Generalized run-and-turn motions: From bacteria to Levy walks - Archive ouverte HAL Access content directly
Journal Articles Physical Review E Year : 2017

Generalized run-and-turn motions: From bacteria to Levy walks


Swimming bacteria exhibit a repertoire of motility patterns, in which persistent motion is interrupted by turning events. What are the statistical properties of such random walks? If some particular instances have long been studied, the general case where turning times do not follow a Poisson process has remained unsolved. We present a generic extension of the continuous time random walks formalism relying on operators and noncommutative calculus. The approach is first applied to a unimodal model of bacterial motion. We examine the existence of a minimum in velocity correlation function and discuss the maximum of diffusivity at an optimal value of rotational diffusion. The model is then extended to bimodal patterns and includes as particular cases all swimming strategies: run-and-tumble, run-stop, run-reverse and run-reverse-flick. We characterize their velocity correlation functions and investigate how bimodality affects diffusivity. Finally, the wider applicability of the method is illustrated by considering curved trajectories and Lévy walks. Our results are relevant for intermittent motion of living beings, be they swimming micro-organisms or crawling cells.
No file

Dates and versions

hal-02289280 , version 1 (16-09-2019)



Francois Detcheverry. Generalized run-and-turn motions: From bacteria to Levy walks. Physical Review E , 2017, 96, pp.012415. ⟨10.1103/PhysRevE.96.012415⟩. ⟨hal-02289280⟩
33 View
0 Download



Gmail Facebook X LinkedIn More