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Let (X, ω) be a compact Kähler manifold of dimension n and fix 1 ≤ m ≤ n. We prove that the total mass of the complex Hessian measure of ω-m-subharmonic functions is non-decreasing with respect to the singularity type. We then solve complex Hessian equations with prescribed singularity, and prove a Hodge index type inequality for positive currents.

Introduction

Let (X, ω) be a compact Kähler manifold of dimension n and fix an integer m such that 1 ≤ m ≤ n. For convenience we normalize ω by X ω n = 1.

In this paper we study complex Hessian equations of the form (1.1)

(ω + dd c u) m ∧ ω n-m = µ,
where µ is a positive measure, and we want to solve the equation for u in a given singularity class.

The case when m = n (the Monge-Ampère case) has numerous important applications in differential geometry, see [START_REF] Aubin | Équations du type Monge-Ampère sur les variétés kählériennes compactes[END_REF][START_REF] Kołodziej | The complex Monge-Ampère equation[END_REF][START_REF] Yau | On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I[END_REF], to only cite a few. The complex Hessian equation appears in the study of the Fu-Yau equation related to the Strominger system [START_REF] Phong | The Fu-Yau equation with negative slope parameter[END_REF][START_REF] Phong | Fu-Yau Hessian equations[END_REF][START_REF] Phong | On estimates for the Fu-Yau generalization of a Strominger system[END_REF]. It is also motivated by the study of the Calabi problem for HKT-manifolds [START_REF] Alesker | Quaternionic Monge-Ampère equation and Calabi problem for HKTmanifolds[END_REF]. Its real counterpart, the real Hessian equation, was studied intensively with many interesting applications [START_REF] Caffarelli | The Dirichlet problem for nonlinear second-order elliptic equations. III. Functions of the eigenvalues of the Hessian[END_REF][START_REF] Chou | A variational theory of the Hessian equation[END_REF][START_REF] Trudinger | On the Dirichlet problem for Hessian equations[END_REF].

After several attempts [START_REF] Kokarev | Mixed volume forms and a complex equation of Monge-Ampère type on Kähler manifolds of positive curvature[END_REF], [START_REF] Hou | Complex Hessian equation on Kähler manifold[END_REF], [START_REF] Jbilou | Complex Hessian equations on some compact Kähler manifolds[END_REF], the existence of smooth solutions in the smooth case (when µ = e f ω n , for some smooth function f ) was solved [START_REF] Dinew | Liouville and Calabi-Yau type theorems for complex Hessian equations[END_REF] by combining a Liouville type theorem for m-subharmonic functions [START_REF] Dinew | Liouville and Calabi-Yau type theorems for complex Hessian equations[END_REF] and a second order a priori estimate [START_REF] Hou | A second order estimate for complex Hessian equations on a compact Kähler manifold[END_REF]. This idea was recently used in [START_REF] Székelyhidi | Fully non-linear elliptic equations on compact Hermitian manifolds[END_REF], [START_REF] Collins | The Dirichlet problem for the k-Hessian equation on a complex manifold[END_REF] to solve the Dirichlet problem for complex Hessian equations on complex manifolds. Weak solutions were studied in [START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF][START_REF] Dinew | Non standard properties of m-subharmonic functions[END_REF], [START_REF] Gu | The Dirichlet problem for a complex Hessian equation on compact Hermitian manifolds with boundary[END_REF], [START_REF] Kołodziej | Weak solutions of complex Hessian equations on compact Hermitian manifolds[END_REF], [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF][START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF] and many others.

In [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF], we have developed a global potential theory for ω-m-subharmonic functions, solving (1.1) in the full mass class E(X, ω, m). This class consists of functions with very mild singularity, e.g. in case n = m, these have zero Lelong number everywhere. In this paper we extend the study of [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF] to classes of ω-m-sh functions with heavy singularities, inspired by [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | The metric geometry of singularity types[END_REF]. To do this, we first need a monotonicity result which is the first main result of this paper.

Theorem 1.1. Assume that u 1 , ..., u m , v 1 , ..., v m are ω-m-sh functions on X such that u p ≤ v p , for all p ∈ {1, ..., m}. Then

X H m (u 1 , ..., u m ) ≤ X H m (v 1 , ..., v m ).
Here H m (u 1 , ..., u m ) := (ω + dd c u 1 ) ∧ ... ∧ (ω + dd c u m ) ∧ ω n-m is the non-m-polar product; the relevant definitions will be given in Section 2.

For n = m, the above result was conjectured in [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF] in the general context of big cohomology classes, and proved in [START_REF] Nyström | Monotonicity of non-pluripolar Monge-Ampère masses[END_REF]. The approach of [START_REF] Nyström | Monotonicity of non-pluripolar Monge-Ampère masses[END_REF] was recently used in [START_REF] Xia | Integration by parts formula for non-pluripolar product[END_REF] to prove an integration by parts formula. Our proof of Theorem 1.1 uses the monotonicity of the Hessian energy avoiding the geodesic notion which is not yet avaliable in the Hessian setting.

