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Introduction

In [START_REF] Kostant | On invariant skew-tensors[END_REF], [START_REF] Kostant | A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups[END_REF], B. Kostant studied the following problem: if (g, ( , ) g ) is a complex quadratic Lie algebra and (V, ( , ) V ) is an orthogonal representation, when is there a Lie bracket on g = g ⊕ V extending the bracket of g and the action of g on V and such that ( , ) g ⊥ ( , ) V is g-invariant ? He first observed that the component in g of such a bracket is essentially the moment map µ : Λ 2 (V ) → g of the representation, and that the component in V of this bracket defines an alternating, g-invariant trilinear form φ on V . He then gave a necessary and sufficient condition for the moment map of an orthogonal representation and an alternating invariant trilinear form to arise in this way. This condition is the vanishing of an invariant taking values in the Clifford algebra C(V, ( , ) V ). Furthermore, in the case where φ is non-zero and where g ⊕ V is a Lie algebra, Kostant ([Kos99]) constructed an element of U (g ⊕ V ) ⊗ C(V, ( , ) V ), the cubic Dirac operator, and proved an analogue of the Parthasarathy formula ( [START_REF] Parthasarathy | Dirac operator and the discrete series[END_REF]).

Later, Kostant ([Kos01]) also considered Lie superalgebras from this point of view and extended his results to symplectic representations of quadratic Lie algebras arising from the canonical Z 2 -gradation of quadratic Lie superalgebras. In that case, the relevant invariant takes its values in a Weyl algebra as opposed to a Clifford algebra. Z. Chen and Y. Kang 1 generalised these results to orthosymplectic representations of quadratic Lie superalgebras where it turns out that the relevant invariant takes its values in a Clifford-Weyl algebra ( [START_REF] Chen | An analogue of the Kostant criterion for quadratic Lie superalgebras[END_REF]).

A different situation is considered in [START_REF] Cahen | Special symplectic connections[END_REF], [START_REF] Slupinski | The geometry of special symplectic representations[END_REF] where the authors study the existence of a Lie bracket on g = g ⊕ sl(2, k) ⊕ V ⊗ k 2 extending the bracket of a Lie algebra g defined over a field k of characteristic not two or three and its action on a symplectic representation V . A necessary and sufficient condition for this to be the case can be expressed in terms of the moment map of V , and symplectic representations whose moment map satisfy this condition are called special symplectic.

In this article we will consider the extension problems above for colour Lie algebras and their representations over a field k of characteristic not two or three. Recall that for multilinear maps on vector spaces graded by an abelian group Γ there is a notion of symmetry and antisymmetry with respect to any commutation factor of Γ. A (Γ, )-colour Lie algebra (abbreviated to colour Lie algebra in what follows) is a Γ-graded vector space together with a bracket which is antisymmetric in this sense and satisfies an appropriate Jacobi identity. The natural generalisation of an orthogonal or symplectic representation of a quadratic Lie algebra (as well as of an orthosymplectic representation of a quadratic Lie superalgebra) is an -orthogonal representation of an -quadratic colour Lie algebra (see Example 1.27). Our first theorem (Section 3) is: Theorem 1. Let be a commutation factor of an abelian group Γ. Let ρ : g → so (V, ( , ) V ) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ) and let µ ∈ Alt 2 (V, g) be its moment map. a) If there exists an -quadratic colour Lie algebra structure on (g ⊕ V, B g ⊥ ( , ) V )

extending the bracket of g and the action of g on V , then φ ∈ Alt 2 (V, g ⊕ V ) defined by φ(v, w) = {v, w} -µ(v, w) ∀v, w ∈ V is of degree 0, takes its values in V and satisfies:

ρ(x)(φ(v, w)) = φ(ρ(x)(v), w) + (x, v)φ(v, ρ(x)(w)) ∀x ∈ g, ∀v, w ∈ V, (1) (φ(u, v), w) V = -(u, v)(v, φ(u, w)) V ∀u, v, w ∈ V. (2)
b) Let φ ∈ Alt 2 (V, V ) be of degree 0 and satisfy (1) and (2). Let g := g ⊕ V , let B g := B g ⊥ ( , ) V and let { , } ∈ Alt 2 (g, g) be the unique map which extends the bracket of g, the action of g on V and such that {v, w} = µ(v, w) + φ(v, w) ∀v, w ∈ V.

Then the following are equivalent: i) (g, B g, { , }) is an -quadratic colour Lie algebra.

ii) (µ + φ) ∧ B g (µ + φ) = 0.

In the case of Lie algebras and Lie superalgebras, the invariant (µ+φ)∧ B g (µ+φ), which takes its values in an -exterior algebra, is the same after quantisation as the invariants of [START_REF] Kostant | A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups[END_REF], [START_REF] Kostant | The Weyl algebra and the structure of all Lie superalgebras of Riemannian type[END_REF], [START_REF] Chen | An analogue of the Kostant criterion for quadratic Lie superalgebras[END_REF] which take their values in an -Clifford algebra. The main tools involved in the proof of Theorem 1 are multilinear algebra over vector spaces graded by an abelian group (Section 1) and what we call, by a slight abuse of language, the moment map of an -orthogonal representation of an -quadratic colour Lie algebra (Section 2). Following Kostant's original terminology, a representation satisfying conditions b) of Theorem 1 is called of colour Lie type and, if in addition φ ≡ 0, of colour Z 2 -Lie type.

In Section 4, we give a different interpretation of the data (µ, φ) of this theorem in terms of "curvature tensors" and show that the condition (µ + φ) ∧ B g (µ + φ) = 0 is equivalent to a "second Bianchi identity". This point of view suggests a natural algebraic condition on -orthogonal representations which leads to the notion of special -orthogonal representation. It turns out that there is a link between special -orthogonal representations and -orthogonal representations of colour Z 2 -Lie type:

Theorem 2. Let be a commutation factor of an abelian group Γ such that the representation k 2 of sl(2, k) is an -orthogonal representation with respect to (Γ, ). Let g → so (V, ( , ) V ) be a finite-dimensional faithful -orthogonal representation of a finitedimensional -quadratic colour Lie algebra and let W be a finite-dimensional Γ-graded vector space together with a non-degenerate -symmetric bilinear form ( , ) W . Then the -orthogonal representation g ⊕ so (W, ( , ) W ) → so (V ⊗ W, ( , ) V ⊗W ) is of colour Z 2 -Lie type if and only if one of the following holds:

a) g is isomorphic to so (V, ( , ) V ) ; b) dim(W ) = 1, ( , ) W is symmetric and g → so (V, ( , ) V ) is of colour Z 2 -Lie type ; c) dim(W ) = 2, ( , ) W is antisymmetric and g → so (V, ( , ) V ) is special -orthogonal.
It follows from this theorem that a special -orthogonal representation g → so (V, ( , ) V ) can be extended to a colour Lie algebra of the form

g = g ⊕ sl(2, k) ⊕ V ⊗ k 2 .
In this way, special symplectic representations of Lie algebras give rise to Lie algebras, and special orthogonal representations of Lie algebras give rise to Lie superalgebras. The special symplectic representations of Lie algebras considered in [START_REF] Slupinski | The geometry of special symplectic representations[END_REF] are special -orthogonal in this sense, and examples of orthogonal representations of Lie algebras which are special -orthogonal in this sense are (see chapter 5 of [START_REF] Meyer | Representations associated to gradations of Lie algebras and colour Lie algebras[END_REF]):

• a one-parameter family V α of 4-dimensional representations of sl(2, k) ⊕ sl(2, k) ;

• the 7-dimensional fundamental representation of a Lie algebra of type G 2 ;

• the 8-dimensional spinor representation of a Lie algebra of type so(7) where this representation is defined over k.

The associated Lie superalgebras g are respectively exceptional simple Lie superalgebras of type D(2, 1; α), G 3 and F 4 . Certain representations considered in [START_REF] Elduque | New simple Lie superalgebras in characteristic 3[END_REF] are specialorthogonal representations if we extend this notion to fields of characteristic three. A link between symplectic triple systems and special symplectic representations of Lie algebras is detailed in [START_REF] Slupinski | The geometry of special symplectic representations[END_REF] and a similar link between orthogonal triple systems and special orthogonal representations probably exists (compare [START_REF] Kamiya | A construction of simple Lie subalgebras of certain types from triple systems[END_REF] and chapter 5 of [START_REF] Meyer | Representations associated to gradations of Lie algebras and colour Lie algebras[END_REF]).

Finally in Section 5 we study geometric properties of special -orthogonal representations. It is well-known that the space of binary cubics, a special symplectic representation of sl(2, k), admits three covariants and that these covariants satisfy remarkable identities ([Eis44], [START_REF] Mathews | Relations Between Arithmetical Binary Cubic Forms and Their Hessians[END_REF]). More generally, special symplectic representations of Lie algebras admit three covariants which are polynomial functions on the representation space and these covariants satisfy generalised Mathews identities ( [START_REF] Slupinski | The geometry of special symplectic representations[END_REF]). Analogously, we define three covariants of special -orthogonal representations, one of which is the moment map, and prove corresponding Mathews identities. Note that in order to formulate these identities we have to define a notion of composition for -alternating multilinear forms extending the composition of symmetric multilinear forms.

Theorem 3. Let be a commutation factor of an abelian group Γ. Let ρ : g → so (V, ( , )) be a finite-dimensional special -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra and let µ ∈ Alt 2 (V, g), ψ ∈ Alt 3 (V, V ) and Q ∈ Alt 4 (V ) be its covariants. We have the following identities:

a) µ ∧ ρ ψ = - 3 2 Q ∧ × Id V in Alt 5 (V, V ), b) µ • ψ = 3Q ∧ × µ in Alt 6 (V, g), c) ψ • ψ = - 27 2 Q ∧ Q ∧ × Id V in Alt 9 (V, V ), d) Q • ψ = -54Q ∧ Q ∧ Q in Alt 12 (V, k).
1 Multilinear algebra associated to Γ-graded vector spaces

Vector spaces and algebras graded by an abelian group

In this subsection, we give definitions and examples of vector spaces and algebras graded by an abelian group. Let Γ be an abelian group.

Definition 1.1. A vector space V with a decomposition V = γ∈Γ V γ is said to be Γ-graded and an element v ∈ V γ is said to be homogeneous.

For an element v ∈ V γ we set |v| := γ and we call |v| the degree of v. For convenience, whenever the degree of an element is used in a formula, it is assumed that this element is homogeneous and that we extend by linearity the formula for non-homogeneous elements. Definition 1.2. An algebra A is said to be Γ-graded if it is Γ-graded as vector space and |a • b| = |a| + |b| for all homogeneous a, b in A.

Example 1.3. Let V and W be finite-dimensional Γ-graded vector spaces.

a) The base field k has a trivial Γ-gradation given by |a| = 0 for all a in k.

b) The vector space

Hom(V, W ) is Γ-graded by Hom(V, W ) = γ∈Γ Hom(V, W ) γ where Hom(V, W ) γ := {f ∈ Hom(V, W ) | f (V a ) ⊆ W a+γ ∀a ∈ Γ}. c) The vector space V ⊕ W is Γ-graded by V ⊕ W = γ∈Γ (V ⊕ W ) γ where (V ⊕ W ) γ = V γ ⊕ W γ . d) The vector space V ⊗ W is Γ-graded by V ⊗ W = γ∈Γ (V ⊗ W ) γ where (V ⊗ W ) γ = a+b=γ V a ⊗ W b .
e) As we have seen, the vector space End(V ) = Hom(V, V ) is Γ-graded. In fact, the associative algebra End(V ) is also Γ-graded as an algebra.

f) Let A and B be Γ-graded algebras. As we have seen, the vector space A ⊕ B is Γ-graded. In fact, the algebra A ⊕ B is also Γ-graded as an algebra.

Commutation factors and representations of the symmetric group

Let Γ be an abelian group. In this subsection we introduce the notion of a commutation factor of Γ. This allows us to define a notion of "commutative" and "anticommutative" for Γ-graded algebras which takes into account the Γ-gradation. It also allows us to modify the standard actions of the symmetric group S n on the n-fold tensor product of a Γ-graded vector space.

