
HAL Id: hal-02289373
https://hal.science/hal-02289373v1

Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model Driven Architecture Framework for Robot
Design and Automatic Code Generation

Anne-Lise Courbis, Kahune Luu, Benjamin Grondin, Kelly Roussel

To cite this version:
Anne-Lise Courbis, Kahune Luu, Benjamin Grondin, Kelly Roussel. A Model Driven Architecture
Framework for Robot Design and Automatic Code Generation. 15th China-Europe International Sym-
posium on Software Engineering Education, May 2019, Lisbon - Caparica, Portugal. �hal-02289373�

https://hal.science/hal-02289373v1
https://hal.archives-ouvertes.fr

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A Model Driven Architecture Framework for Robot

Design and Automatic Code Generation

Anne-Lise Courbis

LGI2P

IMT Mines Ales, Univ. Montpellier

Alès, France
anne-lise.courbis@mines-ales.fr

Kahune Luu

Department of Informatics & Artificial Intelligence

IMT Mines Ales, Univ. Montpellier

Alès, France
kahune.luu@mines-ales.org

Benjamin Grondin

Department of Informatics & Artificial Intelligence

IMT Mines Ales, Univ. Montpellier

Alès, France
benjamin.grondin@mines-ales.org

Kelly Roussel

Department of Informatics & Artificial Intelligence

IMT Mines Ales, Univ. Montpellier

Alès, France
kelly.roussel@mines-ales.org

Abstract— This work presents a research and development

experiment in software engineering at the IMT Mines Ales,

France. The goal is to define a framework allowing a system

controller to be graphically designed and its java code to be

automatically generated. This framework is expected to be a

support for students following the system engineering

curriculum, and who have to program LEGO Mindstorms

EV3 robots although they have not already been trained to

concurrent Java programming. The experimental methodology

focuses on learning and implementing the following

paradigms: model driven design, software architecture for

event driven systems and reactive system programming using

JAVA threads. We present the design framework defined

during this experiment, and the feedback of students who have

been involved in setting up the state of the art and developing

the framework.

Keywords—model driven architecture, embedded system

modelling, system engineering process, state machine modelling,

LEGO Mindstorms EV3, JAVA programming

I. INTRODUCTION

Designing an embedded software for a robot whose
mission requires both remote communications and the
recognition of its environment requires skills about system
engineering, architecture design, behaviour modelling,
concurrent programming and safety property verification.
Such concepts are difficult to learn for students who are
beginners in software or system engineering. The difficulties
come from theoretical concepts and practical ones as well.
The main theoretical concepts are multi component system
engineering, design methods and more precisely the model
driven architecture (MDA) approach, concurrency paradigms
of the software part and system verification to detect for
example deadlocks. Practical difficulties concern the use of
appropriate tools to design such systems starting from their
requirement until their implementation.

An experiment named research & development mission
(R&D Mission) has been conducted at IMT Mines Alès,
France. This pedagogical exercise aims at sensitizing
students to research activities through two parts: the study of
the state of the art and the development of a research issue
conducted by members of the laboratory supporting the
departement curriculum. The students follow a generalist
curriculum of engineering during the first year. They have
been involved for six months in a software engineering
department named Informatics and Artifical Intelligence.

Until now, their knowledge was focusing on the basis of
JAVA programming.

The goal of this experiment is to involve students in

defining and implementing:

 a graphical framework called RMA (robot model-
driven architecture) for designing the configuration of
a LEGO Mindstorms robot [1] and describing their
behaviour from a high level of abstraction and,

 a JAVA code module called RMDA2JAVA for
generating the architecture of the software that will be
embedded in the EV3 module of the robot. In this
first experiment, the architecture is a JAVA code
skeleton decomposed into packages and classes that
has to be completed.

There are several reasons for conducting this experiment
on LEGO Mindstorms EV3 robot. First, it is an actual
motivation for students to discover robot progamming by
using a learn and play method as a means to learn strong
concepts. Furthermore, they feel helpful and responsible
because the developed framework is expected to be used by
other students belonging to System Engineering (SE)
Departement. Indeed, students of the SE Departement are
following a course about complex system design and are
involved in a project consisting in developing and
assembling a robot following the methods and concepts of
the AFIS (French Association for SE) community [2], which
is the French part of the INCOSE [3]. Some of them
participate to the French contest ROBAFIS [4], organized by
the AFIS. Students of the SE Department have few skills in
programming, and are not motivated by JAVA
programming. Using a framework developed by other
students may be a real motivation to learn advanced concepts
in Java and develop suitable controller to be embedded in
their robot.