Having the monotonicity result and using recent techniques in [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] we study the complex Hessian equation with prescribed singularities. The second main result is the following: Theorem 1.2. Assume that φ is a ω-m-sh function such that P [φ] = φ. Let µ be a non-mpolar positive measure such that µ(X) = X H m (φ) > 0. Then there exists a unique u ∈ E φ normalized by sup X u = 0, such that H m (u) = µ.

The definition of the envelope P [u], and the relative finite energy class E φ will be given in Section 3.2. One can prove the uniqueness of solution by slightly modifying the proof of S. Dinew in the Monge-Ampère case (see [START_REF] Dinew | Uniqueness in E(X, ω)[END_REF][START_REF] Dinew | Mixed Hessian inequalities and uniqueness in the class E(X, ω, m)[END_REF]), which crucially uses the resolution of the equation. We propose in this paper an alternative proof using the fact that the Hessian measure of the envelope is supported on the contact set. To prove the existence of solutions we use the supersolution method of [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF] as in [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF]: we take the lower envelope of supersolutions. To do so, we need to bound the supersolutions from below. This was done in [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] by establishing a relative L ∞ -estimate which is quite delicate in the Hessian setting due to a lack of integrability of ω-m-subharmonic functions. We overcome this by constructing ω-m-subharmonic subextensions via a complete metric in the space E 1 , inspired by [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF][START_REF] Darvas | Metric geometry of normal Kähler spaces, energy properness, and existence of canonical metrics[END_REF][START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF].

Using the resolution of the complex Hessian equations with prescribed singularity we prove a Hodge-index type inequality for positive closed (1, 1)-currents.

Theorem 1.3. Let u j , j = 1, ..., m be ω-m-subharmonic functions on X. Then The above result generalizes that of [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] which considers the case m = n, and [START_REF] Xiao | Hodge-index type inequalities, hyperbolic polynomials and complex Hessian equations[END_REF] which considers smooth forms. Other directions can also be explored to extend the above result to the case of big cohomology classes. The proof of Theorem 1.3 is an obvious modification of the Monge-Ampère case (see [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF]) given Theorem 1.1 and Theorem 1.2.

Organization of the paper. In Section 2 we recall backgrounds on ω-m-subharmonic functions and the complex Hessian operator. The relative potential theory adapted to the Hessian setting is discussed in Section 3, where we prove Theorem 1.1 in Section 3.1 (Theorem 3.4). We use the metric defined in Section 4 to establish the existence of solutions in Section 5, where Theorem 1.2 is proved (Theorem 5.4). The uniqueness is given a new proof in Section 5.3. Theorem 1.3 is proved in Section 5.5.

Backgrounds

Let (X, ω) be a compact Kähler manifold of dimension n, and fix an integer m such that 1 ≤ m ≤ n.

2.1. ω-m-subharmonic functions. In this section, we recall backgrounds on m-subharmonic functions on domains as well as on compact Kähler manifolds. Many properties of the complex Hessian operator can be proved by easy adaptations of the Monge-Ampère case. More details on several classes of m-subharmonic functions can be found in [START_REF] Błocki | Weak solutions to the complex Hessian equation[END_REF][START_REF] Charabati | Modulus of continuity of solutions to complex Hessian equations[END_REF][START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF][START_REF] Dinew | Liouville and Calabi-Yau type theorems for complex Hessian equations[END_REF][START_REF] Dinew | Mixed Hessian inequalities and uniqueness in the class E(X, ω, m)[END_REF][START_REF] El-Gasmi | The Dirichlet problem for the complex Hessian operator in the class N m (H)[END_REF][START_REF] Gu | The Dirichlet problem for a complex Hessian equation on compact Hermitian manifolds with boundary[END_REF][START_REF] Le | Subextension of m-subharmonic functions[END_REF][START_REF] Li | On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian[END_REF][START_REF] Lu | A variational approach to complex Hessian equations in C n[END_REF][START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF][START_REF] Nguyen | Subsolution theorem for the complex Hessian equation[END_REF][START_REF] Nguyen | Hölder continuous solutions to complex Hessian equations[END_REF][START_REF] Nguyên | Radial symmetric solution of complex Hessian equation in the unit ball[END_REF][START_REF] Sadullaev | Potential theory in the class of m-subharmonic functions[END_REF]] and the references therein.

Fix Ω an open subset of C n and β := dd c ρ a Kähler form in Ω with smooth bounded potential.

Definition 2.1. A function u ∈ C 2 (Ω, R) is called m-subharmonic (m-sh for short) with respect to β if the following inequalities hold in Ω :

(dd c u) k ∧ β n-k ≥ 0, ∀k ∈ {1, ..., m}. Definition 2.2. A function u ∈ L 1 (Ω, R) is called m-subharmonic with respect to β if (1) u is upper semicontinuous in Ω, (2) dd c u ∧ dd c u 2 ∧ ... ∧ dd c u m ∧ β n-m ≥ 0, for all u 2 , ..., u m ∈ C 2 (Ω), m-sh with respect to β, (3) if v ∈ L 1 (Ω) satisfies the above two conditions and u = v a.e. in Ω then u ≤ v.
As observed by Błocki [START_REF] Błocki | Weak solutions to the complex Hessian equation[END_REF], Gårding's inequality [START_REF] Gårding | An inequality for hyperbolic polynomials[END_REF] ensures that the two definitions of m-sh functions above coincide for smooth functions.