Definition 1.4. (See III.116 in [START_REF] Bourbaki | Éléments de mathématique[END_REF]) Let Γ be an abelian group. A commutation factor of Γ is a map

: Γ × Γ → k * such that for all a, b, c ∈ Γ (a, b) (b, a) = 1, (a + b, c) = (a, c) (b, c), (a, b + c) = (a, b) (a, c).
The basic features of commutation factors are given in the following remark [START_REF] Scheunert | Generalized Lie algebras[END_REF]).

Remark 1.5. a) We have

(a, 0) = (0, a) = 1, (a, -b) = (b, a) ∀a, b ∈ Γ.
b) For a ∈ Γ, we have (a, a) = ±1 and hence a partition Γ = Γ 0 ∪ Γ 1 where

Γ 0 := {a ∈ Γ | (a, a) = 1}, Γ 1 := {a ∈ Γ | (a, a) = -1}.
The map a → (a, a) ∈ Z 2 is a group homomorphism so Γ 0 is a normal subgroup of index at most two.

Here are some examples of non-trivial commutation factors.

Example 1.6. a) The most important non-trivial example of a commutation factor is obtained by taking Γ = Z 2 and defined by

(a, b) := (-1) ab ∀a, b ∈ Z 2 .
b) Let Γ be an abelian group together with commutation factor . Then, ˜ :

(Z × Γ) × (Z × Γ) → k * given by ˜ ((m, γ), (m , γ )) := (-1) mm (γ, γ ) ∀m, m ∈ Z, ∀γ, γ ∈ Γ
is a commutation factor of Z × Γ and the same formula defines a commutation factor of Z 2 × Γ.

In [START_REF] Scheunert | Generalized Lie algebras[END_REF], Scheunert gives the general form of a commutation factor of a finitely generated abelian group in terms of a cyclic decomposition.

Notation. Let V be a Γ-graded vector space, let be a commutation factor of Γ and let v, w ∈ V . For brevity, we denote (|v|, |w|) by (v, w) and by E the canonical linear map

E : V → V given by E(v) := (v, v)v ∀v ∈ V.
It-is known that if V is a Γ-graded vector space, then using a commutation factor one can modify the standard actions of the symmetric group S n on V ⊗n to take into account the Γ-grading of V . We will need the following result.

Proposition 1.7. (See [START_REF] Scheunert | Graded tensor calculus[END_REF]) Let V be a Γ-graded vector space and let be a commutation factor of Γ. There is a unique right group action π : S n → GL(V ⊗n ) of the permutation group S n on V ⊗n such that the action of a transposition τ i,i+1 ∈ S n is given by

π(τ i,i+1 )(v 1 ⊗ . . . ⊗ v n ) = -(v i , v i+1 )v 1 ⊗ . . . ⊗ v i+1 ⊗ v i ⊗ . . . ⊗ v n
for all v 1 , . . . , v n ∈ V . For an arbitrary element σ ∈ S n , this action is given by

π(σ)(v 1 ⊗ . . . ⊗ v n ) = p(σ; v 1 , . . . , v n )v σ(1) ⊗ . . . ⊗ v σ(n) where p(σ; v 1 , . . . , v n ) = sgn(σ) 1≤i<j≤n σ -1 (i)>σ -1 (j) (v i , v j ).
Remark 1.8. a) For v 1 , . . . , v n ∈ V and σ, σ ∈ S n , we have

p(σσ ; v 1 , . . . , v n ) = p(σ ; v σ(1) , . . . , v σ(n) )p(σ; v 1 , . . . , v n ), p(Id; v 1 , . . . , v n ) = 1.
This shows that p is a right multiplier in the sense of [START_REF] Bruhat | Sur les représentations induites des groupes de Lie[END_REF].

b) Let n, m ∈ N such that n ≤ m and let i ∈ 0, m -n . There is a group inclusion S n ⊆ S m where S n acts only on the coordinates i + 1, i + n and furthermore (with the obvious notations)

p n (σ; v i+1 , . . . , v i+n ) = p m (σ; v 1 , . . . , v m ) ∀σ ∈ S n , ∀v 1 , . . . , v m ∈ V.

-symmetric and -antisymmetric bilinear maps

Let Γ be an abelian group and let be a commutation factor of Γ. In this subsection we define -symmetric and -antisymmetric bilinear maps for Γ-graded vector spaces.

Definition 1.9. Let V and W be Γ-graded vector spaces and let B :

V × V → W be a bilinear map. a) We say that B is -symmetric if B(v, w) = (v, w)B(w, v) for all v, w ∈ V . b) We say that B is -antisymmetric if B(v, w) = -(v, w)B(w, v) for all v, w ∈ V .
Remark 1.10. If W = k, unless otherwise stated, we always assume that B is of degree 0.

It turns out that an -symmetric bilinear form is the orthogonal sum of a symmetric bilinear form and an antisymmetric bilinear form in the following sense.

Proposition 1.11. (see [START_REF] Chen | Generalized Clifford theory for graded spaces[END_REF]) Let V be a Γ-graded vector space and let ( ,

) : V ×V → k be an -symmetric bilinear form. Let V = V 0 ⊕ V 1 where V 0 = {v ∈ V | (v, v) = 1}, V 1 = {v ∈ V | (v, v) = -1}.
Then, the restriction of ( , ) to V 0 is symmetric in the usual sense, the restriction of ( , ) to V 1 is antisymmetric in the usual sense, and V 0 is orthogonal to V 1 .

-alternating multilinear maps

Let Γ be an abelian group and let be a commutation factor of Γ. In this subsection we define -alternating maps for Γ-graded vector spaces and the product and composition of -alternating maps.

Let V and W be Γ-graded vector spaces. Let π : S n → GL(Hom(V ⊗n , W )) be the left group action given by

(π(σ)(f ))(v) := f (π(σ)(v)) ∀σ ∈ S n , ∀f ∈ Hom(V ⊗n , W ), ∀v ∈ V ⊗n
where π : S n → GL(V ⊗n ) is the right group action given by Proposition 1.7.

Definition 1.12. Let V and W be finite-dimensional Γ-graded vector spaces. We define the Γ-graded vector space Alt i (V, W ) by

Alt i (V, W ) := {f ∈ Hom(V ⊗i , W ) | π(σ)(f ) = f ∀σ ∈ S n }.
We also define the Z × Γ-graded vector space

Alt (V, W ) := i∈N Alt i (V, W )
and denote Alt (V, k) by Alt (V ).

Remark 1.13. Each f ∈ Alt i (V, W ) is uniquely determined by the multilinear map f :

V i → W given by f (v 1 , . . . , v i ) = f (v 1 ⊗ . . . ⊗ v i ) where v 1 , . . . , v i ∈ V . This map f satisfies f (v 1 , . . . , v l , v l+1 , . . . , v i ) = -(v l , v l+1 ) f (v 1 , . . . , v l+1 , v l , . . . , v i )
for all v 1 , . . . , v i ∈ V and l ∈ 1, i -1 . Conversely given a multilinear map g : V i → W with this property there is a unique element f ∈ Alt i (V, W ) such that f = g. 

|S(I 1 , . . . , I m )| = n |I 1 | n -|I 1 | |I 2 | . . . n -|I 1 | -. . . -|I m-2 | |I m-1 | . b)
   k∈ 1,i-1 |I k | + 1, k∈ 1,i-1 |I k | + 2, . . . , k∈ 1,i |I k |    .
Furthermore, for each σ ∈ S n , there exist unique σ ∈ S(I 1 , . . . , I m ) and

σ i ∈ S |I i | ∀i ∈ 1, m such that σ = σ • σ 1 • . . . • σ m .
Let T, U, V and W be finite-dimensional Γ-graded vector spaces, let f ∈ Alt i (T, U ), let g ∈ Alt j (T, V ) and let φ : U × V → W be a bilinear map. Let (f g) φ : T ⊗(i+j) → W be given by

(f g) φ (v 1 ⊗ . . . ⊗ v i+j ) := φ(f (v 1 ⊗ . . . ⊗ v i ), g(v i+1 ⊗ . . . ⊗ v i+j )) ∀v 1 , . . . , v i+j ∈ T.
The exterior product of f and g is now defined by "antisymmetrising" this product only with respect to shuffle permutations. Definition 1.16. With the notation above, the map f ∧ φ g : T ⊗(i+j) → W is defined by

f ∧ φ g := σ∈S( 1,i , i+1,i+j ) π(σ)((f g) φ ).
Remark 1.17. The relation between this exterior product and "antisymmetrisation" over all permutations is:

σ∈S i+j π(σ)((f g) φ ) = i!j!f ∧ φ g.
In characteristic zero the two possible definitions of an "exterior product" are equivalent.

Proposition 1.18. The map f ∧ φ g is in Alt i+j (T, W ).
Proof. This proof is based on the proof of the analogous result for classical exterior forms in [START_REF] Cartan | Formes différentielles. Applications élémentaires au calcul des variations et à la théorie des courbes et des surfaces[END_REF]. Here, we use implicitly the formulae of Remark 1.8.

To prove the proposition it is sufficient to show that if l ∈ 1, i + j -1 ,

f ∧ φ g(v 1 ⊗ . . . ⊗ v l ⊗ v l+1 ⊗ . . . ⊗ v i+j ) = -(v l , v l+1 )f ∧ φ g(v 1 ⊗ . . . ⊗ v l+1 ⊗ v l ⊗ . . . ⊗ v i+j )
for all v 1 , . . . , v i+j in T . Consider the right-hand side of this equation. We have

-(v l , v l+1 )f ∧ φ g(v 1 ⊗ . . . ⊗ v l+1 ⊗ v l ⊗ . . . ⊗ v i+j ) = -(v l , v l+1 ) σ∈S( 1,i , i+1,i+j ) (f g) φ (π(σ)(v 1 ⊗ . . . ⊗ v l+1 ⊗ v l ⊗ . . . ⊗ v i+j )) .
We divide the permutations σ ∈ S( 1, i , i + 1, i + j ) in two categories: 1. Those σ for which σ -1 (l) and σ -1 (l + 1) are both integers ≤ i or both ≥ i + 1. In the first case, v l and v l+1 occur amongst the first i places in f (v σ(1) ⊗ . . . ⊗ v σ(i) ) and hence, since f is -alternating, we have

-(v l , v l+1 )(f g) φ (π(σ)(v 1 ⊗ . . . ⊗ v l+1 ⊗ v l ⊗ . . . ⊗ v i+j )) = (f g) φ (π(σ)(v 1 ⊗ . . . ⊗ v i+j )) .
In the second case, we have the same relation since g is -alternating.

2. The second category is itself divided into two sub-categories: those σ for which σ -1 (l) ≤ i and σ -1 (l + 1) ≥ i + 1 and those σ for which σ -1 (l) ≥ i and σ -1 (l + 1) ≤ i + 1. Let τ be the transposition which interchanges l and l + 1. If σ is in the first sub-category, τ σ is in the second, and vice versa. We may therefore group in pairs the remaining terms as follows: for each σ such that σ -1 (l) ≤ i and σ -1 (l + 1) ≥ i + 1 we have

-(v l , v l+1 ) (f g) φ (π(σ)(v 1 ⊗ . . . ⊗ v l+1 ⊗ v l ⊗ . . . ⊗ v i+j )) + (f g) φ (π(τ σ)(v 1 ⊗ . . . ⊗ v l+1 ⊗ v l ⊗ . . . ⊗ v i+j )) = (f g) φ (π(σ)(v 1 ⊗ . . . ⊗ v i+j )) + (f g) φ (π(τ σ)(v 1 ⊗ . . . ⊗ v i+j )) .

The most important example of the above construction is when

U = V = W = k and φ : k × k → k is the product.
In this case we denote ∧ φ by ∧ and this defines a product on Alt (V ). One can show that:

Proposition 1.19. With respect to ∧ , the algebra Alt (V ) is Z × Γ-graded, ˜ -commutative (see Example 1.6) and associative.
Later on, we will need the following definition.

