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One of the most promising frameworks for understanding the anomalies of cold and supercooled water
postulates the existence of two competing, interconvertible local structures. If the non-ideality in the
Gibbs energy of mixing overcomes the ideal entropy of mixing of these two structures, a liquid-liquid
phase transition, terminated at a liquid-liquid critical point, is predicted. Various versions of the “two-
structure equation of state” (TSEOS) based on this concept have shown remarkable agreement with
both experimental data for metastable, deeply supercooled water and simulations of molecular water
models. However, existing TSEOSs were not designed to describe the negative pressure region and do
not account for the stability limit of the liquid state with respect to the vapor. While experimental data
on supercooled water at negative pressures may shed additional light on the source of the anomalies of
water, such data are very limited. To fill this gap, we have analyzed simulation results for TIP4P/2005,
one of the most accurate classical water models available. We have used recently published simulation
data, and performed additional simulations, over a broad range of positive and negative pressures,
from ambient temperature to deeply supercooled conditions. We show that, by explicitly incorporating
the liquid-vapor spinodal into a TSEOS, we are able to match the simulation data for TIP4P/2005
with remarkable accuracy. In particular, this equation of state quantitatively reproduces the lines of
extrema in density, isothermal compressibility, and isobaric heat capacity. Contrary to an explanation
of the thermodynamic anomalies of water based on a “retracing spinodal,” the liquid-vapor spinodal
in the present TSEOS continues monotonically to lower pressures upon cooling, influencing but not
giving rise to density extrema and other thermodynamic anomalies. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4973546]

I. INTRODUCTION

The most well-known thermodynamic anomaly of water
is the density maximum with respect to temperature, occurring
at atmospheric pressure at about 4 ◦C.1 Upon supercooling, the
behavior of water becomes even more anomalous: density con-
tinues to decrease,2 while the isothermal compressibility and
isobaric heat capacity increase sharply.3–5 As the pressure is
increased, the temperature of maximum density (TMD) along
isobars decreases.1 One influential hypothesis that explains the
anomalous thermodynamics of supercooled water posits the
existence of a first-order liquid-liquid phase transition (LLPT)
in deeply supercooled water, terminating at a liquid-liquid
critical point (LLCP),6–9 in a region where the metastable
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liquid is difficult to access experimentally due to rapid homo-
geneous nucleation of ice.1

This hypothesis is consistent with a view that consid-
ers water as a “mixture” of two distinct interconvertible
local structures: a high-density, high-entropy structure (“struc-
ture A”) and a low-density, low-entropy structure (“structure
B”).10–13 Structure A is prevalent at high temperatures and
pressures, whereas structure B is prevalent at low tempera-
tures and pressures. Based on the two-structure concept, an
explicit two-structure equation of state (TSEOS) was devel-
oped. Several versions of the TSEOS were successfully used
for the description of the thermodynamic anomalies in super-
cooled water,12,14 as well as in different models of water:
mW,15 ST2,16 and TIP4P/2005.17 Sufficient non-ideality in
the mixing of these two alternative structures could lead to a
liquid-liquid phase transition (as in ST216,18–20 and, possibly,
TIP4P/200517). The existence of a low-density, low entropy
structure accounts for the density anomaly upon cooling, as
well as for the increase in compressibility and isobaric heat
capacity. If there is a liquid-liquid phase transition, then the
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response functions pass through finite maxima upon isobaric
cooling in the one-phase region, with the loci of maxima
converging with the critical isochore at the critical point,
where the response functions diverge. However, the conjec-
ture of two local structures does not necessarily require that
there be a liquid-liquid phase transition, and if such a tran-
sition is not present (for example, in the mW15 model), then
the response functions pass through finite maxima and never
diverge.