Definition 2.3. A function u ∈ L 1 (X, ω n ) is called ω-m-subharmonic (ω-m-sh for short) if, locally in Ω ⊂ X where ω = dd c ρ, u + ρ is m-subharmonic with respect to ω.
The set of all ω-m-sh functions on X is denoted by SH m (X, ω).

The above definition depends heavily on the Kähler form ω. This makes the smooth approximation of ω-m-subharmonic functions quite complicated unless ω is flat. Nevertheless, it was shown in [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF], [START_REF] Kołodziej | Weak solutions of complex Hessian equations on compact Hermitian manifolds[END_REF] using the viscosity theory and an approximation scheme of Berman [START_REF] Berman | From Monge-Ampère equations to envelopes and geodesic rays in the zero temperature limit[END_REF], and in [START_REF] Pliś | The smoothing of m-subharmonic functions[END_REF], [START_REF] Harvey | Smooth approximation of plurisubharmonic functions on almost complex manifolds[END_REF] using the local smooth resolution, that the smooth approximation of m-subharmonic functions is possible. As mentioned in [START_REF] Harvey | Smooth approximation of plurisubharmonic functions on almost complex manifolds[END_REF], the global approximation theorem in [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF] yields the local one. A direct proof of the local approximation property (which is also valid in the Hermitian setting) was given in [START_REF] Gu | The Dirichlet problem for a complex Hessian equation on compact Hermitian manifolds with boundary[END_REF]Theorem 3.18].

Given u, v ∈ SH m (X, ω), we say that u is less singular than v if there exists a constant C such that v ≤ u + C. We say that u has the same singularity as v if there exists a constant

C such that u -C ≤ v ≤ u + C.
In the flat case, Błocki proved in [START_REF] Błocki | Weak solutions to the complex Hessian equation[END_REF] that m-sh functions are in L p for any p < n/(n -m), and conjectured that it holds for p < nm/(n -m). Using the L ∞ estimate due to S. Dinew and Kołodziej, one can prove the same integrability property for ω-m-sh functions, see [START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF], [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]Corollary 6.7].

Complex Hessian operator.

Given bounded ω-m-sh functions u 1 , ..., u m the complex Hessian operator

H m (u 1 , ..., u m ) := (ω + dd c u 1 ) ∧ ... ∧ (ω + dd c u m ) ∧ ω n-m
is defined recursively by following Bedford-Taylor's seminal works [START_REF] Bedford | The Dirichlet problem for a complex Monge-Ampère equation[END_REF][START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF]. This gives a positive Borel measure and H m enjoys many nice convergence properties (see [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF], [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF], [START_REF] Gu | The Dirichlet problem for a complex Hessian equation on compact Hermitian manifolds with boundary[END_REF]). When u 1 = ... = u m = u we simply denote the m-Hessian measure of u by H m (u).

By plurifine locality (see [START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF][START_REF] Dinew | Liouville and Calabi-Yau type theorems for complex Hessian equations[END_REF][START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF][START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]) we have the following property:

1 U H m (max(u 1 , v 1 ), ..., max(u m , v m )) = 1 U H m (u 1 , ..., u m ),
where u 1 , .., u m , v 1 , ..., v m are bounded ω-m-sh functions, and

U := ∩ m j=1 {u j > v j }. For a Borel set E ⊂ X we define Cap m (E) := sup E H m (u) | u ∈ SH m (X, ω), -1 ≤ u ≤ 0 .
A sequence of functions u j converges in capacity to u if for all ε > 0,

lim j→+∞ Cap m (|u j -u| > ε) = 0.
Given u 1 , ..., u m ∈ SH m (X, ω), not necessarily bounded, and s > t we have

1 U s H m (u t 1 , ..., u t m ) = 1 U s H m (u s 1 , ..., u s m
), where U s := ∩ m p=1 {u p > -s} and u s := max(u, -s). It thus follows that the family of positive measures

1 U s H m (u s 1 , ..., u s m ) is increasing in s, allowing to define H m (u 1 , ..., u m ) := lim s→+∞ 1 U s H m (u s 1 , ..., u s m ).
When u 1 = ... = u m = u we simply denote the Hessian measure H m (u, u, ..., u) by H m (u).

An application of the Stokes theorem gives

0 ≤ X H m (u) ≤ 1. A Borel set E is called m-polar (with respect to ω) if there exists u ∈ SH m (X, ω) such that E ⊂ {u = -∞}. Lemma 2.4. The positive measure H k (u) does not charge m-polar sets. Proof. If v ∈ SH m (X, ω) is bounded then (2ω + dd c v) m ∧ (2ω) n-m
vanishes on m-polar sets (see [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF][START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]). Since

(2ω + dd c v) m ∧ ω n-m = m k=0 m k H k (v),
it follows that H k (v) also vanishes on m-polar sets for k = 1, ..., m. Each H k (u j ) does not charge m-polar sets because u j := max(u, -j) is bounded. Since H k (u) is the strong limit of 1 {u>-j} H k (u j ) it follows that H k (u) vanishes on m-polar sets.