Definition 1.20. Let T, U, W be finite-dimensional Γ-graded vector spaces and φ

: U ×U → W a bilinear map. The norm N φ (f ) of f ∈ Alt (T, U ) is defined by N φ (f ) := f ∧ φ f. This is an element of Alt 2i (T, W ) if f ∈ Alt i (T, U ).
Finally to complete this subsection, we define a composition of -alternating multilinear maps. Let U, V and W be finite-dimensional Γ-graded vector spaces, let f ∈ Alt i (U, V ) and let g ∈ Alt j (W, U ). We first define f * g :

W ⊗(ij) → V by f * g(v 1 , . . . , v ij ) := f (g(v 1 ⊗ . . . ⊗ v j ) ⊗ g(v j+1 ⊗ . . . ⊗ v 2j ) ⊗ . . . ⊗ g(v (i-1)j+1 ⊗ . . . ⊗ v ij )) for all v 1 ⊗ . . . ⊗ v ij ∈ W ⊗(ij) .
The exterior composition of f and g is now defined by "antisymmetrising" this composition only with respect to certain shuffle permutations.

Definition 1.21. With the notation above, the map

f • g : W ⊗(ij) → V is defined by f • g := σ∈S( 1,j ,..., (i-1)j+1,ij ) π(σ)(f * g).

Remark 1.22. The relation between this and antisymmetrising over all permutations is

σ∈S ij π(σ)(f * g) = (j!) i f • g. Proposition 1.23. The map f • g is in to Alt ij (W, V ).
Proof. The proof is similar to the proof of Proposition 1.18.

Colour Lie algebras

Let Γ be an abelian group and let be a commutation factor of Γ. In this subsection following [START_REF] Rimhak | Generalized Lie elements[END_REF], [START_REF] Rittenberg | Generalized superalgebras[END_REF], [START_REF] Rittenberg | Sequences of Z2 ⊕ Z2 graded Lie algebras and superalgebras[END_REF], [START_REF] Scheunert | Generalized Lie algebras[END_REF] we define colour Lie algebras. Definition 1.24. A colour Lie algebra is a Γ-graded vector space g = γ∈Γ g γ together with

a bilinear map { , } : g × g → g such that a) {g α , g β } ⊆ g α+β for all α, β ∈ Γ, b) {x, y} = -(x, y){y, x} for all x, y ∈ g ( -antisymmetry), c) (z, x){x, {y, z}} + (x, y){y, {z, x}} + (y, z){z, {x, y}} = 0 for all x, y, z ∈ g ( -Jacobi identity).
Lie (super)algebras are colour Lie algebras, here are some examples:

Example 1.25. Let V be a finite-dimensional Γ-graded vector space.

a) The associative Γ-graded algebra End(V ) is a colour Lie algebra for the bracket {a, b}

:= ab -(a, b)ba for all a, b in End(V ) and is denoted gl (V ). b) Let ( , ) : V × V → k be an -symmetric bilinear form. We set so (V, ( , 
)) := γ∈Γ so (V, ( , 
)) γ where so (V, ( , 
)) γ := {f ∈ End(V ) γ | (f (v), w) + (f, v)(v, f (w)) = 0 ∀v, w ∈ V }.
One can show that so (V, ( , )) is stable under the bracket of gl (V ) and hence is a colour Lie algebra.

We now define morphisms and representations of colour Lie algebras.

Definition 1.26. a) Let g and g be colour Lie algebras. A degree 0 linear map f ∈ Hom(g, g ) is a morphism of colour Lie algebras if f ({x, y}) = {f (x), f (y)} for all x, y ∈ g. Furthermore, we say that g and g are isomorphic colour Lie algebras if f is a linear isomorphism. b) Let g be a colour Lie algebra. A finite-dimensional representation V of g is a finitedimensional Γ-graded vector space V together with a morphism of colour Lie algebras ρ : g → gl (V ). We sometimes write x(v) instead of ρ(x)(v) for x ∈ g and v ∈ V . c) Let g be a colour Lie algebra. A finite-dimensional -orthogonal representation V of g is a finite-dimensional Γ-graded vector space V together with a non-degenerate -symmetric bilinear form ( , ) and a morphism of colour Lie algebras ρ : g → so (V, ( , )). 

-symmetric bilinear forms on colour Lie algebras

Let Γ be an abelian group and let be a commutation factor of Γ. In this subsection we define invariant -symmetric bilinear forms for colour Lie algebras. We show that the " -trace" in the fundamental representation defines an invariant, -symmetric and nondegenerate bilinear form on gl and so .

Definition 1.28.

a) Let g be a colour Lie algebra. A bilinear form

B : g × g → k is ad-invariant if for all x, y, z ∈ g, B({x, y}, z) = -(x, y)B(y, {x, z}).
b) An -quadratic colour Lie algebra is a colour Lie algebra together with a bilinear form which is -symmetric, ad-invariant and non-degenerate. c) (see [START_REF] Scheunert | Graded tensor calculus[END_REF]) Let V be a finite-dimensional Γ-graded vector space and let f ∈ End(V ).

Recall that E :

V → V is defined by E(v) = (v, v)v for all v ∈ V . The -trace of f is defined by: T r (f ) := T r(E • f ).
Proposition 1.29. Let V be a finite-dimensional Γ-graded vector space.

a) The bilinear form gl

(V ) × gl (V ) → k given by T r (f g) ∀f, g ∈ gl (V ) (3) 
is ad-invariant, -symmetric and non-degenerate.

b) Let ( , ) be a non-degenerate -symmetric bilinear form on V and suppose that dim(V ) ≥ 2. Then the restriction of (3) to so (V, ( , )) is non-degenerate.

Proof.

a) The bilinear form of Equation (3) is ad-invariant and -symmetric by a straightforward calculation. It is non-degenerate since in a Γ-homogeneous basis, the elementary matrices E vγ ,w γ , E w γ ,vγ corresponding to homogeneous vectors

v γ ∈ V γ , w γ ∈ V γ satisfy T r (E vγ ,w γ E w γ ,vγ ) = 0.
b) By a) the bilinear form considered is -symmetric and ad-invariant. We need the following lemma.

Lemma 1.30. Let V be a finite-dimensional Γ-graded vector space such that dim(V ) ≥ 2 together with a non-degenerate -symmetric bilinear form ( ,

). Let u, v ∈ V . The map f (u, v) ∈ so (V, ( , 
)) defined by f (u, v)(w) := (v, w)(u, w)v -(v, w)u ∀w ∈ V satisfies T r (f • f (u, v)) = -2(f (u), v) ∀f ∈ so (V, ( , )). Proof. Let u, v ∈ V . One can check that f (u, v) ∈ so (V, ( , )). Let {e i : 1 ≤ i ≤ dim(V )} be a homogeneous basis of V . Let e i , e j ∈ {e i : 1 ≤ i ≤ dim(V )} and f ∈ so (V, ( , 
)
). Let {e i : 1 ≤ i ≤ dim(V )} be its dual basis in the sense that (e i , e j ) = δ ij for all i, j ∈ 1, dim(V ) . We have

|e i | = -|e i | and
f (e i , e j )(e k ) = (e k , e j )δ ik e j -δ jk e i .

After a straightforward calculation we have

(E(f (µ(e i , e j )(e k ))), e k ) (e k , e k ) = -δ ik (f (e k ), e j ) -δ jk (f (e i ), e k ). (4) 
Since

dim(V ) k=1 (f (e k ), e k ) (e k , e k ) = T r(f ) ∀f ∈ gl (V )
by Equation ( 4) we obtain

T r (f • f (e i , e j )) = -2(f (e i ), e j ).
Let f ∈ so (V, ( , )) be such that

T r (f • g) = 0 ∀g ∈ so (V, ( , )). 
In particular, we have

T r (f • f (u, v)) = 0 ∀u, v ∈ V.
By Lemma 1.30, we have (f (u), v) ∀u, v ∈ V then, since ( , ) is non-degenerate, we obtain that f ≡ 0 and so the restriction of (3) to so (V, ( , )) is non-degenerate.

Moment map of -orthogonal representations

Let Γ be an abelian group and let be a commutation factor of Γ. In this section, we define the moment map of an -orthogonal representation (V, ( , )) of an -quadratic colour Lie algebra (g, B g ). After giving some general properties, we study the moment map of the fundamental representation of so (V, ( , )) which we will call the "canonical" moment map. Finally, we give a formula for the moment map of a tensor product of -orthogonal representations in terms of the moment maps of the factors.

Unless otherwise stated, we suppose all -orthogonal representations of dimension at least two. Definition 2.1. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ). We define the moment map of the representation ρ : g → so (V, ( , )) to be the bilinear map µ :

V × V → g given by B g (x, µ(v, w)) = (ρ(x)(v), w) ∀v, w ∈ V, ∀x ∈ g.
This generalises the usual moment map of a symplectic representation of a quadratic Lie algebra. We now show that the moment map is -antisymmetric and equivariant.

Proposition 2.2. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ) and let µ be its moment map. Then:

a) The map µ is of degree 0. b) We have µ ∈ Alt 2 (V, g). c) For x ∈ g and v, w ∈ V , we have {x, µ(v, w)} = µ(x(v), w) + (x, v)µ(v, x(w)). d) Let {e i : 1 ≤ i ≤ dim(g)
} be a basis of g and let {e i : 1 ≤ i ≤ dim(g)} be the dual basis in the sense that B g (e i , e j ) = δ ij . We have

µ(v, w) = dim(g) i=1 (e i (v), w)e i ∀v, w ∈ V.
Proof. The map µ is of degree 0 since B g and ( , ) are of degree 0. This proves a), we now give a proof of b) and the other parts of the proposition can be proved similarly.

For x ∈ g we have

B g (x, µ(v, w)) = (ρ(x)(v), w) = -(x, v)(v, ρ(x)(w)) = -(x, v) (v, x + w)(ρ(x)(w), v) = -(v, w)B g (x, µ(w, v)).
Remark 2.3. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ) and let µ be its moment map. Let α, β ∈ k * . Then g is also -quadratic for the bilinear form α • B g and ρ : g → so (V, β • ( , )) is also an -orthogonal representation of g. The corresponding moment map µ α,β satisfies

µ α,β (v, w) = β α µ(v, w) ∀v, w ∈ V.
We now study the moment map of the fundamental representation of so (V, ( , )) which we call the "canonical" moment map.

Proposition 2.4. Let V be a finite-dimensional Γ-graded vector space together with a non-degenerate -symmetric bilinear form ( , ). Consider the -orthogonal representation of the -quadratic colour Lie algebra (so (V, ( , )), B) where B(f, g) := -1 2 T r (f g) for all f, g ∈ so (V, ( , )). Then, the corresponding moment map µ can satisfies

µ can (u, v)(w) = (v, w)(u, w)v -(v, w)u ∀u, v, w ∈ V. ( 5 
)
Proof. By Lemma 1.30 we have

µ can (u, v) = f (u, v) ∀u, v ∈ V and so µ can (u, v)(w) = (v, w)(u, w)v -(v, w)u ∀u, v, w ∈ V.
We now calculate µ can for the standard symplectic plane.

Example 2.5. Let {p, q} be the canonical basis of k 2 and let ω be the symplectic form on k 2 defined by ω(p, q) = 1. The Lie algebra sp(k 2 , ω) is just sl(2, k) and (k 2 , ω) is an -orthogonal representation, where

Γ = Z 2 , k 2 is Z 2 -graded by (k 2 ) 0 = {0}, (k 2 ) 1 = k 2 and
(a, b) = (-1) ab for all a, b ∈ Z 2 . The Lie algebra sl(2, k) is quadratic with respect to the form 1 2 T r(XY ) for all X, Y ∈ sl(2, k) and the canonical moment map is given by µ can (p, p) = 0 -2 0 0 , µ can (q, q) = 0 0 2 0 , µ can (p, q) = 1 0 0 -1 .

Remark 2.6. In fact, with the appropriate definition of the -exterior algebra of a Γ-graded vector space together with a commutation factor, µ can factors through an equivariant isomorphism of Λ 2 (V ) with so (V, ( , )) (see [START_REF] Chen | Generalized Clifford theory for graded spaces[END_REF] if char(k) = 0 or chapter 3 of [START_REF] Meyer | Representations associated to gradations of Lie algebras and colour Lie algebras[END_REF]). This generalises the fact that if (V, ω) is a symplectic vector space, then S 2 (V ) is isomorphic to sp(V, ω). It also includes the fact that if (V, ( , )) is a quadratic vector space, then Λ 2 (V ) is isomorphic to so(V, ( , )).