Experiments22–24 and simulations13,17,21 support the exis-
tence of two distinct, interconvertible local structures in cold
and supercooled water, as well as in water-like models. In
particular, the TIP4P/2005,13,17 TIP5P,13 and mW21 models
of water show an increase in the number of molecules with
four nearest neighbors and in local tetrahedral arrangements
upon cooling. This is in quantitative agreement with the behav-
ior of the structure B fraction, the “reaction coordinate” in
two-structure thermodynamics.

Recent experimental progress has revived interest in the
doubly metastable region, where liquid water is both super-
cooled and under tension.25 The doubly metastable region
was explored as a novelty by Hayward in 1971.26 Subse-
quent experiments27–29 further explored this region. The recent
experiments of Pallares et al.30,31 accomplished a significant
penetration into the region where water is metastable with
respect to both the crystal and vapor phases. In particular, the
line of density maxima was investigated down to −120 MPa.31

Although the available experimental data are still sparse, they
reveal the inadequacy of extrapolations of positive-pressure
behavior into the negative-pressure region. For example, the
speed of sound can reach nearly twice the value predicted by
extrapolation.30

Liquid water cannot be stretched indefinitely. Eventually,
even the metastability of the liquid state must end at the liquid-
vapor spinodal (LVS), the absolute stability limit of a liquid
with respect to the vapor. At the LVS, the isothermal com-
pressibility diverges, as does the isobaric heat capacity. None
of the previous versions of the TSEOS account for the exis-
tence of the liquid-vapor spinodal and, accordingly, none have
been used for the study of negative pressures. This was a
serious limitation in the applications of two-structure thermo-
dynamics, especially in view of the fact that the shape of the
spinodal and its possible connection to supercooled water’s
anomalies has been debated since the 1980s.1,32–41 In 1982
Speedy32 proposed an interpretation of the thermodynamic
anomalies of metastable water. He conjectured that “ a contin-
uous line of stability limits bounds the superheated, stretched,
and supercooled states,” which would cause the increase in
response functions upon supercooling. This line of instabil-
ity is unlikely to be a “retracing liquid-vapor spinodal,” as
has been argued on thermodynamic grounds.1,37,38 However,
the debates on the behavior of the stability limits in doubly
metastable water are far from over, especially in view of a
“critical-point-free” scenario, the possibility of continuation of
the first-order LLPT down to the absolute stability of the liquid
state.9,35,39,41

In the present work, we have applied two-structure ther-
modynamics to the description of recently published17,42,43

and new, previously unpublished extensive simulation data

from the Princeton group on the thermodynamic properties
of the TIP4P/2005 classical water model over a wide range
of temperatures and pressures. TIP4P/2005 is one of the best
available models of water, and, in particular, it reproduces
well the thermodynamic anomalies of real water at low tem-
peratures,44 and the sound velocity in stretched water.30 The
question of the existence of a LLPT in TIP4P/2005 con-
tinues to be debated, with several studies having argued in
favor of liquid-liquid separation,43,45,46 while a recent study
reported the disappearance of the transition upon increasing
the size of the simulated system.47 One of the difficulties
with low-temperature simulations of this model is the rapid
increase of the structural relaxation time in the deeply super-
cooled region. In any case, the thermodynamic surface of the
model evaluated in the one-phase region above 180 K clearly
shows the hallmarks of criticality (at about 182 K, 170 MPa,
and 1017 kg m−3), while an equation of state based on two-
structure thermodynamics shows excellent agreement with the
simulation data at positive pressures.17 In this work, we extend
two-structure thermodynamics to negative pressures down to
the liquid-vapor spinodal and explicitly include the spinodal
into the analysis. Agreement between the simulation data and
the TSEOS is remarkable. The liquid-vapor spinodal signifi-
cantly affects the thermodynamic behavior of the model in the
doubly metastable region. However, contrary to an explanation
of the thermodynamic anomalies of water based on a “retracing
spinodal,” the liquid-vapor spinodal in the TSEOS continues
monotonically to lower pressures upon cooling, influencing
but not giving rise to density extrema and other thermodynamic
anomalies.