Definition 2.5. A Borel set E ⊂ X is called quasi-open (quasi-closed) if for each ε > 0, there exists an open (closed) set U such that Cap m ((E \ U ) ∪ (U \ E)) < ε.
Since ω-m-sh functions are quasi-continuous, see [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF], the sets of the form ∩ N j=1 {u j > v j }, where u j , v j are ω-m-sh functions, are quasi-open, while the corresponding sets with ≥ sign are quasi-closed.

Theorem 2.6. Assume that u j 1 , ..., u j m are sequences of ω-m-sh functions which are uniformly bounded. If u j p converges in m-capacity to u p ∈ SH m (X, ω), for all p = 1, ..., m, then

lim inf j E H m (u j 1 , ..., u j m ) ≥ E H m (u 1 , ..., u m ),
for all quasi-open set E, and

lim sup j K H m (u j 1 , ..., u j m ) ≤ K H m (u 1 , ..., u m ),
for all quasi-closed set K.

The proof of the above theorem is an obvious modification of the Monge-Ampère case, see [START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF], [START_REF] Darvas | On the singularity type of full mass currents in big cohomology classes[END_REF]Corollary 2.9].

The following result, called the plurifine locality, will be used several times in this paper.

Lemma 2.7. Assume that u 1 , ..., u m , v 1 , ..., v m are ω-m-sh functions on X and Ω ⊂ X is a quasi-open set such that u p = v p on Ω, for p = 1, ..., m. Then

1 Ω H m (u 1 , ..., u m ) = 1 Ω H m (v 1 , ..., v m ).
Proof. The proof for bounded functions is classical, see [START_REF] Bedford | Fine topology, Šilov boundary, and (dd c ) n[END_REF]Corollary 4.3] and the discussion in [9, Section 1.2]. For convenience we repeat it here. For ε > 0 set w ε p := max(u p + ε, v p ), w p := max(u p , v p ). Then Ω ⊂ ∩ m p=1 {u p + ε > v p }, hence by the pluripotential maximum principle (see [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF]Theorem 3.14], [START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF]Theorem 3.27]),

1 Ω H m (w ε 1 , ..., w ε m ) = 1 Ω H m (u 1 , ..., u m ).
Since Ω is quasi open and the functions u p , v p are uniformly bounded, letting ε → 0 + we obtain

1 Ω H m (w 1 , ..., w m ) ≤ 1 Ω H m (u 1 , ..., u m ). For a fixed compact subset K Ω we have

1 K H m (w ε 1 , ..., w ε m ) = 1 K H m (u 1 , ..., u m ). Letting ε → 0 + we arrive at 1 K H m (w 1 , ..., w m ) ≥ 1 K H m (u 1 , ..., u m ).
Since the Hessian measure H m (u 1 , ..., u m ) is inner regular, we can conclude that

1 Ω H m (w 1 , ..., w m ) = 1 Ω H m (u 1 , ..., u m ).
Changing the role of u p and v p we obtain the result for bounded functions.

For the general case we set u t p := max(u p , -t), for t > 0. From the previous step we have

1 Ω 1 U t H m (u t 1 , ..., u t m ) = 1 Ω 1 V t H m (v t 1 , ..., v t m )
, where U t := ∩ m p=1 {u p > -t}, V t := ∩ m p=1 {v p > -t}. Now, we let t → +∞ to conclude the proof.

Corollary 2.8. Assume that u 1 , ..., u m , v 1 , ..., v m are ω-m-sh on X. Then

1 Ω H m (max(u 1 , v 1 )..., max(u m , v m )) = 1 Ω H m (u 1 , ..., u m ),
where

Ω := ∩ m p=1 {u p > v p }. Lemma 2.9. If u, v ∈ SH m (X, ω) then H m (max(u, v)) ≥ 1 {u>v} H m (u) + 1 {u≤v} H m (v). Proof. For t > 0 set u t := max(u, -t), v t := max(v, -t), φ t := max(u t , v t ). Then H m (φ t ) ≥ 1 {u t >v t } H m (u t ) + 1 {u t ≤v t } H m (v t ).
Multiplying both sides with 1 U t , where U t := {min(u, v) > -t}, and using Lemma 2.7, we obtain

1 U t H m (φ) = 1 U t H m (φ t ) ≥ 1 U t 1 {u>v} H m (u) + 1 U t 1 {u≤v} H m (v).
Letting t → +∞ we arrive at the conclusion.

Proposition 2.10. If u, v ∈ SH m (X, ω) and u ≤ v, then

1 {u=v} H m (u) ≤ 1 {u=v} H m (v).
Intuitively, v can be thought of as an upper test function for u on the contact set {u = v}, see [START_REF] Eyssidieux | Viscosity solutions to degenerate complex Monge-Ampère equations[END_REF][START_REF] Lu | Viscosity solutions to complex Hessian equations[END_REF] for more details on the viscosity theory.