We now give a formula for the moment map of a tensor product of -orthogonal representations in terms of the moment maps of the factors.

Let (g, B g ) and (h, B h ) be finite-dimensional -quadratic colour Lie algebras with respect to (Γ, ) and let

ρ g : g → so (V, ( , ) V ), ρ h : h → so (W, ( , ) W )
be finite-dimensional -orthogonal representations. We denote by µ V ∈ Alt 2 (V, g) and µ W ∈ Alt 2 (W, h) the corresponding moment maps.

On the vector space V ⊗ W we define the bilinear form

(v ⊗ w, v ⊗ w ) V ⊗W := (w, v )(v, v ) V (w, w ) W ∀v ⊗ w, v ⊗ w ∈ V ⊗ W.
Proposition 2.7. With the notation above, the bilinear form ( , ) V ⊗W is non-degenerate and -symmetric for the natural Γ-grading of

V ⊗ W . Proof. Let v ⊗ w, v ⊗ w ∈ V ⊗ W . We have (v ⊗ w, v ⊗ w ) V ⊗W = (w, v )(v, v ) V (w, w ) W = (w, v ) (v, v ) (w, w )(v , v) V (w , w) W = (v + w, v + w ) (w , v)(v , v) V (w , w) W = (v ⊗ w, v ⊗ w )(v ⊗ w , v ⊗ w) V ⊗W
and so ( , ) V ⊗W is -symmetric. It is non-degenerate as a direct consequence of the fact that the tensor product of non-degenerate bilinear forms is non-degenerate.

Hence, one can define an -orthogonal representation of the -quadratic colour Lie algebra (g ⊕ h,

B g ⊥ B h ) ρ : g ⊕ h → so (V ⊗ W, ( , ) V ⊗W ) by: ρ(g + h)(v ⊗ w) := ρ g (g)(v) ⊗ w + (h, v)v ⊗ ρ h (w) ∀g ∈ g, ∀h ∈ h, ∀v ⊗ w ∈ V ⊗ W. (6)
As we now show, the moment map of the tensor product is essentially the product of the moment maps of the factors.

Proposition 2.8. With the notation above, the moment map µ

V ⊗W ∈ Alt 2 (V ⊗ W, g ⊕ h) satisfies: µ V ⊗W (v ⊗ w, v ⊗ w ) = (w, v ) µ V (v, v )(w, w ) W + (v, v ) V µ W (w, w ) (7) for all v ⊗ w, v ⊗ w in V ⊗ W . Proof. Let g ∈ g, h ∈ h and v ⊗ w, v ⊗ w ∈ V ⊗ W . We have B g⊕h (g + h, µ V ⊗W (v ⊗ w, v ⊗ w )) =((g + h)(v ⊗ w), v ⊗ w ) V ⊗W =(g(v) ⊗ w, v ⊗ w ) V ⊗W + (h, v)(v ⊗ h(w), v ⊗ w ) V ⊗W = (w, v )(g(v), v ) V (w, w ) W + (h + w, v ) (h, v)(v, v ) V (h(w), w ) W = (w, v )(B g (g, µ V (v, v )(w, w ) W ) + B h (h, (h, v + v )µ W (w, w )(v, v ) V )) and since (v, v ) V = 0 if |v| = -|v |, we obtain B g⊕h (g+h, µ V ⊗W (v⊗w, v ⊗w )) = B g⊕h g+h, (w, v )(µ V (v, v )(w, w ) W +µ W (w, w )(v, v ) V ) .

Characterisation of -orthogonal representations of colour Lie type and the norm of the moment map

Let Γ be an abelian group and let be a commutation factor of Γ. In this section, we state and prove a theorem on -orthogonal representations of -quadratic colour Lie algebras which contains and generalises the results of Kostant (see [START_REF] Kostant | A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups[END_REF], [START_REF] Kostant | The Weyl algebra and the structure of all Lie superalgebras of Riemannian type[END_REF]) on orthogonal and symplectic complex representations of quadratic Lie algebras and the results of Chen and Kang (see [START_REF] Chen | An analogue of the Kostant criterion for quadratic Lie superalgebras[END_REF]) on orthosymplectic complex representations of quadratic Lie superalgebras.

Definition 3.1. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ). Let g := g ⊕ V and let B g be the non-degenerate -symmetric bilinear form on g defined by B g := B g ⊥ ( , ).

We say that the representation ρ : g → so (V, ( , )) is of colour Lie type if there exists a colour Lie algebra structure { , } on g such that

• the -quadratic form B g is ad(g)-invariant ;

• {x, y} = {x, y} g for x, y in g ;

• {x, v} = ρ(x)(v) for x in g, for v in V .
If we also have {V, V } ⊆ g then the representation ρ : g → so (V, ( , )) is said to be of colour Z 2 -Lie type.

Example 3.2. Let V be a finite-dimensional Γ-graded vector space together with a nondegenerate -symmetric bilinear form ( , ). Then, V is of colour Z 2 -Lie type as a representation of (so (V, ( , )), B) where

B(f, g) := - 1 2 T r (f g) ∀f, g ∈ so (V, ( , )), {v, w} := µ can (v, w) ∀v, w ∈ V.
The colour Lie algebra so (V, ( , ))⊕V is then isomorphic to the colour Lie algebra so

(V ⊕ L, ( , ) ⊥ ( , ) L )
where L is a one-dimensional trivially Γ-graded vector space with an appropriate non-degenerate -symmetric bilinear form ( , ) L .

Recall that (see Definition 1.16) the bilinear form B g on g = g ⊕ V allows us to define an exterior product

∧ B g : Alt (V, g) × Alt (V, g) → Alt (V )
and hence the norm of any f ∈ Alt (V, g) by

N B g (f ) = f ∧ B g f (see Definition 1.20).
Theorem 3.3. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ) and let µ ∈ Alt 2 (V, g) be its moment map (see Definition 2.1).

a) If ρ : g → so (V, ( , 
)) is of colour Lie type, then φ ∈ Alt 2 (V, g ⊕ V ) defined by φ(v, w) = {v, w} -µ(v, w) ∀v, w ∈ V
is of degree 0, takes its values in V and satisfies:

ρ(x)(φ(v, w)) = φ(ρ(x)(v), w) + (x, v)φ(v, ρ(x)(w)) ∀x ∈ g, ∀v, w ∈ V, (8) (φ(u, v), w) = -(u, v)(v, φ(u, w)) ∀u, v, w ∈ V. (9) b) Let φ ∈ Alt 2 (V, V
) be of degree 0 and satisfy (8) and (9). Let g := g ⊕ V , let B g := B g ⊥ ( , ) and let { , } ∈ Alt 2 (g, g) be the unique map which extends the bracket of g, the action of g on V and such that {v, w} = µ(v, w) + φ(v, w) ∀v, w ∈ V.

Then the following are equivalent: i) (g, B g, { , }) is an -quadratic colour Lie algebra.

ii)

N B g (µ + φ) = 0. iii) N B g (µ) = -N B g (φ).
Proof. a) Clearly, {v, w} -µ(v, w) ∈ V since B g is orthogonal to ( , ) and

B g(x, {v, w}) = B g(x, µ(v, w)) ∀x ∈ g.
Equation (8) follows from the -Jacobi identity of g and ( 9) from the ad-invariance of B g.

b)

A straightforward calculation shows that B g is ad(g)-invariant in the sense of Definition 1.28. Moreover, for u, v, w ∈ g, if u, v or w is an element of g then (w, u){{u, v}, w} + (u, v){{v, w}, u} + (v, w){{w, u}, v} = 0 since V is g-equivariant. We need the following lemma: Lemma 3.4. Let u, v, w ∈ V . We have B g (w, u){{u, v}, w} + (u, v){{v, w}, u} + (v, w){{w, u}, v}, x = 0 ∀x ∈ g.

Proof. Let x ∈ g. We have

B g ({u, {v, w}}, x) = (u + v + w, x)B g (x, {u, {v, w}}) = -(u, v + w) (u + v + w, x)B g (x, {{v, w}, u}) = -(u, v + w) (u + v + w, x)({x, {v, w}}, u) = -(u, v + w) (u + v + w, x)(x(φ(v, w)), u) and since ρ(x)(φ(v, w)) = φ(ρ(x)(v), w) + (x, v)φ(v, ρ(x)(w)), then B g ({u, {v, w}}, x) = -(u, v + w) (u + v + w, x) (φ(x(v), w), u) + (x, v)(φ(v, x(w)), u) = -(u, v + w) (u + v + w, x) ({x(v), w}, u) + (x, v)({v, x(w)}, u) = -(u, v + w) (u + v + w, x) -(x + v, w)({w, x(v)}, u) + (x, v)({v, x(w)}, u) = -(u, v + w) (u + v + w, x) (x(v), {w, u}) -(x, v) (v, x + w)(x(w), {v, u}) = -(u, v + w) (u + v + w, x) B g (x, {v, {w, u}}) -(v, w)B g (x, {w, {v, u}}) = -(u, v + w)B g ({v, {w, u}}, x) + (u, v + w) (v, w)B g ({w, {v, u}}, x).
Hence, B g (w, u){{u, v}, w} + (u, v){{v, w}, u} + (v, w){{w, u}, v}, x = 0.

From the previous lemma, it follows that g is a colour Lie algebra if and only if

(v 3 , v 1 ){{v 1 , v 2 }, v 3 }+ (v 1 , v 2 ){{v 2 , v 3 }, v 1 }+ (v 2 , v 3 ){{v 3 , v 1 }, v 2 }, v 4 = 0 ∀v 1 , v 2 , v 3 , v 4 ∈ V.
We set ψ := µ + φ ∈ Alt 2 (V, g) and consider

N B g (ψ) = ψ ∧ B g ψ ∈ Alt 4 (V ). Let v 1 , v 2 , v 3 , v 4 ∈ V . We have N B g (ψ)(v 1 , v 2 , v 3 , v 4 ) = σ∈S({1,2},{3,4}) p(σ; v 1 , v 2 , v 3 , v 4 )B g(ψ(v σ(1) , v σ(2) ), ψ(v σ(3) , v σ(4) )).
Since S({1, 2}, {3, 4}) = {id, (123), ( 1243), ( 23), (13)(24), (243)} and B g(x, y) = (x, y)B g(y, x) ∀x, y ∈ g, we obtain

N B g (ψ)(v 1 , v 2 , v 3 , v 4 ) =B g(ψ(v 1 , v 2 ), ψ(v 3 , v 4 )) + (v 1 , v 2 + v 3 )B g(ψ(v 2 , v 3 ), ψ(v 1 , v 4 )) -(v 3 , v 4 ) (v 1 , v 2 + v 4 )B g(ψ(v 2 , v 4 ), ψ(v 1 , v 3 )) -(v 2 , v 3 )B g(ψ(v 1 , v 3 ), ψ(v 2 , v 4 )) + (v 1 + v 2 , v 3 + v 4 )B g(ψ(v 3 , v 4 ), ψ(v 1 , v 2 )) + (v 2 + v 3 , v 4 )B g(ψ(v 1 , v 4 ), ψ(v 2 , v 3 )) =2 B g(ψ(v 1 , v 2 ), ψ(v 3 , v 4 )) + (v 1 , v 2 + v 3 )B g(ψ(v 2 , v 3 ), ψ(v 1 , v 4 )) -(v 2 , v 3 )B g(ψ(v 1 , v 3 ), ψ(v 2 , v 4 )) .
Moreover, since

B g(ψ(v 1 , v 2 ), ψ(v 3 , v 4 )) = B g (µ(v 1 , v 2 ), µ(v 3 , v 4 )) + (φ(v 1 , v 2 ), φ(v 3 , v 4 )) = (µ(v 1 , v 2 )(v 3 ), v 4 ) + (v 1 + v 2 , v 3 + v 4 )(φ(v 3 , v 4 ), φ(v 1 , v 2 )) = (µ(v 1 , v 2 )(v 3 ), v 4 ) + (φ(φ(v 1 , v 2 ), v 3 ), v 4 ) = ({{v 1 , v 2 }, v 3 }, v 4 ),
we have

N B g (ψ)(v 1 , v 2 , v 3 , v 4 ) = 2 (v 1 , v 3 ) (v 3 , v 1 ){{v 1 , v 2 }, v 3 }+ (v 1 , v 2 ){{v 2 , v 3 }, v 1 }+ (v 2 , v 3 ){{v 3 , v 1 }, v 2 }, v 4 .
As pointed out above g = g ⊕ V is a colour Lie algebra if and only if

( (v 3 , v 1 ){{v 1 , v 2 }, v 3 }+ (v 1 , v 2 ){{v 2 , v 3 }, v 1 }+ (v 2 , v 3 ){{v 3 , v 1 }, v 2 }, v 4 ) = 0 ∀v 1 , v 2 , v 3 , v 4 ∈ V
and so this is equivalent to N B g (µ + φ) = 0. This proves i) is equivalent to ii). Note that since V is orthogonal to g, we have

µ ∧ B g φ = 0, hence N B g (µ + φ) = N B g (µ) + N B g (φ)
and so ii) is equivalent to iii).