The paper is divided in five sections, including this
introduction. Section two concerns the study of existing
works about Lego Mindstorms programming using MDA
approach. Section three introduces conceptual requirements
that are fundamental for the framework definition and
implementation. Furthermore, these concepts are required
for students’ training in software engineering. Section four
concerns the implementation of the framework: it points out
how conceptual requirements have been applied by students
for developing the RMDA Framework and what are the
results of this work. An example will illustrate this part in
order to highlight concepts, methods and results. Section five

mailto:kahune.luu@mines-ales.org
mailto:benjamin.grondin@mines-ales.org

will close the article by a discussion about the feedback of
students about this experiment and the strength and weakness
of this pedagogical method. We will also present our
perspectives about the enhancement of the framework.

II. RELATED WORKS

The first part of the R&D Mission performed by students
has consisted in setting up a state of the art of the issue
expressed in the previous part. The time of this part being
quite short, the subject was precise: the use of model-driven
architecture approach for programming LEGO Mindstorms
robots (more precisely the controller part, called EV3 brick),
or eventually other kind of robots, versus conventional
programming techniques such as procedural or object-
oriented programming. The graphical environment of
programming using preset blocks [5] proposed by LEGO
Mindstorms and powered by LabView has been considered
by students, but qualified as irrelevant for applying MDA
approach.

Before starting the study, non familiar concepts have
been defined. Model-Driven Engineering (MDE) is an
approach for software development whereby models are used
as the primary source for documenting, analyzing, designing,
constructing, deploying and maintaining a system [6].

Model-Driven Architecture (MDA): MDA itself is not a
new OMG (Object Management Group) specification but
rather an approach to software development which is
enabled by existing OMG specifications [6]. In the MDA
approach, models are the key elements for expressing user
requirements, designing the target system, documenting its
development, testing and deployment, and finally, enhancing
and upgrading systems.

First feedback of this state of the art is that the model-
driven architecture approach is not such widespread in
robotics controller programming than the object oriented
programming. The study began by searching if such
approach had ever been used in LEGO Mindstorms Robot
programming. LEGO Mindstorms Robots have been
considered for several years as a means to support student
training [7], [8]. In that context, robots are used for education
and unfortunately, MDA approach and independence
regarding technological evolution is not considered as a
priority in tutorials [1]. Different approaches can be
considered [11], such as functions, objects, modules, agents
or components ones.

Despite many works concerning Mindstorms
programming for education purpose, we could identify few
refererences using any model driven. For example, there is a
modelling environment dedicated to EV3 programming [9]
developed by Obeo Designer [10] that offers some facilities
to model robot choregraphy and generate JAVA code, but
from our point of view, this approach mixes concepts of
software engineering that will be explicitely presented in the
next section and does not teach to think system. It is a nice
way for introducing programming but not enough powerful
to learn good practices to future engineers.

Nevertheless, some works are interesting and offer
advice for system architecting and programming. For
example, [8] reveals the pros of developing a platform of
control for the LEGO Mindstorms Robot. Various types of
software architectures are presented in [11], such as
deliberative architecture, subsumption architecture [12] or

hybrid architecture. It also presents the principle of an
architecture with two layers, used in robotics.

We have also studied some references about MDE.
Reference [13] has to be used as a guide considering the
details given about the key points for a good functional
component-oriented program. In the same way, [14] deals
with the application of model-driven engineering to service
robots step by step from Unified Modelling Language
(UML) model to dynamic architecture. The document [15]
describes the structure of a component-oriented program and
the structure of a model-driven software development. The
latter relies on a strong PIM (Platform Independent Model).

Developing a real-time embedded system relies mostly
on concurrent programming. The lesson in [16] has been
useful for learning the multi-threading concept and
controlling concurrency between threads.

We studied also some MDE approach applied to robotics.
Both [17] and [18] detail the code-generation from the model
established and introduce tools to do so. Compared to the
few documents quoted above, [19] brings to light a particular
model-to-text environment, called RobotML. As suggested
in this name, it uses UML diagrams to generate a code.
RobotML is the closest related work we have found. Our
study differentiates from it since LEGO Mindstorms Robot
EV3 is specifically concerned. Another study is presented in
[20] pointing out the interest of MDA. However, this work
does not integrate the architecture design using a specific
domain language and its associated graphical framework.