Proof. We first assume that u, v are bounded. For ε > 0 set u ε := max(u, v -ε). By Lemma 2.9 we have

1 {u=v} H m (u ε ) ≥ 1 {u=v} 1 {u≥v-ε} H m (u) ≥ 1 {u=v} H m (u).
Since the set {u = v} is quasi-closed, and u ε is uniformly bounded, we can invoke Theorem 2.6 to get

1 {u=v} H m (v) ≥ lim sup ε→0 1 {u=v} H m (u ε ) ≥ 1 {u=v} H m (u).
To treat the general case we set

u t := max(u, -t), v t := max(v, -t), U t := {u > -t}.
The first step gives where Σ is the set of all maps σ : {1, ..., m} → {1, ..., m}.

1 U t 1 {u t =v t } H m (v t ) ≥ 1 U t 1 {u t =v t } H m (u t
Proof. Fix C > 0 and set

U C := ∩ m p=1 {u p > -C}, φ := m p=1 t p u p , φ C := max(φ, -C).
Then φ > -C on U C , hence by Lemma 2.7 we have

1 U C H m (φ) = 1 U C H m m p=1 t p u C p = 1 U C σ∈Σ t σ(1) ...t σ(m) H m (u C σ(1) , ..., u C σ(m) ) = 1 U C σ∈Σ t σ(1) ...t σ(m) H m (u σ(1) , ..., u σ(m) ).
Letting C → +∞ we arrive at the conclusion.

Lemma 2.12 (Mixed Hessian inequality). Assume that µ is a non-m-polar positive measure and f 1 , ..., f m are in

L 1 (X, µ). If u 1 , ..., u m ∈ SH m (X, ω) satisfy H m (u p ) ≥ f p µ, p = 1, ..., m then H m (u 1 , ..., u m ) ≥ (f 1 ...f m ) 1/m µ.
Proof. Having the mixed Hessian inequality for bounded ω-m-sh functions [START_REF] Dinew | Mixed Hessian inequalities and uniqueness in the class E(X, ω, m)[END_REF], the proof of the lemma is identical to that of [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF]Proposition 1.11].

2.3. Finite energy classes. The class E (X, ω, m) consists of functions u ∈ SH m (X, ω) such that X H m (u) = 1. The class E 1 (X, ω, m) consists of u ∈ E (X, ω, m) such that X |u|H m (u) < +∞.
To ease the notations, we will occasionally denote these classes by E ,

E 1 . The Hessian energy of u ∈ SH m (X, ω) ∩ L ∞ (X) is defined by: E m (u) := 1 m + 1 m k=0 X uH k (u).
When (ω, m) is fixed we will simply denote this functional by E.

The following result is well-known in the Monge-Ampère case and the proof can be adapted in an obvious way to the Hessian setting, see [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF].

Proposition 2.13. Suppose u, v ∈ SH m (X, ω) ∩ L ∞ (X). The following hold: (i) E(u) -E(v) = 1 m+1 n k=0 X (u -v)ω k u ∧ ω m-k v ∧ ω n-m .
(ii) E is non-decreasing and concave along affine curves. Additionally, the following estimates hold:

X (u -v)H m (u) ≤ E(u) -E(v) ≤ X (u -v)H m (v). (iii) If v ≤ u then, 1 m+1 X (u -v)H m (v) ≤ E(u) -E(v) ≤ X (u -v)H m (v). In particular, E(v) ≤ E(u). One can thus extend E to SH m (X, ω) by E(u) := inf{E(v) | v ∈ SH m (X, ω) ∩ L ∞ , v ≥ u}. A function u ∈ SH m (X, ω) belongs to E 1 iff E(u) > -∞.
Following [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF][START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF] we introduce the functional I 1

I 1 (u, v) := X |u -v| (H m (u) + H m (v)) . Proposition 2.14. Assume that u j ∈ E 1 is a monotone sequence converging to u ∈ E 1 . Then I 1 (u j , u) → 0 and E(u j ) → E(u).
Proof. The proof is an obvious modification of the Monge-Ampère case, see e.g. [START_REF] Boucksom | Monge-Ampère equations in big cohomology classes[END_REF], [19, Proposition 2.7].

Relative Potential Theory

3.1. Monotonicity of the complex Hessian mass. In this section we extend the monotonicity results of [START_REF] Nyström | Monotonicity of non-pluripolar Monge-Ampère masses[END_REF], [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF] to the Hessian cases m < n. The proof is new in the Monge-Ampère case.

Recall that we normalize ω such that X ω n = 1. We first establish the following slope formula:

Lemma 3.1. For any u ∈ SH m (X, ω) we have lim s→+∞ E(max(u, -s)) s = -1 + 1 m + 1 m k=0 X H k (u).
Proof. We set u s := max(u, -s) and compute

(m + 1)E(u s ) s = m k=0 {u>-s} u s H k (u s ) - m k=0 {u≤-s} H k (u s ).
We note that, by the Lemma 2.7,

1 {u>-s} H k (u s ) = 1 {u>-s} H k (u).
Thus we can continue the above computation to write

(3.1) (m + 1)E(u s ) s = m k=0 {u>-s} u s H k (u) - m k=0 {u≤-s} H k (u s ).
The functions 1 {u>-s} u s are uniformly bounded and converge to 0 outside the m-polar set {u = -∞}. Since H k (u) does not charge m-polar sets, we see that