Taking φ = 0, the theorem implies the following characterisations of representations of colour Z 2 -Lie type.

Corollary 3.5. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ) and let µ ∈ Alt 2 (V, g) be its moment map (see Definition 2.1). Let g := g ⊕ V , let B g := B g ⊥ ( , ) and let { , } ∈ Alt 2 (g, g) be the unique map which extends the bracket of g, the action of g on V and such that {v, w} = µ(v, w) ∀v, w ∈ V.

Then the following are equivalent:

a) (g, B g, { , }) is an -quadratic colour Lie algebra. b) N B g (µ) = 0. c) V is of colour Z 2 -Lie type.

The Bianchi map and special -orthogonal representations

Let Γ be an abelian group and let be a commutation factor of Γ. In the previous section we saw (Theorem 3.3) that one can associate a colour Lie algebra g to certain data on an -orthogonal representation V of an -quadratic colour Lie algebra if a particular invariant of this data vanishes. In this section we will give a different interpretation of the data as an element of a space of "curvature tensors" on V . We show that the vanishing of the above invariant is equivalent to an algebraic "Bianchi identity" for the corresponding curvature tensor. Further analysis of this identity makes it clear that there are other natural conditions we can impose on -orthogonal representations and this leads to the notion of special -orthogonal representations. Definition 4.1. Let V be a Γ-graded vector space. We define R(V ) to be the vector space of all multilinear maps R :

V × V × V × V → k which satisfy R(A, B, C, D) = -(A, B)R(B, A, C, D) ∀A, B, C, D ∈ V, (10) R(A, B, C, D) = (A + B, C + D)R(C, D, A, B) ∀A, B, C, D ∈ V. ( 11 
) Remark 4.2. A map R ∈ R(V ) satisfies R(A, B, C, D) = -(C, D)R(A, B, D, C) ∀A, B, C, D ∈ V.
In general a map R ∈ R(V ) is not -alternating but we can define the Bianchi map β : R(V ) → R(V ) which has the property that β(R) ∈ Alt 4 (V ) for all R ∈ R(V ). Definition 4.3. Let V be a Γ-graded vector space.

a) The map R µ+φ is an element of R(V ).

b) We have

N B g (µ + φ) = 2β(R µ+φ ).
c) The following are equivalent:

i) (g, B g, { , }) is an -quadratic colour Lie algebra. ii) β(R µ+φ ) = 0.
Proof. a) Since the bracket is -antisymmetric, (10) is satisfied. For A, B, C, D ∈ V , we have (A,B),µ(C,D)) + (φ(A,B),φ(C,D)) ,µ(A,B)) + (φ(C,D),φ(A,B))

R µ+φ (A, B, C, D) = (µ(A, B)(C), D) + (φ(φ(A, B), C), D) = B g (µ
= (A + B, C + D) B g (µ(C, D)
= (A + B, C + D) (µ(C, D)(A), B) + (φ(φ(C, D), A), B) = (A + B, C + D)R µ+φ (C, D, A, B)
and then Equation ( 11 

R µ such that R µ -1 3 β(R µ ) is equal to R µcan . Definition 4.7. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representa- tion of a finite-dimensional -quadratic colour Lie algebra. The representation V is special if its moment map µ satisfies R µ - 1 3 β(R µ ) = R µcan .
We now characterise special -orthogonal representations in terms of their moment map.

Proposition 4.8. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra. The following are equivalent:

a) V is a special -orthogonal representation. b) µ(A, B)(C) + (B, C)µ(A, C)(B) = (A, B)C + (B, C)(A, C)B -2(B, C)A ∀A, B, C ∈ V . c) µ(A, B)(C) + (B, C)µ(A, C)(B) = µ can (A, B)(C) + (B, C)µ can (A, C)(B) ∀A, B, C ∈ V .
Proof. Property b) is equivalent to c) by Equation (5). Let A, B, C, D ∈ V . We now show that b) implies a). We have:

R µ (A, B, C, D) - 1 3 β(R µ )(A, B, C, D) = 1 3 2µ(A, B)(C) -(A, B + C)µ(B, C)(A) + (B, C)µ(A, C)(B), D = 1 3 µ(A, B)(C) + (B, C)µ(A, C)(B) -(A, B)(µ(B, A)(C) + (A, C)µ(B, C)(A)), D .

Now, using b) twice, we have µ(A, B)(C) + (B, C)µ(A, C)(B) = (A, B)C + (B, C)(A, C)B -2(B, C)A, µ(B, A)(C) + (A, C)µ(B, C)(A) = (B, A)C + (A, C)(B, C)A -2(A, C)B

and hence:

R µ (A, B, C, D) - 1 3 β(R µ )(A, B, C, D) = 1 3 (A, B)C + (B, C)(A, C)B -2(B, C)A -(A, B)((B, A)C + (A, C)(B, C)A -2(A, C)B), D = µ can (A, B)(C), D = R µcan (A, B, C, D).
This proves a). To show that a) implies b),

suppose that R µ -1 3 β(R µ ) = R µcan . Then (A, B)C + (B, C)(A, C)B -2(B, C)A, D = µ can (A, B)(C) + (B, C)µ can (A, C)(B), D = R µcan (A, B, C, D) + (B, C)R µcan (A, C, B, D) = R µ - 1 3 β(R µ ) (A, B, C, D) + (B, C) R µ - 1 3 β(R µ ) (A, C, B, D) = R µ (A, B, C, D) + (B, C)R µ (A, C, B, D) = µ(A, B)(C) + (B, C)µ(A, C)(B), D ,
and since ( , ) is non-degenerate, we obtain b).

Remark 4.9. The equivalent conditions b) and c) define the notion of special -orthogonal representations over fields of characteristic three and hence certain representations considered in [START_REF] Elduque | New simple Lie superalgebras in characteristic 3[END_REF] are special -orthogonal representations.

Example 4.10. Let g be a Lie algebra and let (V, ( , )) be a symplectic representation of g. It follows from Proposition 4.8 that g → so (V, ( , )) = sp(V, ( , )) is a special -orthogonal representation if and only if it is a special symplectic representation in the sense of [START_REF] Slupinski | The geometry of special symplectic representations[END_REF].

We now investigate when the tensor product of two -orthogonal representations is of colour Z 2 -Lie type if one of them, W , is the fundamental representation of an -orthogonal colour Lie algebra. It turns out that a necessary and sufficient condition for this to be the case is that the other representation, V , is also the fundamental representation of an -orthogonal colour Lie algebra unless dim(W ) = 1 or dim(W ) = 2. If dim(W ) = 1, the necessary and sufficient condition is that V is of colour Z 2 -Lie type and if dim(W ) = 2, that V is a special -orthogonal representation.

Theorem 4.11. Suppose that the representation k 2 of sl(2, k) is an -orthogonal representation with respect to (Γ, ). Let ρ : g → so (V, ( , ) V ) be a finite-dimensional faithful -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra and let W be a finite-dimensional Γ-graded vector space together with a non-degenerate -symmetric bilinear form ( , ) W . Then the -orthogonal representation (see Section 2)

g ⊕ so (W, ( , ) W ) → so (V ⊗ W, ( , ) V ⊗W )
is of colour Z 2 -Lie type if and only if one of the following holds:

a) g is isomorphic to so (V, ( , ) V ) ; b) dim(W ) = 1, ( , ) W is symmetric and g → so (V, ( , ) V ) is of colour Z 2 -Lie type ; c) dim(W ) = 2, ( , ) W is antisymmetric and g → so (V, ( , ) V ) is special -orthogonal. Proof. By (7), the moment map µ V ⊗W ∈ Alt 2 (V ⊗ W, g ⊕ h) satisfies for v ⊗ w, v ⊗ w ∈ V ⊗ W µ V ⊗W (v ⊗ w, v ⊗ w ) = (w, v ) µ V (v, v )(w, w ) W + µ W (w, w )(v, v ) V
where µ V ∈ Alt 2 (V, g) and µ W ∈ Alt 2 (W, h) are the corresponding moment maps of V and W . Recall that we have a decomposition

W = W 0 ⊕ W 1 (see Proposition 1.11). a) Suppose that dim(W 0 ) + dim(W 1 ) 2 ≥ 2. Then there exists w, w , w ∈ W such that (w, w ) W = 0, (w, w ) W = 0, (w , w ) W = 0.
Let v, v , v ∈ V . We now compute the -Jacobi identity for the three elements v ⊗ w, v ⊗ w , v ⊗ w using Properties (6), ( 7) and the moment map of W given by formula (5).

The first term of this identity is

(v + w , v + w)µ V ⊗W (v ⊗ w, v ⊗ w )(v ⊗ w ) = (v + w , v + w) (w, v )µ V (v, v )(v ) ⊗ (w, w ) W w = (v , v) (v , w) (w , v) (w , w) (w, v )µ V (v, v )(v ) ⊗ (w, w ) W w , (12) 
the second term is

(v + w, v + w )µ V ⊗W (v ⊗ w , v ⊗ w )(v ⊗ w) = (v + w, v -w) (-w, v ) (-w + w , v)(v , v ) V v ⊗ (w , w) (w, w)(w, w ) W w = (v, v ) (w, v ) (v , w) (w , v) (w , w)(v , v ) V v ⊗ (w, w ) W w (13)
and the last term is

(v + w , v + w )µ V ⊗W (v ⊗ w , v ⊗ w)(v ⊗ w ) = (v -w, v + w ) (w , v) (w + w, v )(v , v) V v ⊗ -(w, w ) W w = -(v , v ) (v , w) (w , w) (w , v) (w, v )(v , v) V v ⊗ (w, w ) W w . ( 14 
)
Taking the sum of Equations ( 12), ( 13) and ( 14) we see that the -Jacobi identity for the three elements

v ⊗ w, v ⊗ w , v ⊗ w is satisfied if and only if (v , v)µ V (v, v )(v ) + (v, v )(v , v ) V v -(v , v )(v , v) V v = 0,
and by (5) this is equivalent to

µ V (v, v )(v ) = µ can (v, v )(v ).
Since µ can ∈ Alt 2 V, so (V, ( , ) V ) is surjective (see Remark 2.6 and Proposition 3.9.8 of

[Mey19]), ρ • µ ∈ Alt 2 (V, so (V, ( , ) V )
) is surjective and then ρ is surjective. Since ρ is injective by assumption, g is isomorphic to so (V, ( , ) V ).

b) Suppose that dim(W ) = 1. Then we have so (W, ( , ) W ) = {0} and the representation

g ⊕ so (W, ( , ) W ) → so (V ⊗ W, ( , ) V ⊗W )
is of colour Z 2 -Lie type if and only if the representation g → so (V, ( ,

) V ) is of colour Z 2 -Lie type.
c) Suppose that dim(W ) = 2 and ( , ) W is antisymmetric. Let {p, q} be an homogeneous symplectic basis of (W, ( , ) W ). There exists γ ∈ Γ such that (γ, γ) = -1, |p| = γ and |q| = -γ and let {E, H, F } be a sl(2, k)-triple of so (W, ( ,