Finally, we inspired our work from [19], introducing
RobotML as a Domain-Specific language for robotics
application as well as the related work of [21] which focused
on Aibo robot to develop the same kind of approach we want
to implement for Lego MindStorms Robots.

Two previous R&D Missions, developed during the two
last years by students of IMT Mines Alès, have also been
studied for conducting this experiment: [22] is about the
definition of robot behavioural patterns expressed in eFFBD
(Enhanced Functional Flow Block Diagram) and their
transformation in state machines; the other one [23] is about
the implementation of a EV3 controller modelled by a state
machine in JAVA using the LeJOS library [24].

III. CONCEPTUAL REQUIREMENTS FOR DEFINING AND

IMPLEMENTING THE FRAMEWORK RMDA

To develop a component oriented program for coding
LEGO Mindstorms robots, we will carefully follow the five
requirements stated by [13] to avoid architectural erosion.
Moreover, our work will be guided by the work of [14] [26]
to make sure we apply the principle of separation of concerns
and use patterns to manage concurrency. As defined in [15],
our work focuses on the PIM layer in order to remain
independent of the technological platform used for the
software implementation. A PIM is a formal specification of
the structure and function of a system that abstracts away
technical detail [26]. Essential goal of MDA is to derive
value from models and modelling that helps us deal with the
complexity and interdependence of complex systems [27].

This approach presents many advantages as flexible
adaptation to technological evolution, a larger possibility to
reuse parts of the code. This last point is one of the main aim
of our work in order to help developers in coding the robot

not having to write the whole program each time a change of
component is made on the robot.

We focus on MDA through the two following paradigms:

 The separation of concerns and model abstraction,

 The meta modelling and model transformation.

Another paradigm will be presented, since it has been an
actual guideline to define the generic architecture of the
robot and has implied a generic architecture of the controller:

 The Systemic modelling approach [28].

Lastly, the choice for representing the controller
according to an abstract view has been oriented by work
of the research team who has proposed this R&D mission
[25][29]. Indeed, the next step of this project will be to
verify the robot liveness and safety properties through
formal approaches, based on its modelling before statting
its implementation. For this reason, one important
modelling choice is:

 The representation of the controller by a state
machine

We develop these paradigms in the above sections and
for each of them, we point out how it has been applied in the
project.

 Separation of Concerns and Abstraction A.

MDA helps support separation of concerns by enabling
different viewpoints of a system as well as the transformation
between levels of abstraction. It is defined as the essential
characteristics of quality architecture: when concerns are
separated it is possible to deal with, understand and specify
one aspect of a system without undue dependencies on other
aspects. Separation of concerns enables greater agility,
ability to deal with change and a “divide and conquer”
approach to realize a system [27].

Abstraction deals with the concepts of understanding a
system in a more general way; said in more operational
terms, with abstraction one eliminates certain elements from
the defined scope; this may result in introducing a higher
level viewpoint at the expense of removing detail [27].
Abstraction is a powerful way of modelling since details are
postpone to next steps, allowing designer to concentrate on
main finalities of the system. Furthermore, abstraction does
not eliminate the possibility to evaluate some fundamental
properties such as liveness and safety.

In our project, separation of concerns is achieved by
defining an architecture that comes from the SE processes
applied by students from the SE Department. Processes
implied to define models and verify both their consistency
and their traceability all along the project development
through the following steps: user requirements, system
requirements, functional view of the system, logical view,
and finally, the physical view.

In our project, separation of concerns and abstraction are
achieved by applying the following design rules:

 The physical view is designed at a high level as a
general pattern for any robot design. This view
consists in setting up high-level abstraction models
corresponding to the main sub-systems of the robot.
These sub-systems have been defined by considering

Systemic Modelling which is presented in the next
sub-section.

 Each part of the system (component, subsystems) is
seen by its environement as a black box with
provided and required interfaces. Information is
accessible via ports which deliver or provide services
[29].

 Models are broken down in sub-models. These
refinement steps may be validated using formal
methods [25] that ensures the preservation of liveness
and safety properties.

 This modelling approach includes concepts to represent
services and components as primary elements in the robotics
system. As stated in [26], main features for quality of
architectures are high cohesion and loose coupling which
leads to design for change. This is achieved by
implementing the principles of abstraction, separation of
concerns, and information hiding.