(3.2) lim s→+∞ m k=0 {u>-s} u s H k (u) = 0. Since u s is bounded, by Stokes theorem we have X H k (u s ) = X ω n = 1. It thus follows from Lemma 2.7 that 1 = X H k (u s ) = {u>-s} H k (u s ) + {u≤-s} H k (u s ) = {u>-s} H k (u) + {u≤-s} H k (u s ).
Summing up the above equalities for k = 0, ..., m we arrive at

m + 1 = m k=0 {u>-s} H k (u) + m k=0 {u≤-s} H k (u s ).
Letting s → +∞ we obtain

m + 1 = m k=0 X H k (u) + lim s→+∞ m k=0 {u≤-s} H k (u s ).
From this, (3.1), and (3.2) we obtain the result.

Proposition 3.2. Let u, v ∈ SH m (X, ω), and assume that there exists a constant

C ∈ R such that v -C ≤ u ≤ v + C on X. Then X H k (u) = X H k (v), ∀k ∈ {0, ..., m}.
Proof. Fix 1 ≤ l ≤ m, and observe that SH m (X, ω) ⊂ SH l (X, ω). For each s > 0 set u s := max(u, -s). By assumption we have

v s -C ≤ u s ≤ v s + C.
Hence, the monotonicity of the energy E l [50, Lemma 6.3] gives, for all s > 0,

E l (v s ) -C s ≤ E l (u s ) s ≤ E l (v s ) + C s .
Letting s → +∞ and using Lemma 3.1 we obtain the following equalities

l k=0 X H k (u) = l k=0 X H k (v), l = 1, ..., m,
which imply the result.

Theorem 3.3. Assume that u j 1 , ..., u j m are sequences of ω-m-sh functions converging in mcapacity to ω-m-sh functions u 1 , ..., u m . Let χ j be a sequence of positive uniformly bounded quasi-continuous functions which converges in capacity to χ. Then,

lim inf j→+∞ X χ j H m (u j 1 , ..., u j m ) ≥ X χH m (u 1 , ..., u m ). In particular, if Ω ⊂ X is a quasi-open set then lim inf j→+∞ Ω H m (u j 1 , ..., u j m ) ≥ Ω H m (u 1 , ..., u m ).
Proof. We borrow the ideas of [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF]. Fix C > 0, ε > 0, and set

U j C := ∩ m p=1 {u j p > -C}, f j C,ε := m p=1 max(u j p + C, 0) max(u j p + C, 0) + ε . Observe that 0 ≤ f j C,ε ≤ 1 and f j C,ε vanishes outside U j C . We thus have lim inf j→+∞ X χ j H m (u j 1 , ..., u j m ) ≥ lim inf j→+∞ U j C χ j H m (u j 1 , ..., u j m ) = lim inf j→+∞ U j C χ j H m (max(u j 1 , -C), ..., max(u j m , -C)) ≥ lim inf j→+∞ X χ j f j C,ε H m (max(u j 1 , -C), ..., max(u j m , -C)),
where in the second line we have used the plurifine locality. For fixed C > 0 the functions max(u j p , -C) are uniformly bounded, hence we can use [47, Proposition 3.12], which is a direct adaptation of the case m = n, to continue the above inequality in the following way

lim inf j→+∞ X χ j H m (u j 1 , ..., u j m ) ≥ X χf C,ε H m (max(u 1 , -C), ..., max(u m , -C)) ≥ U C χf C,ε H m (max(u 1 , -C), ..., max(u m , -C)) ≥ U C χf C,ε H m (u 1 , ..., u m ).
In the last line above we have used Lemma 2.7. We now let ε → 0 and then C → +∞ to conclude the proof of the first statement.

To prove the last statement we follow the lines above with χ j = 1, X replaced by Ω, and we use Theorem 2.6.

We are now in the position to prove the main result of this section. Theorem 3.4. Let u 1 , ..., u m , v 1 , ..., v m ∈ SH m (X, ω) and assume that u j is more singular than v j for all j.

Then X H m (u 1 , ..., u m ) ≤ X H m (v 1 , ..., v m ).
Proof. We first assume that u p has the same singularity as v p for all p = 1, ..., m. For t = (t 1 , ..., t m ) ∈ [0, 1] m with m p=1 t p = 1, we set

φ t := m p=1 t p u p , ψ t := m p=1 t p v p .
Then φ t , ψ t ∈ SH m (X, ω) have the same singularity. It thus follows from Proposition 3.2 that

X H m (φ t ) = X H m (ψ t ).
From this and Lemma 2.11 we obtain an equality between two polynomials in (t 1 , ..., t m ).

Identifying the coefficients we obtain

X H m (u 1 , ..., u m ) = X H m (v 1 , ..., v m ).
To treat the general case we define, for C > 0, w C p := max(u p , v p -C). Then the previous step yields

X H m (w C 1 , ..., w C m ) = X H m (v 1 , ..., v m ).
Letting C → +∞ and using Theorem 3.3 we arrive at the conclusion.