II. EQUATION OF STATE

We model the thermodynamic behavior of supercooled
water with a TSEOS similar to that used in Refs. 12 and
15–17, but with a significant addition: a liquid-vapor spin-
odal (LVS) at negative pressures. In keeping with two-structure
thermodynamics, water is viewed as a “mixture” of two distinct
local structures: a high-density, high-entropy structure (“struc-
ture A”) prevalent at high temperatures and a low-density,
low-entropy structure (“structure B”) prevalent at low tem-
peratures. The molar Gibbs energy of this “mixture” takes the
form

G = GA + xGBA

+RT [xln x + (1 − x)ln(1 − x) + ωx(1 − x)] , (1)

where x is the fraction of molecules in structure B. GA is the
Gibbs energy of pure structure A, while GBA is the difference
in Gibbs energy between structure B and structure A. ω is a
parameter describing the non-ideality of the mixture. GA, GBA,
and ω are each functions of T and P.

The two structures A and B are interconvertible, so unlike
in a binary mixture, the fraction x of molecules participating
in structure B is not an independent thermodynamic variable.
Rather, it is controlled by the condition of thermodynamic
equilibrium (

∂G
∂x

)
T ,P
= 0. (2)
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To find the value of any thermodynamic property with the
TSEOS for a given T and P, one must first compute the
equilibrium fraction xe(T,P) from Eq. (2), and then evaluate
the appropriate derivative of the Gibbs energy at the given
conditions (T, P; xe).

The TSEOS includes a critical point, so it is convenient to
work in terms of the reduced variables ∆T̂ = (T − Tc)/Tc and
∆P̂ = (P − Pc)/(ρcRTc), where Tc, ρc, and Pc are the critical
temperature, density, and pressure, respectively. R is the uni-
versal gas constant. In general, we work with dimensionless
variables, which are reduced by the appropriate combination
of Tc, ρc, and R, e.g., Ĝ = G/(RTc).

The behavior of pure structure A is represented by

ĜA = Ĝσ +
∑
m,n

cmn∆T̂m
∆P̂n . (3)

The term Ĝσ accounts for the effects of the spinodal and will be
discussed later. The coefficients {cmn} are adjustable param-
eters to be fitted to the data. In fitting the equation of state,
we found it necessary and sufficient to include terms up to
fourth order in ∆T̂ and ∆P̂. We also noticed that the ∆P̂4 term
did not improve the fit and it was therefore discarded. Due to
the overall symmetry of the equation of state, the condition
GBA = 0 locates the LLPT, the LLCP, and the Widom line, that
is, the line of maximum fluctuations of the order parameter
that continues the LLPT into the one-phase region. ĜBA is
therefore expressed as

ĜBA = λ(∆T̂ + a∆P̂ + b∆T̂∆P̂ + d∆P̂2 + f∆T̂2). (4)

In this formulation, λ and λa give the difference in entropy and
volume between structure A and structure B, respectively, at
the critical point. λb, λd, and λf give the corresponding differ-
ences in the isobaric expansion coefficient αP, the isothermal
compressibility κT , and the isobaric heat capacity CP, respec-
tively. We can find the slope of the LLPT at the critical point
as (dP̂/dT̂ ) = −1/a, and the other parameters contribute to the
curvature of the LLPT and Widom line.

The Gibbs energy of mixing is expressed as RT
[xlnx + (1− x)ln(1− x)+ωx(1− x)]. The term RT [xlnx
+ (1 − x)ln(1 − x)] is the contribution to the Gibbs energy aris-
ing from the ideal or Lewis-Randall entropy of mixing associ-
ated with a binary solution.48 We model the non-ideal contri-
bution to the Gibbs energy of mixing in a simple, symmetric
form: RTωx(1 − x), with the parameter ω (T , P) controlling
the magnitude of the non-ideality. Criticality requires ω = 2;
for larger values there will be an LLPT, while smaller values
indicate the one-phase region where non-ideality is too weak
to generate phase separation.