 Systemic Modelling B.

Systemic Modelling has been introduced in France by
J.L. Le Moigne[28][30]. His theory comes from two sources:
the structuralism theory from Piaget’s and the cybernetic
theory of N. Wiener. His initial work focused on Information
System, but he developed a so powerful theory, that he
applied it to any complex system. He defined a canonical
form of systems (see Fig. 1) as an interaction of three sub-
systems : Decision System, Information System and
Operating System.

Fig. 1. Interaction between Decision, Information and Operating Systems.

(reproduced from [28])

This point of view has been a guide for our work, both
for supporting designers to model robots at a high abstraction
level, and for architecting the software which will be
generated and uploaded in the EV3 bricks. The Decision
System plays a fundamental role in our project, since it
represents the controller of the robot. So, a special attention
has been carried on for its representation.

The Information system is a representation elaborated by
the system of its environment, according to its mission. It can
be viewed as a memory of its experience and its past events
which have been received or sent. This memory, depending
on the maturity of the system, may be seen as an experience
or an intelligence that may have influence on the Decision
System.

Lastly, the Operating System is the lower level system
that copes with the environment and represents the operative
part of the system allowing actions to be performed, events

to be received or sent, and system to act under the Decision
System control.

 Behavioural Modelling using State Machines C.

State machine formalism belongs to the standard UML. It
is suitable for modelling the controller with respect to MDA
approach for many reasons. First one is that this formalism is
appropriate to model reactive systems that must be aware of
their environment and have to permanently listen incoming
events and react in a proper way.

State machine formalism allows system finality to be
defined at high abstraction level. States represent the system
steps that can be associated to activities during its mission,
even when details are not yet designed. The transitions point
out the evolution of the system triggered by external events
(i.e. operator action through a remote interface, events
coming from another robot, etc.) or internal ones (a red line
has been detected by the color sensor of the robot, the robot
has found an obtsacle). Transitions allow also to define
events sent back by the controller to its environement (inside
the robot or outside). Operating and Decision Systems
communicate through the Information System that is in
charge to manage and store the events exchanged between
the robot and its environment.

Lastly, this formalism allows the abstraction refinement
defined in MDA approach, since states may be again
represented by sub state-machines. This hierarchical design
mechanism is a way to apply refinement of models [29] that
can be formally verified to maintain liveness and safety
properties.

 Meta Modelling and Model Transformation D.

These concepts are key words of MDA. Meta modelling
is a way to define the domain concepts, their relations, and
rules to manipulate them. It is thus a way to structure a
project, and for our project, a support to define requirements
of the framework RMDA. The meta model has 2 advantages:
it allows a textual or graphical language to be defined with
respect to pre-defined domain concepts ; it ensures that
user’s models will conform to meta model.

Furthermore, when the meta model itself conforms to a
meta meta model (such as ecore, proposed by Eclipse
Foundation), the generic modelling tools of Eclipse
Foundation can be reused and applied to specific project, that
saves effort and reduces errors.

Model transformation is also a benefit of the MDA
approach: new models may be automatically generated from
a given meta model to another by highlighting
transformation rules between their concepts. For example,
model transformation into JAVA code is a way to refine a
design model into a low level model, i.e. an executable code
suitable for a given OS. This mechanism again saves effort
and reduces errors.

We explain in the next section how the concepts of MDA
and systemic modelling have been applied to set up the
framework MDA.

IV. IMPLEMENTATION OF THE FRAMEWORK RMDA

The framework RMDA focuses on the design of a robot
to which a mission has been assigned. The second goal is the
generation of the Java code skeleton which, when completed,
will be embedded in the EV3 brick. In this section, we will

not consider the modelling of the environment that is
interacting with the robot. However, its corresponding
representation is defined in a same way than the robot by
defining at a high abstraction level what kind of interactions
may exist between them. The environement may be
considered at a high abstraction as an interface with provided
and required services. In this section, we present three parts
that match with the main steps of our project that are: the
meta modelling of the robot concepts, the textual and
graphical design environment RMDA, and RMDA2JAVA,
the code generator, which again, is based on model
transformation.

 Meta model associated with LEGO Mindstorms Robots A.