As shown in Theorem 3.3, the (non-m-polar) Hessian measure is lower semicontinuous along sequences converging in m-capacity. We give below sufficient conditions for the convergence.

Corollary 3.5. Assume that u j 1 , ..., u j m are sequences of ω-m-sh functions which increase a.e. to ω-m-sh functions u 1 , ..., u m . Then

H m (u j 1 , ..., u j m ) → H m (u 1 , ..., u m ) weakly in the sense of measures.
Proof. It is a direct consequence of Theorem 3.4 and Theorem 3.3. Indeed, from Theorem 3.4 we have that lim sup j X H m (u j 1 , ..., u j m ) ≤ X H m (u 1 , ..., u m ), and from Theorem 3.3 we have that any cluster point ν of the sequence of positive measures

H m (u j 1 , ..., u j m ) is greater than H m (u 1 , ..., u m ). But ν(X) ≤ X H m (u 1 , ..., u m ), hence we have equality ν = H m (u 1 , ..., u m ).
Lemma 3.6. Let µ be a positive measure vanishing on m-polar sets. Then there exists a continuous function f : [0, +∞) → [0, +∞) such that, for all Borel set E,

µ(E) ≤ f (Cap m (E)).
Proof. The proof is an easy adaptation of [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF]. We repeat this argument here for the reader's convenience. It follows from [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]Theorem 1.3] that there exists ψ ∈ E such that sup X ψ = 0 and µ = CH m (ψ), for some positive constant C.

Let E ⊂ X be a Borel set such that Cap m (E) > 0. For t > 1 we have

µ(E ∩ {ψ > -t}) = C E H m (max(ψ, -t)) ≤ Ct m Cap m (E). Let χ : (-∞, 0) → (-∞, 0) be a convex increasing function such that χ(-∞) = -∞ and C 1 := X |χ(ψ)|dµ < +∞. For t > 1 we have µ(ψ ≤ -t) ≤ 1 |χ(-t)| X |χ(ψ)|dµ = C 1 |χ(-t)| .
Choosing t such that t m+1 = max(Cap m (E) -1 , 1), we finish the proof of the lemma.

Theorem 3.7. Assume that u j ∈ SH m (X, ω) decreases to u ∈ SH m (X, ω). If there exists a non-m-polar positive measure µ such that

H m (u j ) ≤ µ, ∀j,
then H m (u j ) weakly converges to H m (u).

Proof. By Theorem 3.3 we have that H m (u) ≤ µ and it remains to prove the convergence of the total mass. We can assume that sup X u j = sup X u = 0. For a function v and a constant t we set v t := max(v, -t). For all t > 0 we have

µ(u ≤ -t) ≤ f (Cap m (u ≤ -t)) ,
where f is the continuous function in Lemma 3.6. By continuity of f we have

lim t→+∞ f (Cap m (u ≤ -t)) = 0.
Therefore, fixing ε > 0, for t > 0 large enough we have

{u≤-t} H m (u j ) ≤ µ(u ≤ -t) ≤ f (Cap m (u ≤ -t)) ≤ ε, ∀j.
Thus, for fixed s > t we have

X H m (u j ) ≤ {u≥-t} H m (u j ) + ε ≤ {u≥-t} H m (u s j ) + ε.
Here, we use Lemma 2.7 and the assumption that u j ≥ u to have that

1 {u>-s} H m (u j ) = 1 {u>-s} H m (u s j ), hence {u≥-t} H m (u j ) = {u≥-t} 1 {u>-s} H m (u j ) = {u≥-t} 1 {u>-s} H m (u s j ) = {u≥-t} H m (u s j ).
Since {u ≥ -t} is quasi compact and u s j are uniformly bounded, letting j → +∞ we obtain

lim sup j X H m (u j ) ≤ {u≥-t} H m (u s ) + ε = {u≥-t} H m (u) + ε.
Letting t → +∞, and then ε → 0 we arrive at the conclusion.

Having the monotonicity theorem in hand most of the pluripotential tools in [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] can be adapted directly to the Hessian setting. Since the references [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] are quite recent, we give the full details.

Envelopes.

Let f be a function on X. We define

P (ω,m) (f ) := (sup{u | u ∈ SH m (X, ω), u ≤ f }) * ,
where the * operator means the upper semicontinuous regularization. Following [START_REF] Ross | Analytic test configurations and geodesic rays[END_REF], [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] we define

P (ω,m) [f ] := lim C→+∞ P (ω,m) (min(f + C, 0)) * .
If (ω, m) is fixed we will simply denote these envelopes by P (f ) and P [f ]. For u 1 , ..., u N ∈ SH m (X, ω) we denote P (u 1 , ..., u N ) := P (min(u 1 , ..., u N )).

Lemma 3.8. If u 1 , ..., u m , v 1 , ..., v m ∈ SH m (X, ω) satisfy P [u p ] = P [v p ], for all p, then X H m (u 1 , ..., u m ) = X H m (v 1 , ..., v m ).
Proof. For each C > 0 P (u j + C, 0) has the same singularity as u j , hence by Theorem 3.4,

X H m (u 1 , ..., u m ) = X H m (P (u 1 + C, 0), ..., P (u m + C, 0)).
Letting C → +∞, Corollary 3.5 ensures that

X H m (u 1 , ..., u m ) = X H m (P [u 1 ], ..., P [u m ]).
The same arguments apply for v 1 , ..., v m , yielding the result.