) W ). From Example 2.5 we have µ W (p, p) = -2E, µ W (q, q) = 2F, µ W (p, q) = H. Let v, v , v ∈ V .
One can check that the -Jacobi identities of v ⊗ p, v ⊗ p, v ⊗ p and v ⊗ q, v ⊗ q, v ⊗ q are satisfied. We now compute the -Jacobi identity for v ⊗ p, v ⊗ p and v ⊗ q. Its first term is

(v + γ, v + γ)µ V ⊗W (v ⊗ p, v ⊗ p)(v ⊗ q) = 2 (v , v) (γ, v ) (v, γ) 2 (v, v ) V v ⊗ p.
The second term is

(v+γ, v +γ)µ V ⊗W (v ⊗p, v ⊗q)(v⊗p) = (v+γ, v +γ) (γ, v ) µ V (v , v )(v)⊗p+(v , v ) V v⊗p
and the last term is

(v +γ, v +γ)µ V ⊗W (v ⊗q, v⊗p)(v ⊗p) = (v +γ, v -γ) (v, γ) -µ V (v , v)(v )⊗p+(v , v) V v ⊗p .
Hence, summing these three terms, -Jacobi identity for v ⊗ p, v ⊗ p and v ⊗ q is satisfied if and only if we have

2 (v , v) (γ, v ) (v, γ) 2 (v, v ) V v + (v+γ, v +γ)(v , v ) V v+ (v +γ, v -γ) (v, γ)(v , v) V v = -(v + γ, v + γ) (γ, v )µ V (v , v )(v) + (v + γ, v -γ) (v, γ)µ V (v , v)(v)
and now if we multiply both sides by (v

-γ, v + γ) (γ, v), this is equivalent to -2(v, v ) V v + (v, v )(v , v ) V v + (v , v) V v = -(v + v , v )µ V (v , v )(v) + µ V (v , v)(v )
and this is equivalent to

µ V (v, v )(v ) + (v , v )µ V (v, v )(v ) = (v, v ) V v + (v , v )(v, v ) V v -2(v , v ) V v.
Finally, by a straightforward calculation, the -Jacobi identity of v ⊗ p, v ⊗ q, v ⊗ q is satisfied if and only if the -Jacobi identity of v ⊗ p, v ⊗ p, v ⊗ q is satisfied. Remark 4.12. Colour Lie algebras g obtained from special -orthogonal representations are not arbitrary. They have the particularity to admit a gradation of Heisenberg type (see [START_REF] Faulkner | A construction of lie algebras from a class of ternary algebras[END_REF] and [START_REF] Slupinski | The geometry of special symplectic representations[END_REF]), that is to say that there exists a H in g of degree 0 such that

g = g-2 ⊕ g-1 ⊕ g0 ⊕ g1 ⊕ g2
where gi = {x ∈ g | {H, x} = ix} and dim(g -2 ) = dim(g 2 ) = 1. This property certainly characterises colour Lie algebras that we can obtain from special -orthogonal representations (for a discussion of this problem in the frame of Lie algebras, see [START_REF] Faulkner | A construction of lie algebras from a class of ternary algebras[END_REF], [START_REF] Hsin | Graded Lie algebras of the second kind[END_REF] and [START_REF] Slupinski | The geometry of special symplectic representations[END_REF]).

Mathews identities for the covariants of a special -orthogonal representation

Let Γ be an abelian group and let be a commutation factor of Γ. In this section we introduce and study a bilinear, a trilinear and a quadrilinear -alternating multilinear map associated to a special -orthogonal representation. These maps generalise the three classical covariants of the space of binary cubics (see [START_REF] Eisenstein | Untersuchungen über die cubischen Formen mit zwei Variabeln[END_REF]) which is a special -orthogonal representation of the Lie algebra sl(2, k). We will prove a set of identities satisfied by them which generalise the Mathews identities for binary cubics (see [START_REF] Mathews | Relations Between Arithmetical Binary Cubic Forms and Their Hessians[END_REF]) and their analogues for special symplectic representations of Lie algebras (see [START_REF] Slupinski | The geometry of special symplectic representations[END_REF]).

Definition 5.1. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra and let µ be its moment map. We define the multilinear maps ψ :

V × V × V → V and Q : V × V × V × V → k as follows: ψ(v 1 , v 2 , v 3 ) = µ(v 1 , v 2 )(v 3 ) + (v 1 + v 2 , v 3 )µ(v 3 , v 1 )(v 2 ) + (v 1 , v 2 + v 3 )µ(v 2 , v 3 )(v 1 ), Q(v 1 , v 2 , v 3 , v 4 ) = (v 1 , ψ(v 2 , v 3 , v 4 )) -(v 1 + v 2 + v 3 , v 4 )(v 4 , ψ(v 1 , v 2 , v 3 )) + (v 1 + v 2 , v 3 + v 4 )(v 3 , ψ(v 4 , v 1 , v 2 )) -(v 1 , v 2 + v 3 + v 4 )(v 2 , ψ(v 3 , v 4 , v 1 )) for all v 1 , v 2 , v 3 , v 4 ∈ V .
The maps µ, ψ and Q are called the covariants of V .

In fact, the maps µ, ψ and Q are -alternating mutilinear maps.

Proposition 5.2. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra and let µ, ψ, Q be its covariants.

We

have µ ∈ Alt 2 (V, g), ψ ∈ Alt 3 (V, V ) and Q ∈ Alt 4 (V ). Proof. Let v 1 , v 2 , v 3 , v 4 ∈ V . We have ψ(v 1 , v 2 , v 3 ) = 1 2 σ∈S 3 p(σ; v 1 , v 2 , v 3 )µ(v σ(1) , v σ(2) )(v σ(3) ), (15) 
Q(v 1 , v 2 , v 3 , v 4 ) = 1 2 σ∈S 4 p(σ; v 1 , v 2 , v 3 , v 4 )(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) )) (16) 
and so ψ and Q are -alternating multilinear maps.

In the case of special -orthogonal representations, the quadrilinear covariant is essentially the norm of the moment map.

Proposition 5.3. Let ρ : g → so (V, ( , )) be a finite-dimensional special -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ) and let µ, ψ, Q be its covariants.

a) For all v 1 , v 2 , v 3 , v 4 ∈ V , we have ψ(v 1 , v 2 , v 3 ) = 3(µ(v 1 , v 2 )(v 3 ) -µ can (v 1 , v 2 )(v 3 )), Q(v 1 , v 2 , v 3 , v 4 ) = 4(v 1 , ψ(v 2 , v 3 , v 4 )). b) We have Q = -2N Bg (µ) = -4β(R µ ).
Proof. a) We prove the first identity. Using Proposition 4.8 b), we have

(v 1 + v 2 , v 3 )µ(v 3 , v 1 )(v 2 ) = -(v 2 , v 3 )µ(v 1 , v 3 )(v 2 ) = µ(v 1 , v 2 )(v 3 ) -(v 2 , v 3 )(v 1 , v 3 )v 2 -(v 1 , v 2 )v 3 + 2 (v 2 , v 3 )(v 3 , v 2 )v 1 and (v 1 , v 2 + v 3 )µ(v 2 , v 3 )(v 1 ) = -(v 1 , v 2 )µ(v 2 , v 1 )(v 3 ) + (v 2 , v 3 )v 1 + (v 1 , v 2 )(v 2 , v 1 )v 3 -2 (v 1 , v 2 + v 3 )(v 3 , v 1 )v 2 .
Hence,

ψ(v 1 , v 2 , v 3 ) =3µ(v 1 , v 2 )(v 3 ) -(v 2 , v 3 )(v 1 , v 3 )v 2 -(v 1 , v 2 )v 3 + 2 (v 2 , v 3 )(v 3 , v 2 )v 1 + (v 2 , v 3 )v 1 + (v 1 , v 2 )(v 2 , v 1 )v 3 -2 (v 1 , v 2 + v 3 )(v 3 , v 1 )v 2 =3µ(v 1 , v 2 )(v 3 ) -3 (v 2 , v 3 )(v 1 , v 3 )v 2 + 3(v 2 , v 3 )v 1 =3(µ(v 1 , v 2 )(v 3 ) -µ can (v 1 , v 2 )(v 3 )).
The second identity can be proved by a similar calculation.

b) Let v 1 , v 2 , v 3 , v 4 ∈ V .
We know from the proof of Theorem 3.3 that

N Bg (µ)(v 1 , v 2 , v 3 , v 4 ) = -2(v 1 , (v 2 , v 3 +v 4 )µ(v 3 , v 4 )(v 2 )+ (v 2 +v 3 , v 4 )µ(v 4 , v 2 )(v 3 )+µ(v 2 , v 3 )(v 4 )),
by a) we have

Q(v 1 , v 2 , v 3 , v 4 ) = 4(v 1 , µ(v 2 , v 3 )(v 4 )+ (v 2 +v 3 , v 4 )µ(v 4 , v 2 )(v 3 )+ (v 2 , v 3 +v 4 )µ(v 3 , v 4 )(v 2 ))
and hence Q = -2N Bg (µ). Furthermore, by Proposition 4.6 we also have Q = -4β(R µ ).

Example 5.4. If µ = µ can then the covariants ψ and Q are trivial.

Recall that (see Definition 1.16) the representation ρ allows us to define an exterior product

∧ ρ : Alt (V, g) × Alt (V, V ) → Alt (V, V )
and the scalar multiplication allows us to define exterior products

∧ : Alt (V, k) × Alt (V, k) → Alt (V, k), ∧ × : Alt (V, k) × Alt (V, V ) → Alt (V, V ), ∧ × : Alt (V, k) × Alt (V, g) → Alt (V, g).
Recall also that (see Definition 1.21) we have composition maps

• : Alt (V, g) × Alt (V, V ) → Alt (V, g), • : Alt (V, V ) × Alt (V, V ) → Alt (V, V ), • : Alt (V, k) × Alt (V, V ) → Alt (V, k).
With this notation we now prove some identities satisfied by the covariants of a special -orthogonal representation which generalise the classical Mathews identities (see [START_REF] Mathews | Relations Between Arithmetical Binary Cubic Forms and Their Hessians[END_REF]).

Theorem 5.5. Let ρ : g → so (V, ( , )) be a finite-dimensional special -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra and let µ ∈ Alt 2 (V, g), ψ ∈ Alt 3 (V, V ) and Q ∈ Alt 4 (V ) be its covariants. We have the following identities:

a) µ ∧ ρ ψ = - 3 2 Q ∧ × Id V in Alt 5 (V, V ), ( 17 
) b) µ • ψ = 3Q ∧ × µ in Alt 6 (V, g), (18) 
c) ψ • ψ = - 27 2 Q ∧ Q ∧ × Id V in Alt 9 (V, V ), (19) 
d) Q • ψ = -54Q ∧ Q ∧ Q in Alt 12 (V, k). ( 20 
)
Proof. In this proof, for v 1 , . . . , v n ∈ V and σ ∈ S n we denote p(σ; v 1 , . . . , v n ) by p(σ; v) and we use implicitly Remarks 1.8 and 1.15. Let v 1 , . . . , v 12 ∈ V .

a) Since µ(v 1 , v 2 ) = 1 2 σ∈S 2 p(σ; v)µ(v σ(1) , v σ(2) ),
it follows from Equation (15) that

µ ∧ ρ ψ(v 1 , v 2 , v 3 , v 4 , v 5 ) = 1 4 σ∈S 5 p(σ; v)µ(v σ(1) , v σ(2) )(µ(v σ(3) , v σ(4) )(v σ(5) )). ( 21 
)
Since V is a special -orthogonal representation, using Proposition 4.8 b), we have

µ(v σ(1) , v σ(2) )(µ(v σ(3) , v σ(4) )(v σ(5) )) = (v σ(1) , v σ(2) ) v σ(1) , µ(v σ(3) , v σ(4) )(v σ(5) ) v σ(2) -2 v σ(2) , µ(v σ(3) , v σ(4) )(v σ(5) ) v σ(1) + (v σ(1) , v σ(2) )µ(v σ(3) , v σ(4) )(v σ(5) ) -(v σ(2) , v σ(3) + v σ(4) + v σ(5) )µ(v σ(1) , µ(v σ(3) , v σ(4) )(v σ(5) ))(v σ(2) ). ( 22 
)
When we take the -antisymmetric sum over all permutations as in (21) it turns out that the sums corresponding to the third and fourth terms in ( 22) vasnish as we now show.