The first step that has been done concerns the definition
of the meta model allowing any robot to be designed taking
into account the aforementioned conceptual requirements:
separation of concerns, abstraction and systemic points of
view. We have thus define the robot as being the assembly of
three components corresponding to the Decision System, the
Information system and the Operating System (see Fig.2).
Each of this component has its own ports representing the
physical point of connexion of the robot sub-components. In
order to appreciate the meta model, we first present the
physical parts of LEGO Minstorms robot, available in the
conventional package for ROBAFIS contest. It includes
LEGO pieces allowing the robot to be built up. There are
several kinds of sensors: color, touch, gyroscopic and
ultrasonic, and motors of two kinds: large and medium. The
EV3 brick has a ARM9 CPU with a LINUX system and 64
MB of memory.

Fig. 2. Meta model of a Robot considered as an assembly of three abtract

systems.

The Decision System is modeled by a state machine (see
Fig. 3). For this first experiment, we do not take into account
all features of state machines defined in UML standard [31].
They are restricted to states (including initial and final
states), and transitions composed of a trigger and an action.
We limit the definion of triggers and actions to event
specifications. By this way, the decision system may analyze
the incoming event and, depending on the state of the robot,
the outcoming transition specifies what event has to be sent,
and on which port.

The Operating System is constituted by some sub-
systems that are usually embedded on robots such as a
Moving System, a Grabbing System and a Communication
System (Fig. 4). Moving and Grabbing systems include
motors that are connected through ports to the Decision
System. The communication system is embedded in the EV3
brick and its connexion is not visible by the designer. Several

communication systems are available: wifi, bluetooth or by
wire. Services offered by the Operating System are modeled
by a list of methods belonging to required or offered
interfaces. For example, the moving system may offer
services such as go right, go back, turn right, turn left. These
services will have to be refined according to the number of
motors chosen by the designer and their specification. The
color sensor may use a required interface to send a signal
about a given color recognition.

Fig. 3. Meta model of the Information and Decision Systems.

The Information System is the memory of the robot. It
keeps trace of incoming events of the Decision System and
outgoing events . The link is established in the meta model
through the Event Manager that handles Events which are
linked with Trigger and Action classes associated with
Transitions of the State Machine class.

Fig. 5 points out in a hierarchical view all concepts of the
meta model.

 RMDA, a Graphical Framework for Designing Robots B.

Having defined the meta model, we have to set up the
environment allowing the creation of models associated with
the defined concepts. We made the choice to develop our
framework in the Eclipse environment. By this way, we take
benefit of tools such as EMF (Eclipse Modelling
Framework) or GMF (Graphical Modellig Framework) [32].
The first one offers tools that support designers for creating
models that will, by construction, conform to a given meta
model. The interface allows a modelling class to be selected
and instanciated. Its properties may be assigned by the user
through a tabular textual interface. This is a first way to
create models.

Another way, that is less abstract for the designer is to get
a graphical interface. An interesting project named Sirius
[10] have been developed by Obeo Designer Company
allowing customized graphical editors to be generated. The
generation requires the definition of a meta model and a
description file setting up graphical parameters (icons for
example), construction rules (for linking items for example)
and actions associated with the handling of the classes of the
meta model (verification for example that the system has no
many decision systems).

Fig. 4. Meta model of the Operating System.

Fig. 5. Main classes of the meta model of LEGO Mindstorms.

 This project has been useful for us in order to produce our

framework RMDA. Fig. 6 gives an overview of the process

of RMDA generation by Sirius and its use for creating a

specific model named MyRobot.

Fig. 6. Process for generating RMDA Framework and generating JAVA

code.

Fig. 7. RMDA Framework and MyRobot, a user model.

Fig. 7 gives an overview of the first release of the RMDA

Framework. On the right part, one can see the control
element palette window whose icons are matching the
concepts of the meta model. For instance, at the top there are
: Colour, Touch, Gyro and Ultrasonic Sensors icons. In the
main window, MyRobot has been defined: it is constituted
by three sub-systems, as defined in the conceptual
requirements of section III B. The Decision System is
associated with a state machine, the Operating System is
constituted by two Sensors and a Moving System which has
two Motors, that is conform to the meta model represented in
Fig. 4.

 RMDA2JAVA, the Generator of JAVA code to control C.

LEGO Mindstorm Robots

This last section is the final step of our project, since its
goal is to generate the JAVA code that will be embedded in
the controler of the robot. Again, this generation is based on
a model transformation supported by the Acceleo tool [33].
The generation is performed by a set of rules expressed in the
Acceleo MTL (Model to Text Language) [34] .