We use the form

ω =
2 + ω0∆P̂

T̂
(5)

for the non-ideality of mixing. With ω in this form, the
TSEOS has no non-ideal entropy of mixing. Consequently, the
resulting phase transition has been referred to as an energy-
driven LLPT, although it should be noted that non-ideality in
both volume and energy of mixing contributes to the phase
transition.

We include the liquid-vapor spinodal through the term
Gσ in Eq. (3) with a construction similar to that introduced

in Ref. 32: because (∂P/∂V )T must vanish at the LVS, P in
the vicinity of the LVS can be expanded as a function of V in
a Taylor series whose first non-vanishing, non-constant term
will be of second order in V. To second order, then,

P = Ps +
1
2

(
∂2P

∂V2

)
T ,P=Ps

(V − Vs)
2, (6)

where Ps and V s are the pressure and volume of the liquid at
the LVS. In this case, the asymptotic behaviors for the volume
V and the isothermal compressibility κT upon approaching the
spinodal are

Vs − V ∼ (P − Ps)
1/2, (7)

κT ∼ (P − Ps)
−1/2, (8)

as is predicted, for example, in the classical Van der Waals
treatment of the liquid-vapor transition.

The relationship in Eq. (6) and the resulting asymptotic
behavior can be introduced into the equation of state if the
Gibbs energy GA in Eq. (3) includes a term of the form

Gσ(T , P) = A(T )(P − Ps(T ))3/2. (9)

From this expression we find the contributions (indicated
by ∆) of the term Gσ to the thermodynamic properties as
follows:

∆V =
3
2

A(P − Ps)
1/2, (10)

∆ (V κT ) = −
3
4

A(P − Ps)
−1/2, (11)

∆CP

T
= −

3
4

A

(
dPs

dT

)2

(P − P s)
−1/2

+ 3

(
dA
dT

) (
dPs

dT

)
(P − Ps)

1/2

−

(
d2A

dT2

)
(P − Ps)

3/2

+
3
2

A

(
d2Ps

dT2

)
(P − Ps)

1/2, (12)

∆ (VαP) = −
3
4

A

(
dPs

dT

)
(P − Ps)

−1/2

+
3
2

(
dA
dT

)
(P − Ps)

1/2. (13)

Thus κT will diverge as (P � Ps)�1/2, and, using Eqs. (6)
and (10) we can identify

A = −
2
√

2
3

(
∂2P

∂V2

)−1/2

T ;P=Ps

< 0. (14)

For this work, Â(T ) takes the form

Â(T ) = A0 + A1∆T̂ , (15)

where A0 and A1 are optimized to fit the data.
Where the slope (dPs/dT ) of the LVS is finite, CP and αP

diverge with the same exponent as κT , and in the neighborhood
of the LVS, αP must have the same sign as the slope of the
LVS. At an extremum in the spinodal pressure as a function
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of temperature, however, where (dPs/dT ) = 0, CP and αP do
not diverge. In fact, as Ref. 32 has shown, αP = 0 at such a
point. From these considerations, Ref. 32 demonstrates that if
the TMD intersects the LVS it must do so at a minimum in the
LVS, and that, conversely, if the LVS goes through a minimum,
a TMD line must become tangent to the LVS at that minimum.
For TIP4P/2005 water, whose TMD locus reaches a maximum
temperature and then retraces towards low temperatures upon
decreasing the pressure, this means that the points of minimum
density that we have observed along isobars are inconsistent
with a retracing spinodal. Consequently, we use a monotonic
LVS to model TIP4P/2005.