Consider the subgroup H := {id, (12)} acting on the right on S 5 . We have a partition S 5 = ∪O σ where O σ is the orbit of the element σ under the action of H, and there are 60 orbits each containing 2 elements. Since

p(σ; v)(v σ(1) , v σ(2) )µ(v σ(3) , v σ(4) )(v σ(5) ) + p(σ(12); v)(v σ(2) , v σ(1) )µ(v σ(3) , v σ(4) )(v σ(5) ) = 0 then we have σ∈S 5 p(σ; v)(v σ(1) , v σ(2) )µ(v σ(3) , v σ(4) )(v σ(5) ) = 0. ( 23 
)
We now show that

- σ∈S 5 p(σ; v) (v σ(2) , v σ(3) + v σ(4) + v σ(5) )µ(v σ(1) , µ(v σ(3) , v σ(4) )(v σ(5) ))(v σ(2) ) = 0. ( 24 
)
First of all, by setting σ := (2345) ∈ S 5 we have

- σ∈S 5 p(σ; v) (v σ(2) , v σ(3) + v σ(4) + v σ(5) )µ(v σ(1) , µ(v σ(3) , v σ(4) )(v σ(5) ))(v σ(2) ) = - σ∈S 5 p(σ; v) (v σσ (5) , v σσ (2) + v σσ (3) + v σσ (4) )µ(v σσ (1) , µ(v σσ (2) , v σσ (3) )(v σσ (4) ))(v σσ (5) ) = σ∈S 5 p(σ; v)µ(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))(v σ(5) ). (25) 
Moreover,

σ∈S 5 p(σ; v)µ(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))(v σ(5) ) = σ ∈S( 1,4 ,{5}) p(σ ; v) σ∈S 4 p(σ; v σ )µ(v σσ (1) , µ(v σσ (2) , v σσ (3) )(v σσ (4) )) (v σ (5) ). ( 26 
)
Consider the subgroup H := {id, (14), (12)(34), ( 1342), ( 23), (14)(23), ( 1243), (13)(24)} acting on the right on S 4 . We have a partition S 4 = ∪O σ where O σ is the orbit of the element σ under the action of H, and there are 3 orbits each containing 8 elements. Using the -antisymmetry of µ we obtain

σ ∈Oσ p(σ ; v)µ(v σ (1) , µ(v σ (2) , v σ (3) )(v σ (4) )) = 2 σ ∈ Õσ p(σ ; v)µ(v σ (1) , µ(v σ (2) , v σ (3) )(v σ (4) ))
where Õσ = {σ, σ(14), σ(12)(34), σ(1342)}.

We have

σ ∈ Õσ p(σ ; v)µ(v σ (1) , µ(v σ (2) , v σ (3) )(v σ (4) )) = p(σ; v)µ(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) )) + p(σ(14); v)µ(v σ(4) , µ(v σ(2) , v σ(3) )(v σ(1) )) + p(σ(12)(34); v)µ(v σ(2) , µ(v σ(1) , v σ(4) )(v σ(3) )) + p(σ(1342); v)µ(v σ(3) , µ(v σ(1) , v σ(4) )(v σ(2) )) = p(σ; v) (v σ(1) , v σ(2) + v σ(3) )[µ(v σ(2) , v σ(3) ), µ(v σ(1) , v σ(4) )] + p(σ; v) (v σ(2) + v σ(3) , v σ(4) )[µ(v σ(1) , v σ(4) ), µ(v σ(2) , v σ(3) )] = 0. Hence σ∈S 4 p(σ; v)µ(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) )) = 0 (27) 
and using (26) and (25) this implies (24). Therefore, from Equations ( 22) and ( 23), (24) it follows that

σ∈S 5 p(σ; v)µ(v σ(1) , v σ(2) )(µ(v σ(3) , v σ(4) )(v σ(5) )) = σ∈S 5 p(σ; v) (v σ(1) , v σ(2) )(v σ(1) , µ(v σ(3) , v σ(4) )(v σ(5) ))v σ(2) -2(v σ(2) , µ(v σ(3) , v σ(4) )(v σ(5) ))v σ(1) .
But, if we set σ = (2345), we have

σ∈S 5 p(σ; v) (v σ(1) , v σ(2) ) v σ(1) , µ(v σ(3) , v σ(4) )(v σ(5) ) v σ(2) = - σ∈S 5 p(σσ ; v) v σσ (1) , µ(v σσ (2) , v σσ (3) )(v σσ (4) ) v σσ (5) = - σ∈S 5 p(σ; v) v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ) v σ(5) .
Similarly with σ = (12345) we have -2

σ∈S 5 p(σ; v) v σ(2) , µ(v σ(3) , v σ(4) )(v σ(5) ) v σ(1) = -2 σ∈S 5 p(σ; v) v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ) v σ(5) .
Therefore, we obtain

σ∈S 5 p(σ; v)µ(v σ(1) , v σ(2) )(µ(v σ(3) , v σ(4) )(v σ(5) )) = -3 σ∈S 5 p(σ; v) v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ) v σ(5) .
(28) Since by definition

Q ∧ × Id V (v 1 , v 2 , v 3 , v 4 , v 5 ) = 1 2 σ∈S 5 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))v σ(5) ( 29 
)
it follows from Equations ( 21) and (28) that

µ ∧ ρ ψ = - 3 2 Q ∧ × Id V . b) By definition µ • ψ(v 1 , v 2 , v 3 , v 4 , v 5 , v 6 ) = 1 4 σ∈S 6 p(σ; v)µ µ(v σ(1) , v σ(2) )(v σ(3) ), µ(v σ(4) , v σ(5) )(v σ(6) ) .
(30) By equivariance, we have

σ∈S 6 p(σ; v)µ µ(v σ(1) , v σ(2) )(v σ(3) ), µ(v σ(4) , v σ(5) )(v σ(6) ) = σ∈S 6 p(σ; v) µ(v σ(1) , v σ(2) ), µ(v σ(3) , µ(v σ(4) , v σ(5) )(v σ(6) )) -(v σ(1) + v σ(2) , v σ(3) )µ(v σ(3) , µ(v σ(1) , v σ(2) )(µ(v σ(4) , v σ(5) )(v σ(6) ))) .
Using (27), we have

σ∈S 6 p(σ; v) µ(v σ(1) , v σ(2) ), µ(v σ(3) , µ(v σ(4) , v σ(5) )(v σ(6) )) = σ ∈S( 1,2 , 3,6 ) p(σ ; v)   σ∈S 2 p(σ; v σ )µ(v σσ (1) , v σσ (2) ), σ∈S 4 p(σ; v σ )µ(v σσ (3) , µ(v σσ (4) , v σσ (5) )(v σσ (6) ))   = 0. Thus σ∈S 6 p(σ; v)µ µ(v σ(1) , v σ(2) )(v σ(3) ), µ(v σ(4) , v σ(5) )(v σ(6) ) = - σ∈S 6 p(σ; v) (v σ(1) + v σ(2) , v σ(3) )µ(v σ(3) , µ(v σ(1) , v σ(2) )(µ(v σ(4) , v σ(5) )(v σ(6) )))
and with a change of index using σ := (132) this is equal to

- σ∈S 6 p(σ; v)µ(v σ(1) , µ(v σ(2) , v σ(3) )(µ(v σ(4) , v σ(5) )(v σ(6) )))
and this is equal to

= - σ ∈S( 1 , 2,6 ) p(σ ; v)µ(v σ (1) , σ∈S 5 p(σ; v σ )µ(v σσ (2) , v σσ (3) )(µ(v σσ (4) , v σσ (5) )(v σσ (6) ))) .
Using Equation (28), we have

σ∈S 6 p(σ; v)µ µ(v σ(1) , v σ(2) )(v σ(3) ), µ(v σ(4) , v σ(5) )(v σ(6) ) = 3 σ ∈S( 1 , 2,6 ) p(σ ; v)µ(v σ (1) , σ∈S 5 p(σ; v σ )(v σσ (2) , µ(v σσ (3) , v σσ (4) )(v σσ (5) ))v σσ (6) = 3 σ∈S 6 p(σ; v)µ(v σ(1) , (v σ(2) , µ(v σ(3) , v σ(4) )(v σ(5) ))v σ(6) ) = 3 σ∈S 6 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))µ(v σ(5) , v σ(6) ) . ( 31 
)
Since by definition

Q ∧ × µ(v 1 , v 2 , v 3 , v 4 , v 5 , v 6 ) = 1 4 σ∈S 6 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))µ(v σ(5) , v σ(6) ) (32)
it follows from Equations (30) and (31) that

µ • ψ = 3Q ∧ × µ. c) By definition ψ • ψ(v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 ) = 3 8 σ∈S 9 p(σ; v)µ µ(v σ(1) , v σ(2) )(v σ(3) ), µ(v σ(4) , v σ(5) )(v σ(6) ) (µ(v σ(7) , v σ(8) )(v σ(9) )). ( 33 
)
We have

σ∈S 9 p(σ; v)µ µ(v σ(1) , v σ(2) )(v σ(3) ), µ(v σ(4) , v σ(5) )(v σ(6) ) (µ(v σ(7) , v σ(8) )(v σ(9) )) = σ ∈S( 1,6 , 7,9 ) p(σ ; v) σ∈S 6 p(σ; v σ )µ µ(v σσ (1) , v σσ (2) )(v σσ (3) ), µ(v σσ (4) , v σσ (5) )(v σσ (6) ) σ∈S 3 p(σ; v σ )µ(v σσ (7) , v σσ (8) )(v σσ (9) )
and using Equation (31) this is equal to

3 σ∈S 9 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))µ(v σ(5) , v σ(6) )(µ(v σ(7) , v σ(8) )(v σ(9) )) = 3 σ ∈S( 1,4 , 5,9 ) p(σ ; v) σ∈S 4 p(σ; v σ )(v σσ (1) , µ(v σσ (2) , v σσ (3) )(v σσ (4) )) σ∈S 5 p(σ; v σ )µ(v σσ (5) , v σσ (6) )(µ(v σσ (7) , v σσ (8) )(v σσ (9) )).
Using Equation (28) we have

σ∈S 9 p(σ; v)µ µ(v σ(1) , v σ(2) )(v σ(3) ), µ(v σ(4) , v σ(5) )(v σ(6) ) (µ(v σ(7) , v σ(8) )(v σ(9) )) = -9 σ ∈S( 1,4 , 5,9 ) p(σ ; v) σ∈S 4 p(σ; v σ )(v σσ (1) , µ(v σσ (2) , v σσ (3) )(v σσ (4) )) σ∈S 5 p(σ; v σ )(v σσ (5) , µ(v σσ (6) , v σσ (7) )(v σσ (8) ))v σσ (9) = -9 σ∈S 9 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))(v σ(5) , µ(v σ(6) , v σ(7) )(v σ(8) ))v σ(9) . (34) 
Since by definition

Q ∧ Q ∧ × Id V (v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 ) = 1 4 σ∈S 9 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))(v σ(5) , µ(v σ(6) , v σ(7) )(v σ(8) ))v σ(9) , (35) 
it follows from Equations (33) and (34) that

ψ • ψ = - 27 2 Q ∧ Q ∧ × Id V . d) By definition Q • ψ(v 1 , v 2 , v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , v 10 , v 11 , v 12 ) = 3 4 σ∈S 12 p(σ; v) µ(v σ(1) , v σ(2) )(v σ(3) ), µ(µ(v σ(4) , v σ(5) )(v σ(6) ), µ(v σ(7) , v σ(8) )(v σ(9) ))(µ(v σ(10) , v σ(11) )(v σ(12) )) . ( 36 
)
We have

σ∈S 12 p(σ; v) µ(v σ(1) , v σ(2) )(v σ(3) ), µ(µ(v σ(4) , v σ(5) )(v σ(6) ), µ(v σ(7) , v σ(8) )(v σ(9) ))(µ(v σ(10) , v σ(11) )(v σ(12) )) = σ ∈S( 1,3 , 4,12 ) p(σ ; v) σ∈S 3 p(σ, v σ )µ(v σσ (1) , v σσ (2) )(v σσ (3) ), σ∈S 9 p(σ, v σ )µ µ(v σσ (4) , v σσ (5) )(v σσ (6) ), µ(v σσ (7) , v σσ (8) )(v σσ (9) ) (µ(v σσ (10) , v σσ (11) )(v σσ (12) ))
and using (34) this is equal to = -9 σ∈S 12 p(σ; v)(µ(v σ(1) , v σ( 2) )(v σ(3) ), v σ( 12) )(v σ(4) , µ(v σ(5) , v σ( 6) )(v σ(7) ))(v σ(8) , µ(v σ(9) , v σ( 10 Since by definition 

Q ∧ Q ∧ Q(v 1 , v 2 ,
it follows from Equation (37) that

Q • ψ = -54Q ∧ Q ∧ Q.