There are two steps for generating the final embedded code:

1. Getting the JAVA code of the meta model, that

corresponds to the pre-defined classes of the project.

This part is thus done once, when the meta model is

stable.

2. Getting the JAVA code of the robot for a specific

mission. This part is thus specific to any designed

model.

Fig. 8 shows a part of the Acceleo MTL code allowing the

meta model concepts in relation with motor LEGO

Minstorms concepts to be transformed into JAVA, taking

into account the LeJOS library. As pointed out in Fig. 8,

motors are of two types: MediumMotor or LargeMotor. Let

us precise that for this kind of items, the port is unique and

is automatically created in the generated code.

Fig. 9 points out the JAVA classes that have been

generated and the architecture of the project that conforms to
the systemic decomposition of the system in three sub-
systems: decision, information and operation.

The same kind of rules have been defined in order to
generate the JAVA skeleton of the controler. An interesting
feature of this code is that it offers to the team of design and
development a stable well organized architecture with pre-
defined packages that constitute a guide to complete the
code. Fig. 10 illustrates the JAVA code automatically
generated from the description of MyRobot.

[comment]genAttrClass: template of the body "public class

“ + class.name with the generation of its attributes

[/comment]

[genAttrClass(aMotor)/]

[comment]Generation of the specific attributes for

motors, within the Lejos environment[/comment]

[if (aMotor.name='LargeMotor')]

 EV3LargeRegulatedMotor motor;

[elseif (aMotor.name = 'MediumMotor')]

 EV3MediumRegulatedMotor motor;

[/if]

[comment] Generation of the constructor of the two

subclasses of Motor: MediumMotor and LargeMotor

[/comment]

[if(aMotor.name='MediumMotor' or

 aMotor.name='LargeMotor')]

public [aMotor.name/](ActuatorPort port){

[if (aMotor.name = 'LargeMotor')]

 this.motor = new EV3LargeRegulatedMotor(port);

[elseif (aMotor.name = 'MediumMotor')]

 this.motor = new EV3MediumRegulatedMotor(port);

[/if]

}

[/if]

[comment] Generation of setters and getters for each

attribute of the class[/comment]

[genSetGet(aMotor)/]

Fig. 8. Accelo MTL code for generating JAVA classes corresponding to

RobotMDA meta model (extract)

At the present time, R&D mission is not yet achieved.
The transformation of state machine has not yet been
implemented. However, the pattern of code is defined, since
the first task performed by students has been to learn how to
program a controler in LeJOS environment when it is
modeled by a state machine. They have been trained to
thread programming with event handling, and are thus
prepared for code generation.

Fig. 9. Architecture of the JAVA classes corresponding to the meta model.

V. CONCLUSION: FEEDBACK AND PERSPECTIVES

In this paper, we have described in detail the steps of an
experiment, from conceptual to practical points of view, for
training students at the beginning of their Software
Engineering curriculum. The goal was to learn the model
driven engineering approach and how applying its concepts
in the context of programming LEGO Mindstorms robots.

Fig. 10. The main function automatically generated and corresponding to

MyRobot description.

Even if the project is yet under development, this

experiment is a success from a practical point of view: the
RMDA Framework allows user-oriented models to be
defined. Some enhancements are planned for the end of this
month to complete the graphical modelling of the state
machine associated with the controler and complete the
JAVA generation of the state machine. Let us note that it is
also possible to reuse in the RMDA Framework existing
environments (such as Obeo Designer). This option has not
been chosen for this first step in order to make students
responsible of the entire realization. In the future, we could
plan to have an advanced release of the tool and connect it
with Obeo Designer. The project was also beneficial to
students for learning how programming reactive system
using JAVA threads. This task has been their first practical
training with their LEGO Mindstorms robot. It was
controlled using a remote graphical interface and was
autonomous to stop when obstacles were detected.

Another conclusion of this experiment is that the project

has been a great experience for students to learn, understand
and apply abstract concepts of modelling and meta modelling
that are usually difficult to handle and require times and
experience. They have been trained to take references in
standard specifications such as EMF, GMF and UML. They
have learned how to set up a bibliography and write a paper.

Lastly, this experiment has also been a great experience

for the instructor of the project. Students have been invested
in the project and open to discussion. RMDA Framework can
be again improved. Nevertheless, it will be useful for
students of the System Engineering Department that focus on
the physical architecture design of the robots and behaviour
modelling.