The shape of the LVS, Ps(T ), is represented by a quadratic
dependence on temperature

P̂s(T ) = S0 + S1∆T̂ + S2∆T̂2. (16)

In order to assign values to the parameters {Sn}, we used
the cavitation pressure of TIP4P/2005 along several isotherms,
reported in Ref. 42. We carried out a least-squares fit to these
data, and assigned to S1 and S2 exactly the values derived from
this least-squares fit. Because one always observes cavitation
in simulations before the LVS can be reached,49 S0 is arbitrarily
adjusted down by a constant downward shift relative to the
observed cavitation pressure. Thus the spinodal has the same
shape in the (T, P) plane as the simulated cavitation line, but
lies at lower pressures. A −25 MPa shift was chosen as it gave
the best fit results.

III. SIMULATION DATA

The TSEOS including a LVS described in Sec. II was fit
on selected simulation data of the TIP4P/2005 model. The first
set of fitted data is shown in Fig. 1. These simulations from the
Princeton group were performed along isochores, at densities
ranging from 920 to 1160 kg m−3 and temperatures ranging
from 180 to 300 K, as shown in Fig. 1. Note that isochores rang-
ing from 960 to 1120 kg m−3 (indicated by the shaded region
in Fig. 1) were first published in Ref. 17. The second set of
fitted data corresponds to Ref. 42. These simulations from the
Madrid group were performed along isobars and isotherms,
covering pressures from �170 to 300 MPa and temperatures
from 195 to 320 K. Data along isobars and isotherms are dis-
played in Fig. 2 (using filled circles) and Fig. 3 (using filled
diamonds), respectively. In addition to temperature, pressure,
and density, the isochoric heat capacity available from the
Princeton17 simulations, and the isothermal compressibility,
isobaric heat capacity, and isochoric heat capacity available
from the Madrid simulations42 were included in the fit. Sim-
ulation details for these two sets of fitted data can be found
in Refs. 17 and 42. While there are slight differences in the
technical specifications used for the two sets of simulations,
a comparison of the two data sets along the 0.1 MPa isobar
shows that they are compatible with each other. For isother-
mal compressibility any discrepancy between the two data sets
is much smaller than the uncertainty associated with the sim-
ulations. The discrepancies in the density are on the order of
0.1%.

Other simulation data were not included in the fit by the
TSEOS, but are used to test the predictions of the fitted TSEOS.

FIG. 1. Pressure along isochores. Symbols show simulations from the Prince-
ton group of various isochores at the densities given on the right-hand side of
the graph (in kg m−3). Solid lines of the same color represent the predictions
of our TSEOS. The solid black line, open red circle, and dashed black line
are the LLPT, LLCP, and Widom line, respectively. The dashed red line is
the liquid-vapor spinodal. Isochores 960-1120 kg m−3 were first published in
Ref. 17, while others are published here for the first time. All the data shown in
this figure were included in the fit. The domains of validity of the previous17

and present (extended) versions of TSEOS are shown with a shaded area and
solid-line box, respectively.

These “test” data are made of three sets. The first set cor-
responds to the remaining simulation data from the Madrid
group42 which were not used in the fit (open diamonds in

FIG. 2. Density along isobars. Symbols show simulations of various isobars
as indicated on the right-hand side of the graph (in MPa). Simulations from
the Madrid group42 included in the TSEOS fit are shown by filled circles.
Other data from the Madrid group42 (open diamonds) and from Ref. 43 (open
squares) were not included in the fit, but are well described by the TSEOS,
whose predictions are shown by solid lines of the same color as the symbols.
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FIG. 3. Density along isotherms. Symbols show simulation data from the Madrid group42 (included in the fit). Solid lines show the TSEOS fitted for this work;
dotted lines show the extrapolation of the equation of state presented in Ref. 17.

