3 Choice of instantaneous false alarm rate α
tolerated ;
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Empirical instantaneous threshold

Construction steps :

1 Under P0 : simulate B series of n observations

{Xji }i=1,.,n; j=1,.,B .

2 Choice of the objective of detection (δ, q) and
compute wji (δ, q) ;

3 Choice of instantaneous false alarm rate α
tolerated ;

4 The instantaneous threshold would be the
empirical quantile of order (1-α) :

ht(δ, q) = q(1−α)

[(
w
j
t (δ, q)

)
1≤j≤B

]
,

t = 1, ., n
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Empirical instantaneous threshold
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Dynamic instantaneous threshold

⇒ Propose a dynamic instantaneous threshold (data-driven) : ht−ZNt (δ, q)

- Use the built instantaneous threshold and adapt it to the behavior of the statistic ;
- Moving the threshold whenever statistics returns to its initial value (zero).

Where Nt =
t∑
i=1

1{Wi=0}, and ZNt = inf{i ≥ ZNt−1;Wi = 0} (renewal process)
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Dynamic instantaneous threshold
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Simulation results
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Simulation

Objective
- Evaluate the different detection thresholds.

Data simulation
- Choice of real pre-change regime PR0 : µR0 , σR0 ( supposed known ) ;

- Choice of real post-change regime PR1 : µR1 , σ
R
1 ( and fixed δR, qR ).

Objective of detection
- Choice the type and level of the expected change (δ, q).

Estimation of MTBFA, α and ADD
- Knowing that we simulated series limited to n = 100 observations each, we used an
empirical estimate taking into account the censoring (survival analysis).
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Results under P0 : MTBFA and IFAR

TABLE – B = 100000, n = 100, α = 0.02

Threshold δ M̂TBFA α̂ Nbr. FA

0.5 779 0.001 12156
Wald 3.91 1 318 0.003 27125

2 239 0.004 34283

The more the objective δ is large, the
more we have false alarms.
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Results under P0 : MTBFA and IFAR

TABLE – B = 100000, n = 100, α = 0.02

Threshold δ M̂TBFA α̂ Nbr. FA

0.5 779 0.001 12156
Wald 3.91 1 318 0.003 27125

2 239 0.004 34283

1.42 0.5 35 0.028 95139Const.
Empir 1.94 1 36 0.028 94385

2.04 2 37 0.027 93740

Similar α̂ whatever is δ ;

α̂ slightly exceeds the tolerated α.
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Results under P0 : MTBFA and IFAR

TABLE – B = 100000, n = 100, α = 0.02

Threshold δ M̂TBFA α̂ Nbr. FA

0.5 779 0.001 12156
Wald 3.91 1 318 0.003 27125

2 239 0.004 34283

1.42 0.5 35 0.028 95139Const.
Empir 1.94 1 36 0.028 94385

2.04 2 37 0.027 93740

ht (0.5) 0.5 291 0.003 27953Inst.
Empir ht (1) 1 147 0.007 48564

ht (2) 2 73 0.014 74391

The same behavior of Wald’s threshold
results, with higher levels of FA but
always respecting the tolerated α.
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Results under P0 : MTBFA and IFAR

TABLE – B = 100000, n = 100, α = 0.02

Threshold δ M̂TBFA α̂ Nbr FA

0.5 779 0.001 12156
Wald 3.91 1 318 0.003 27125

2 239 0.004 34283

1.42 0.5 35 0.028 95139Const.
Empir 1.94 1 36 0.028 94385

2.04 2 37 0.027 93740

ht(0.5) 0.5 291 0.003 27953Inst.
Empir ht(1) 1 147 0.007 48564

ht(2) 2 73 0.014 74391

ht(0.5) 0.5 75 0.013 73466

ht(1) 1 65 0.015 78544Inst.
Empir
Dynam ht(2) 2 58 0.017 81940

More homogeneous results ;

α̂ is close to the tolerated one but
never exceeds it.
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Results under P1 : ADD

TABLE – B = 100000, n = 100, v = 50, α = 0.02

δR = 1 δR = 2

Threshold δ ÂDD M̂dn No-detect ÂDD M̂dn No-detect

0.5 9.45 9 0 4.31 4 0
Wald 3.91 1 7.44 6 2 2.94 3 0

2 9.37 7 212 2.58 2 0

Detection is not so fast when δR > δ ;