The advantages of MDA versus conventionnal software

development have been often discussed according to two
points of view: reducing the cost of development and
increasing the quality of software [35]. The entire software
community does not agree about these benefits.
Nevertheless, some studies point out that model driven
development yields better quality for softwares having
complex problems to be solved (from functional point of

view) [36]. From our point of view, what has to be expected
from MDA is to support designers for both modelling and
verifying models before their implementation. Modelling
requires to be aware of the precise semantics of modelling
languages, that is lacking at the present time. Models have
not to be considered as sketches of a system but as formal
specifications allowing verifications and code generation.

Future R&D missions will consist at first in completing

the generated software to be uploaded on the robot. That is
achieved by increasing the level of modelling details,
specially in the state machine associated with the Decision
System. This part must be also completed by testing the
robot behaviour in several situations. The second goal will be
to train students in the field of formal verification, which
does not usually attract them. The goal is to set up a bridge
between the RMDA Framework and our current research on
conformance relation verification including liveness and
safety analyses [25, 29]. That means it is better to be sure the
model is correct according its specification before generating
the code.

REFERENCES

[1] LEGO, “LegoMindStorm EV3,” 2019. [Online]. Available:
https://www.lego.com/en-us/mindstorms/products/mindstorms-ev3-
31313.

[2] AFIS, “Association Française de l’Ingénierie Système,” 2019.
[Online]. Available: https://www.afis.fr/pages/accueil.aspx.
[Accessed: 09-May-2019].

[3] INCOSE, “International Council on Systems Engineering Website,”
2019. [Online]. Available: https://www.incose.org/. [Accessed: 09-
May-2019].

[4] AFIS, “L’Ingénierie Système appliquée à la réalisation d’un robot,”
2019. [Online]. Available: http://www.robafis.fr/RobAFIS/

 Bienvenue.html. [Accessed: 09-May-2019].

[5] T. Griffin, The art of LEGO® Mindstorms EV3 programming, No
Starch. No Starch Press, 2014.

[6] F. Truyen, “The fast guide to Model Driven Architecture,” White
Paper, Cephas Consulting Corp., 2006.

[7] E. A. Gandy, S. Bradley, D. Arnold-Brookes, and N. R. Allen, “The
use of LEGO Mindstorms NXT Robots in the Teaching of
Introductory Java Programming to Undergraduate Students,” Innov.
Teach. Learn. Inf. Comput. Sci., vol. 9, no. 1, pp. 2–9, Feb. 2010.

[8] P. J. Bradley, J. A. De La Puente, J. Zamorano, and D. Brosnan, A
platform for real-time control education with LEGO
MINDSTORMS®, vol. 9, no. Part 1. IFAC World Congress, 2012.

[9] J. Dupont and F. Madiot, “Mindstorms Robot Tutorial.” [Online].
Available: https://wiki.eclipse.org/Sirius/Tutorials/Mindstorms.
[Accessed: 09-May-2019].

[10] Obeo Designer, “Eclipse Sirius - Obeo Designer.” [Online].
Available: https://www.obeodesigner.com/en/product/sirius.
[Accessed: 09-May-2019].

[11] R. Passama, D. Andreu, D. Crestani, and K. Godary-dejean,
“Architectures de contrôle pour la robotique - Approches et
tendances,” Tech. l’Ingénieur, vol. 33, no. 0, 2014.

[12] P. Trojanek, “Model-driven engineering approach to Design and
implementation of robot control system,” in International Workshop
on Domain-Specific Languages and models for ROBotic systems,
2011.

[13] L. Fabresse, N. Bouraqadi, C. Dony, and M. Huchard, “A language to
bridge the gap between component-based design and
implementation,” in Computer Languages, Systems and Structures,
vol. 38, no. 1, Elsevier, 2012, pp. 29–43.

[14] D. Thomas, C. Baron, and B. Tondu, “Ingénierie dirigée par les
modèles appliquée à la conception d’un contrôleur de robot de
service,” Idm06, 2006.

[15] C. Schlegel, A. Steck, and A. Lotz, Model-Driven Software
Development in Robotics: Communication Patterns as Key for a
Robotics Component Model. iConcept Press, 2011.

[16] Oracle, “Lesson : Concurrency.” [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/concurrency/.