Fig. 2). The second set corresponds to simulations along iso-
bars by Sumi and Sekino43 (open squares in Fig. 2) which
extend to lower temperatures than the fitted data. The third

FIG. 4. Pressure along isochores. Symbols show new simulations from the
Princeton group of various isochores at the densities given on the right-hand
side of the graph (in kg m−3). Solid lines of the same color represent the
predictions of the TSEOS. Although the simulation data shown here were not
used in the fitting of the TSEOS, it can be seen that the TSEOS extrapolates
well to very low densities and pressures. The solid black line, open red circle,
dashed black line, and dashed red line are the LLPT, LLCP, Widom line, and
LVS, respectively.

set corresponds to additional simulations along isochores spe-
cially performed for the present work by the Princeton group.
They are shown in Fig. 4. The new data overlap with the
previous data from Princeton,17 but also include lower den-
sity isochores. Simulations were performed on 216 particles
systems using the GROMACS 4.5.6 molecular dynamics sim-
ulation package. Periodic boundary conditions were applied,
and a time step of 1 fs was used. The short-range interac-
tions were truncated at 8.5 Å. Long range electrostatic terms
were computed by particle mesh Ewald with a grid spacing
of 1.2 Å. Long range corrections were applied to the short
range Lennard-Jones interaction for both energy and pressure.
Bond constraints were maintained using the LINCS (Lin-
ear Constraint Solver) algorithm. A Nose-Hoover thermostat
with a 1 ps relaxation time was used to maintain constant
temperature.

IV. RESULTS AND DISCUSSION

The best fit parameters for the TSEOS are given in Table I.
The equilibrium fraction xe of molecules participating in struc-
ture B is shown in the supplementary material, Figure S1, along
selected isobars and isotherms. xe increases upon lowering the
temperature and pressure. Figure 1 compares PVT data along
isochores from simulations by the Princeton group17 with the
corresponding isochores plotted from the fitted TSEOS. The
present equation of state matches density data over a broader

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-009702
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TABLE I. Parameters for the two structure equation of state.

Parameter Value Parameter Value

T c 182 K c02 �0.002 618 76
Pc 170 MPa c11 0.257 249
ρc 1017 kg m−3 c20 �6.305 89
λ 1.556 07 c03 0.000 605 678
a 0.154 014 c12 0.024 809 1
b 0.125 093 c21 �0.040 003 3
d 0.008 544 18 c30 2.188 19
f 1.145 76 c13 �0.000 994 166
ω0 0.03 c22 �0.008 405 43
A0 �0.054 787 3 c31 0.071 905 8
A1 �0.082 246 2 c40 �0.256 674
S0 �5.408 45
S1 0.030 554 2
S2 �7.61 × 10−5

range than any previous fit, without any sacrifice of quality in
the critical region. The TSEOS also matches the density data
from the Madrid group42 which were included in the fit, as can

be seen along isobars in Fig. 2 and along isotherms in Fig. 3.
The quality of the TSEOS is further illustrated by the fact that it
reproduces well other “test” data (see Section III), which were
not included in the fit and extend in a region not covered by the
fitted data set. This can be seen in Fig. 2 for the data from the
Madrid group42 not included in the fit (open diamonds) and for
the data from Sumi and Sekino43 (open squares). This is also
demonstrated by Fig. 4 showing the agreement between the
TSEOS and the new simulation data from the Princeton group,
which extend close to the LVS. The comparison with fitted data
and “test” data allows us to delimit the region of validity of
the present TSEOS which is displayed in Fig. 1 and extends
significantly the region of validity of the previous TSEOS17

which did not account for the LVS. The pre-spinodal effects are
most clearly visible in the behavior of the higher-temperature
isotherms, shown in Fig. 3 and the TSEOS accounts well for
these isotherms. However, the improvement of this version
of the TSEOS over previous versions is especially noticeable
in the low-pressure, low-temperature region. This region is
further from the LVS and its behavior is less directly affected
by pre-spinodal effects, but the inclusion of an explicit LVS

FIG. 5. Isothermal compressibility along isobars. Symbols show simulation data from the Madrid group42 (included in the fit). Solid lines are fits by the TSEOS.