The change-point is quickly detected when δR

is large, whatever is δ.
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Results under P1 : ADD

TABLE – B = 100000, n = 100, v = 50, α = 0.02

δR = 1

Threshold δ ÂDD M̂dn No-detect

0.5 9.45 9 0
Wald 3.91 1 7.44 6 2

2 9.37 7 212

1.42 0.5 3 3 0Const.
Empir 1.94 1 3.62 3 0

2.04 2 4.54 3 0

ÂDD is considerably better ;

Change-point is quickly detected as
long as δR > δ.
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Results under P1 : ADD

TABLE – B = 100000, n = 100, v = 50, α = 0.02

δR = 1

Threshold δ ÂDD M̂dn No-detect

0.5 9.45 9 0
Wald 3.91 1 7.44 6 2

2 9.37 7 212

1.42 0.5 3 3 0Const.
Empir 1.94 1 3.62 3 0

2.04 2 4.54 3 0

ht (0.5) 0.5 8.47 8 0Inst.
Empir ht (1) 1 6.22 5 0

ht (2) 2 6.23 5 11

Comparable to Wald’s but with faster
detection.
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Results under P1 : ADD

TABLE – B = 100000, n = 100, v = 50, α = 0.02

δR = 1

Threshold δ ÂDD M̂dn No-detect

0.5 9.45 9 0
Wald 3.91 1 7.44 6 2

2 9.37 7 212

1.42 0.5 3 3 0Const.
Empir 1.94 1 3.62 3 0

2.04 2 4.54 3 0

ht (0.5) 0.5 8.47 8 0Inst.
Empir ht (1) 1 6.22 5 0

ht (2) 2 6.23 5 11

ht (0.5) 1 5.1 4 0

ht (1) 2 5 4 0Inst.
Empir
Dynam ht (2) 3 5.8 4 3

It detects more quickly than the fixed
threshold and that of Wald.
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Summary
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Perspectives

Theoretical study on the behavior of detection statistics ( understand results given by the
thresholds ) ;

The case where the parameters of the pre-change regime are unknown : estimation methods ;

Use the detection methods in the multivariate case ;

Thesis framework : prediction of a dreaded event during online monitoring of lung transplant
patients.

Nassim SAHKI

New Detection Thresholds and Stop Rules for CUSUM Online Detection



42/51

Preamble Online change-point detection New detection threshold Simulation results Perspectives

Thank you!

Nassim SAHKI

New Detection Thresholds and Stop Rules for CUSUM Online Detection



43/51

Preamble Online change-point detection New detection threshold Simulation results Perspectives

Annex
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New stopping rule

Classical stopping rule

signals the existence of a changepoint when the detection
statistic exceeds the instantaneous threshold.

Corrected stopping rule

signals the existence of a change-point when the
detection statistic exceeds the instantaneous threshold
during a time c ≥ 1.
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Results : corrected stop rule

TABLE – B = 100000, n = 100, v = 50, α = 0.02

Sous P0 : α̂ Sous P1 : ÂDD

Stop rule ”c”Threshold δ
1 2 3 1 2 3

0.5 0.001 0.0009 0.0007 9.45 10.74 11.9

1 0.003 0.002 0.001 7.44 9.03 10.4Wald 3.91
2 0.004 0.001 0.0004 9.37 13.1 15.8

1.42 0.5 0.028 0.018 0.014 3 4.34 5.5Const.
empir 1.94 1 0.028 0.014 0.008 3.62 5.2 6.5

2.04 2 0.027 0.007 0.002 4.54 7.7 10.5

ht (0.5) 0.5 0.003 0.002 0.001 8.47 9.76 10.9Inst.
empir. ht (1) 1 0.007 0.003 0.002 6.22 7.82 9.2

ht (2) 2 0.014 0.004 0.001 6.23 9.73 12.6

ht (0.5) 0.5 0.013 0.007 0.004 5.1 6.6 7.84

ht (1) 1 0.015 0.006 0.003 5 6.81 8.3Inst.
Empir
Dynam ht (2) 2 0.017 0.004 0.001 5.8 9.4 12.36
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