[17] E. Estévez, A. Sánchez-García, J. Gámez-García, J. Gómez-Ortega,
and S. Satorres-Martínez, A novel model-driven approach to support
development cycle of robotic systems, vol. 82, no. 1–4. IFAC, 2016.

[18] H. Baumeister, F. Hacklinger, R. Hennicker, A. Knapp, and M.
Wirsing, “A Component Model for Architectural Programming,”
Electron. Notes Theor. Comput. Sci., vol. 160, no. 1, pp. 75–96, 2006.

[19] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane,
“RobotML, a Domain-Specific Language to Design , Simulate and
Deploy Robotic Applications,” in SIMPAR’12 Proceedings of the
Third international conference on Simulation, Modeling, and
Programming for Autonomous Robots, 2012, pp. 149–160.

[20] C. Pons, G. Pérez, R. Giandini, and G. Baum, “Applying MDA and
OMG Robotic Specification for Developing Robotic Systems,”
LNCS, vol. 9959, pp. 51–67, 2016.

[21] X. Blanc, J. Delatour, and T. Ziadi, “Benefits of the MDE approach
for the development of embedded and robotic systems Application to
Aibo,” Proc. 2nd Natl. Work. “Control Archit. Robot. from Model. to
Exec. Distrib. Control Archit. CAR. 2007, no. 2, 2007.

[22] M. Alessandro and A. Le, “Etude de patterns de systèmes réactifs à
l’aide d’un LEGO Mindstorms: Dossier de réalisation ,” IMT Mines
Ales, 2017.

[23] F. Matheus Fernandes de Oliveira, “Report Case Study: State
Machine’s implementation methodology using Java and LeJos Ev3,”
IMT Mines Ales, 2018.

[24] LeJOS, “LeJOS, Java for Lego Mindstorms / EV3.” [Online].
Available: http://www.lejos.org/ev3.php. [Accessed: 14-May-2019].

[25] T. Lambolais and A.-L. Courbis, “Development and Verification of
UML Architectures by Refinement and Extension Techniques,” in
European Congress on Embedded Real Time Software and Systems
(ERTS2), 2018.

[26] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer, “Architecture
Means,” in Software Architecture: a Comprehensive Framework and
Guide for Practitioners, Springer S., 2011.

[27] OMG, “OMG Document -- ormsc/14-06-01 (MDA Guide revision
2.0),” 2014. [Online]. Available: https://www.omg.org/cgi-
bin/doc?ormsc/14-06-01. [Accessed: 15-May-2019].

[28] J.-L. Le Moigne, “Formalism of systemic modelling,” in Some
physicochemical and mathematical tools for understanding of living
systems, R. Greppin H., Bonzon , M., Degli Agosti, Ed. University of
Genova, 1993, pp. 367–368.

[29] T. Lambolais, A.-L. Courbis, H.-V. Luong, and C. Percebois, “IDF: A
framework for the incremental development and conformance
verification of UML active primitive components,” J. Syst. Softw.,
vol. 113, pp. 275–295, Mar. 2016.

[30] D. Eriksson, “A principal exposition of Jean-Louis Le Moigne’s
systemic theory,” Cybern. Hum. Knowing, vol. 4, no. 2–3, pp. 33–77,
1997.

[31] OMG, Unified Modeling Language Superstructure 2.2. 2007.

[32] The Eclipse Foundation, “Graphical Modeling Framework (GMF).”
[Online]. Available: https://www.eclipse.org/modeling/gmp/.
[Accessed: 15-May-2019].

[33] Eclipse Foundation, “Eclipse Acceleo.” [Online]. Available:
https://projects.eclipse.org/projects/modeling.m2t.acceleo. [Accessed:
15-May-2019].

[34] Eclipse Foundation, “Eclipse Modeling - M2T.” [Online]. Available:
https://www.eclipse.org/modeling/m2t/?project=acceleo. [Accessed:
15-May-2019].

[35] R. Picek and V. Strahonja, “Model Driven Development - future or
failure of software development,” 18th Int. Conf. Inf. Intell. Syst.,
2007.

[36] J. I. Panach Navarrete, O. Dieste, B. Marin, S. España, S. Vegas, O.
Pastor, N. Juristo, “Evaluating Model-Driven Development Claims
with respect to Quality: A Family of Experiments,” IEEE Trans.
Softw. Eng., December 2018.