034502-7 Biddle et al. J. Chem. Phys. 146, 034502 (2017)

FIG. 6. Isothermal compressibility along isotherms. Symbols show simulation data from the Madrid group42 (included in the fit). Solid lines show the TSEOS
fitted for this work; dotted lines show the extrapolation of the equation of state presented in Ref. 17.

in the model is necessary in order to fit it. This is probably
because previous attempts to model the behavior at higher tem-
peratures and very low pressures ignored the LVS and relied
on polynomial “background” terms, which led to over-fitting
in that region and poor predictions elsewhere. A more theo-
retically grounded approach to the higher-temperature region,
incorporating a LVS, solves this problem. In particular, Ref. 17
implemented the expression for the Gibbs energy of pure state
A as a sixth-order polynomial in ∆T̂ and ∆P̂. Here the terms
used for {cmn} go only to fourth order, i.e., the background
expressions for the response functions are quadratic rather than

quartic. A comparison between simulation data, TSEOS, and
background terms, along selected isobars and isotherms, is
provided in the supplementary material, Figure S2. It shows
in particular the effect of the LVS which is included in the
background.

Figures 5–8 show a series of other thermodynamic
quantities. The effects of the two key features that this
work aims to capture—the LVS and the LLCP—can both be
seen clearly in the isothermal compressibility κT data along
isotherms: the compressibility goes through a maximum in
the vicinity of the Widom line, decreases, and then begins to

FIG. 7. Isobaric heat capacity along isotherms. Filled symbols show simulation data from the Madrid group42 (included in the fit). Solid lines show the TSEOS
fitted for this work; dotted lines show the extrapolation of the equation of state presented in Ref. 17. Open symbols show longer simulation runs (500 ns)
performed separately from the simulations used in the fit.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-009702
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FIG. 8. Isobaric heat capacity along isobars. Filled symbols show simulation data from the Madrid group42 (included in the fit). Solid lines are fits by the
TSEOS. Open symbols show longer simulation runs (500 ns) performed separately from the simulations used in the fit.

increase once again as the LVS is approached. This effect is
captured by our present extension of the TSEOS, as shown In
Fig. 6. The isobaric heat capacity CP is also strongly affected
by the presence of the spinodal at low pressures, and is matched
well by the TSEOS, with the exception of a few data points at
very low T and P, as shown in Figs. 7 and 8. This discrepancy
is surprising because the TSEOS is thermodynamically
consistent; therefore, as it reproduces well the tempera-
ture/pressure/density relation and the compressibility data, it
should reproduce the heat capacity data in the same range as
well. For a few of these points, we have carried out longer
runs (lasting 500 ns), and these results for the heat capacity
are shown in Figs. 7 and 8. At −80 MPa and two intermedi-
ate temperatures (260 and 280 K) (Fig. 8), the difference with
shorter runs is barely noticeable and the fit with the TSEOS
is good. However, at extreme low temperatures and pressures,
the longer runs yield a significantly different value, in better
agreement with the TSEOS (Figs. 7 and 8). This shows that
accurate computation of heat capacity at these extreme condi-
tions requires expensive simulations, maybe even longer than
what is possible at the present time. To be conservative, we
exclude this extreme region from the region of validity of the
model (Fig. 1). Figs. 3, 6, and 7 also include extrapolations
of the TSEOS presented in Ref. 17, showing the improve-
ment of this work over previous formulations at negative
pressures.

The most concise presentation of the anomalous thermo-
dynamic behavior of TIP4P/2005 water is shown in Fig. 9,
which summarizes the lines of minima and maxima in the ther-
modynamic properties of the model. The simulation data can
be summarized as follows: the LDM bends to lower tempera-
tures at very low pressures, eventually ending where it meets a
locus of minimum density, and loci of finite maxima in κT and
CP become arbitrarily close to each other upon pressurization
and cooling. Qualitatively, our equation of state accounts for
this picture in terms of two-structure thermodynamics, with
the behavior influenced by the liquid-vapor spinodal. The loci
of maxima in the response functions approach each other,
together with the critical isochore, at a critical point, where
the response functions diverge. At first, the TMD line has a
negative slope for the same reason that the LLPT does: lower
pressure favors the low-density phase. At very low pressures,
however, the effects of the LVS become more significant, push-
ing the LDM to lower temperatures and eventually forcing it to
reach a minimum pressure where it merges with a line of den-
sity minima along isobars. Between this minimum pressure
and the spinodal pressure, density is monotonic along iso-
bars. Both qualitatively and quantitatively, the match between
simulation and theory is remarkable.