Appendix

Let Γ be an abelian group and let be a commutation factor of Γ. In this section, we give examples of special -orthogonal representations. For proofs and details see [START_REF] Meyer | Representations associated to gradations of Lie algebras and colour Lie algebras[END_REF].

Throughout this section we suppose that the representation k 2 of sl(2, k) is anorthogonal representation with respect to (Γ, ).

The fundamental representation of so (V, ( , ))

Let V be a finite-dimensional Γ-graded vector space and let ( , ) be a non-degenerate -symmetric bilinear form on V . The colour Lie algebra so (V, ( , )) is -quadratic for the bilinear form B(f, g) = -1 2 T r(E • f • g) ∀f, g ∈ so (V, ( , )), and the fundamental representation of so (V, ( , )) has moment map µ can (see Proposition 2.4) which trivially satisfies c) of Proposition 4.8. Hence the fundamental representation of so (V, ( , )) is a special -orthogonal representation and by Theorem 4.11 there is a colour Lie algebra of the form so (V, ( ,

)) ⊕ sl(2, k) ⊕ V ⊗ k 2 .
One can check that it is isomorphic to the colour Lie algebra so (V ⊕ k 2 , ( , ) ⊥ ω) and that the associated covariants ψ ∈ Alt 3 (V, V ) and Q ∈ Alt 4 (V ) vanish.

6.2

The fundamental representation of so (V, ( , )) ⊕ sl(2, k)

Let V be a finite-dimensional Γ-graded vector space, let ( , ) be a non-degeneratesymmetric bilinear form on V and let (W, Ω) be a two-dimensional Γ-graded symplectic vector space. The colour Lie algebra so (V, ( , ))⊕so (W, Ω) is -quadratic for the bilinear form B V ⊥ B W where

B V (f, g) = 1 4 T r(E • f • g) ∀f, g ∈ so (V, ( , )), B W (f, g) = - 1 2 T r(E • f • g) ∀f, g ∈ so (W, Ω).
The -orthogonal representation so (V, ( , )) ⊕ so (W, Ω) → so (V ⊗ W, ( , ) ⊗ Ω) of the -quadratic colour Lie algebra so (V, ( , )) ⊕ so (W, Ω), B V ⊥ B W has moment map which satisfies b) of Proposition 4.8 and then by Theorem 4.11 it gives rise to colour Lie algebra of the form so (V, ( , )) ⊕ so (W, Ω) ⊕ sl(2, k) ⊕ V ⊗ W ⊗ k 2 .

One can check that it is isomorphic to so (V ⊕ H, ( , ) ⊥ ( , ) H ) where (H, ( , ) H ) is a four-dimensional hyperbolic vector space.

Let {p, q} be an homogeneous basis of W such that Ω(p, q) = 1 and let Q ∈ Alt 4 (V ⊗ W ) be the quadrilinear covariant of the -orthogonal representation V ⊗ W . For all v 1 , v 2 , v 3 , v 4 ∈ V we have

Q(v 1 ⊗ p, v 2 ⊗ p, v 3 ⊗ p, v 4 ⊗ p) = Q(v 1 ⊗ q, v 2 ⊗ q, v 3 ⊗ q, v 4 ⊗ q) = 0, Q(v 1 ⊗ p, v 2 ⊗ p, v 3 ⊗ p, v 4 ⊗ q) = Q(v 1 ⊗ p, v 2 ⊗ q, v 3 ⊗ q, v 4 ⊗ q) = 0 and Q(v 1 ⊗ p, v 2 ⊗ p, v 3 ⊗ q, v 4 ⊗ q) = 24 (p, v 2 + v 3 )(v 1 , v 2 )(v 3 , v 4 ) -12 (p, v 3 ) 2 (v 3 , v 4 )(v 1 , v 3 )(v 2 , v 4 ) -12 (p, v 3 + v 4 )(v 2 , v 3 )(v 1 , v 4 ).
6.3 Restriction of the fundamental representation of so (V, ( , )) to gl (V ) and u (V, H)

Let V be a finite-dimensional Γ-graded vector space such that dim(V 0 ) ≡ dim(V 1 ) mod char(k) and let ( , ) be a non-degenerate -symmetric bilinear form on V . Let J ∈ so (V, ( , )) be such that |J| = 0 and J 2 = λId, where λ ∈ k * . Let m := {f ∈ so (V, ( ,

)) | f • J = J • f }.
This is a colour Lie subalgebra of so (V, ( , )).

There exists an -symmetric, ad-invariant and non-degenerate bilinear form B on m such that the moment map of the -quadratic representation ρ : m → so (V, ( , )) satisfies µ(v, w) = µ can (v, w) -1 λ µ can (J(v), J(w)) + 1 λ (J(v), w)J ∀v, w ∈ V.

(38)

This moment map satisfies b) of Proposition 4.8 and then by Theorem 4.11, the representation m → so (V, ( , )) gives rise to a colour Lie algebra of the form

g := m ⊕ sl(2, k) ⊕ V ⊗ k 2 .
The covariant ψ ∈ Alt 3 (V, V ) of the representation m → so (V, ( , )) satisfies: for all v 1 , v 2 , v 3 ∈ V , ψ(v 1 , v 2 , v 3 ) = 3 λ (J(v 1 ), v 2 )J(v 3 ) + (v 1 + v 2 , v 3 )(J(v 3 ), v 1 )J(v 2 ) + (J(v 2 ), v 3 )J(v 1 ) .

• If λ ∈ k * 2 , we have V = W ⊕ W where W (resp. W ) is the eigenspace of J for the eigenvalue √ λ (resp. -√ λ). The colour Lie algebra m is isomorphic to gl (W ) and g is isomorphic to sl (W ⊕ k 2 ) if dim(W 1 ) ≡ dim(W 0 ) -2 mod char(k); gl (W ⊕ k 2 )/Z(gl (W ⊕ k 2 )) otherwise. Remark 6.1. The moment map (38) takes its values in {m, m} if and only if dim(W 1 ) ≡ dim(W 0 ) -2 mod char(k). In that case V is a special -orthogonal representation of the -quadratic colour Lie algebra ({m, m}, B) and the associated colour Lie algebra g is isomorphic to psl (W ⊕ k 2 ) if λ ∈ k * 2 ; psu (W ⊕ k2 , H ⊥ Ω) otherwise.

Definition 1. 14 .

 14 Let I := 1, n and let I 1 , . . . , I m be disjoint subsets of I such that i∈ 1,m I i = I. We denote by S(I 1 , . . . , I m ) the set of all permutations σ ∈ S n which satisfy ∀i ∈ 1, m , a, b ∈ I i and a < b ⇒ σ(a) < σ(b). Such a permutation is called a shuffle permutation. Remark 1.15. a) The cardinal of S(I 1 , . . . , I m ) is given by

Example 1. 27 .

 27 Orthosymplectic representations of Lie superalgebras are examples oforthogonal representations, where Γ = Z 2 and (a, b) = (-1) ab for all a, b ∈ Z 2 . In particular both orthogonal and symplectic representations of Lie algebras are examples of -orthogonal representations.

  ) is satisfied. b) For A, B, C, D ∈ V , we have β(R µ+φ )(A, B, C, D) = R µ+φ (A, B, C, D) + (A, B + C)R µ+φ (B, C, A, D) + (A + B, C)R µ+φ (C, A, B, D) = {{A, B}, C} + (A, B + C){{B, C}, A} + (A + B, C){{C, A}, B}, D = (A, C) (C, A){{A, B}, C} + (A, B){{B, C}, A} + (B, C){{C, A}, B}, D . As we have seen in the proof of the theorem 3.3 we have N B g (µ+φ)(A, B, C, D) = 2 (A, C)( (C, A){{A, B}, C}+ (A, B){{B, C}, A}+ (B, C){{C, A}, B}, D) and so N B g (µ + φ) = 2β(R µ+φ ). c) Follows from Theorem 3.3 and b) above. By Example 3.2, Theorem 3.3 and this proposition, β(R µcan ) = 0. Since Id -1 3 β is the projection onto Ker(β) by Proposition 4.4, it is natural to ask which -orthogonal representations have curvature

  ) )(v σ(11) )) = -9 σ∈S 12 p(σ; v) (v σ(1) + v σ(2) + v σ(3) , v σ(12) ) (v σ(12) , µ(v σ(1) , v σ(2) )(v σ(3) ))(v σ(4) , µ(v σ(5) , v σ(6) )(v σ(7) ))(v σ(8) , µ(v σ(9) , v σ(10) )(v σ(11) )) = -9 σ∈S 12 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))(v σ(5) , µ(v σ(6) , v σ(7) )(v σ(8) ))(v σ(9) , µ(v σ(10) , v σ(11) )(v σ(12) )).

  v 3 , v 4 , v 5 , v 6 , v 7 , v 8 , v 9 , v 10 , v 11 , v 12 ) = 1 8 σ∈S 12 p(σ; v)(v σ(1) , µ(v σ(2) , v σ(3) )(v σ(4) ))(v σ(5) , µ(v σ(6) , v σ(7) )(v σ(8) ))(v σ(9) , µ(v σ(10) , v σ(11) )(v σ(12) )),

•

  If λ / ∈ k * 2 , let k = k( √ λ). We have V ⊗ k = W ⊕ W where W (resp. W ) is the eigenspace of J for the eigenvalue √ λ (resp. -√ λ). The map H : W × W → k defined by H(v, w) := (J(v), w) ∀v, w ∈ Wis an -antihermitian form and the colour Lie algebra m is isomorphic to u (W, H). If we consider the Γ-graded vector space k2 = k 2 ⊗ k k together with the -antihermitian form Ω : k2 × k2 → k defined by -b d ∀a, b, c, d ∈ k, then we have su ( k2 , Ω) ∼ = sl(2, k). The colour Lie algebra g is isomorphic to su (W ⊕ k2 , H ⊥ Ω) if dim(W 1 ) ≡ dim(W 0 ) -2 mod char(k); u (W ⊕ k2 , H ⊥ Ω)/Z(u (W ⊕ k2 , H ⊥ Ω)) otherwise.

  There are group inclusions S |I i | ⊆ S n , for all i ∈ 1, m , where S |I i | acts only on the coordinates
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Throughout this paper, the field k is of characteristic not two or three.

b) The vector space Ker(β) is called the space of formal curvature tensors of V . Proposition 4.4. Let V be a Γ-graded vector space and let R ∈ R(V ). Then 1 3 β(R) is the projection of R onto Alt 4 (V ) parallel to Ker(β).

Proof. Let A, B, C, D ∈ V . We show that β(R) is an -alternating multilinear map. By Remark 1.13 β(R) is -alternating if and only if We now show that, to the data of Theorem 3.3 one can associate an element of R(V ) and interpret the vanishing condition therein in terms of the Bianchi map β. Definition 4.5. Let ρ : g → so (V, ( , )) be a finite-dimensional -orthogonal representation of a finite-dimensional -quadratic colour Lie algebra (g, B g ), let µ ∈ Alt 2 (V, g) be its moment map and let φ ∈ Alt 2 (V, V ) be of degree 0 and satisfy (8) and (9). Let g := g ⊕ V , let B g := B g ⊥ ( , ) and let { , } ∈ Alt 2 (g, g) be the unique map which extends the bracket of g, the action of g on V and such that

Define the multilinear map R µ+φ :