The lines of density and response-function extrema and
the liquid-vapor spinodal in TIP4P/2005 water demonstrate a
pattern which is strikingly similar to that observed in another
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FIG. 9. Symbols represent simulation data on the extrema of various thermo-
dynamic properties as shown in the legend, simulated for Ref. 42. Solid and
dotted/dashed lines of the same color represent the predictions of the TSEOS
for maxima and minima, respectively. The solid black line, open red circle,
and dashed black line are the LLPT, LLCP, and Widom line, respectively. The
red dashed line is the LVS, and the red stars show the points at which cavitation
was observed in simulations. The saturated vapor pressure line and melting
line are also represented by solid black lines. Thermodynamic consistency
requires that the point at which the locus of density maxima joins the locus of
density minima also be an extremum of CP measured along the isotherm,50

and that maximum-temperature point on the LDM also be an extremum of κT
measured along the isobar,36 as is in fact observed.

simulated water-like model, ST2.50 Using a classical
Stillinger-Weber (SW) potential, the cases of water, silicon,
and germanium have been investigated:40,51 as in TIP4P/2005
water, the TMD line does not touch the LVS, and the latter
does not show a retracing behavior. In addition, for SW sili-
con, a line of compressibility maxima has also been reported.52

However, the classical SW potential may not reliably represent
the thermodynamic properties of real silicon. Most recently,
Zhao et al.53 revisited the phase behavior of doubly metastable
silicon by performing ab initio MD simulations. Their results
show that the LLPT line in this silicon model goes to deeply
negative pressure, until it is terminated by the LLCP at the
intersection with the LVS. The LVS, which above the critical
temperature was the HDL-vapor spinodal, now becomes the
LDL-vapor spinodal that continues to more negative pressures
without retracing. There are two other limits of stability within
the liquid state, namely the liquid-liquid spinodals: the abso-
lute stability limit of HDL with respect to LDL, and vice-versa.
The behavior of this silicon model is equivalent to a “critical-
point-free” scenario discussed by several authors.9,35,39,41 In
this scenario, there is no line of compressibility maxima, but
instead the isothermal compressibility diverges everywhere
along the limits of stability. Which scenario is more adequate
for real water is still an open question.

V. CONCLUSION

We present an equation of state that accurately describes
the simulation data of TIP4P/2005 over a very wide range

of temperatures and pressures including doubly metastable
states. The parameters of the TSEOS were obtained by fit-
ting a subset of simulation data, but the resulting equation of
state accurately represents the totality of our extensive simu-
lations. This TSEOS might therefore be used as a benchmark
to check future simulations with the TIP4P/2005 potential.

Our equation of state accounts for two crucial features: the
competition between two interconvertible structures on the one
hand and the liquid-vapor spinodal on the other. Contrary to
a theory that attributes the anomalies of supercooled water to
a “retracing spinodal,” we find that the observed anomalies
in both the density and the response functions in TIP4P/2005
arise as a result of the competition between the two structures,
while the liquid-vapor spinodal influences the loci of extrema
as shown in Fig. 9. Several other models of water exhibit a
similar pattern for these characteristic lines. Since the situation
in real water remains unresolved, further experimental studies
of water in the doubly metastable region are highly desirable.

SUPPLEMENTARY MATERIAL

See supplementary material for figures showing the frac-
tion of molecules participating in structure B and simulation
data, TSEOS predictions and background terms, along selected
isobars and isotherms.
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