Lemma 3.9. If u, v ∈ SH m (X, ω) and t ∈ (0, 1) then

P [tu + (1 -t)v] ≥ tP [u] + (1 -t)P [v].
Proof. For each C > 0 we have that tP (u + C, 0) + (1 -t)P (v + C, 0) is ω-m-sh and it is smaller than min(tu + (1 -t)v + C, 0). Thus Here, the function f = aϕ -bψ is well-defined in the complement of a pluripolar set and the inequality u ≤ aϕ -bψ, for u ∈ SH m (X, ω), means u + bψ ≤ aϕ on X.

P (tu + (1 -t)v + C, 0) ≥ tP (u + C, 0) + (1 -t)P (v + C, 0),
Proof. We first assume that ϕ is continuous. Then P (f ) is bounded. Let ψ j be a sequence of continuous ω-m-sh functions decreasing to ψ and set f j := aϕ -bψ j , u j = P (f j ). By [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF] we have X min(f j -u j , 1)H m (u j ) = 0, ∀j. By the above equality we also have that H m (u) vanishes in {u < f }.

We now treat the general case. Let ϕ j be a sequence of continuous ω-m-sh functions decreasing to ϕ and set f j := aϕ j -bψ. Then P (f j ) P (f ). From the first step we have X min(f j -P (f j ), 1)H m (P (f j )) = 0, ∀j.

Letting j → +∞ and using Theorem 3.3 we arrive at the conclusion.

From Proposition 3.10 and Proposition 2.10 we obtain the following :

Corollary 3.11. Let u, v ∈ SH m (X, ω) be such that P (u, v) ∈ SH m (X, ω). Then H m (P (u, v)) ≤ 1 {P (u,v)=u} H m (u) + 1 {P (u,v)=v} H m (v).
In particular, H m (P

[u]) ≤ 1 {P [u]=0} ω n . Finally, if H m (u) ≤ µ and H m (v) ≤ µ, for a non-m- polar positive measure µ, then H m (P [u, v]) ≤ µ. Definition 3.12. A function φ ∈ SH m (X, ω) is a model potential if X H m (φ) > 0 and P [φ] = φ.
Given a model potential φ, the class E φ := E φ (X, ω, m) consists of functions u ∈ SH m (X, ω) such that u is more singular than φ and X H m (u) = X H m (φ).

Comparison principle.

Theorem 3.13. Let φ 2 , ..., φ m , u, v ∈ SH m (X, ω) and assume that P

[u] ≥ P [v]. Then {u<v} H m (v, φ 2 , ..., φ m ) ≤ {u<v} H m (u, φ 2 , ..., φ m ). Proof. Fix ε > 0 and set v ε := max(v -ε, u). Then P [v ε ] = P [u], hence by Lemma 3.8 we have X H m (v ε , φ 2 , ..., φ m ) = X H m (u, φ 2 , ..., φ m ).
By Lemma 2.7 we also have

X H m (v ε , φ 2 , ..., φ m ) ≥ {u>v-ε} H m (u, φ 2 , ..., φ m ) + {u<v-ε} H m (v, φ 2 , ..., φ m ).

Comparing these we arrive at

{u<v-ε} H m (v, φ 2 , ..., φ m ) ≤ {u≤v-ε} H m (u, φ 2 , ..., φ m ).
Letting ε → 0 + we obtain the result.

Domination principle.

Lemma 3.14. Assume that u ∈ SH m (X, ω) and X H m (u) > 0. If E ⊂ X is a Borel set such that E ω n > 0 then there exists v ∈ SH m (X, ω) such that v has the same singularity as u and

E H m (v) > 0. Proof. Let φ ∈ SH m (X, ω) ∩ L ∞ (X) be such that H m (φ) = c1 E ω n , where c > 0 is a normal- ization constant. For t > 0 set u t := P (min(u + t, φ)). Corollary 3.11 gives X\E H m (u t ) ≤ X\E 1 {ut=u+t} H m (u) ≤ {u≤φ-t} H m (u).
Thus, for t > 0 large enough we have X\E H m (u t ) < X H m (u) = X H m (u t ), where the last equality follows from Theorem 3.4 since u t has the same singularity as u. For such t we thus have E H m (u t ) > 0, finishing the proof. Theorem 3.15. Assume that u, v ∈ SH m (X, ω) and u is less singular than v.

If {u<v} H m (u) = 0 and X H m (u) > 0 then u ≥ v.
Proof. Assume by contradiction that E := {u < v} is not empty. Then E ω n > 0 and hence Lemma 3.14 provides us with h ∈ SH m (X, ω) having the same singularity as u such that E H m (h) > 0. We can assume that h ≤ u. For t ∈ (0, 1) set v t := th + (1 -t)v. Then E t := {u < v t } ⊂ E and ∪E t = E. Hence for t small enough we have Et H m (h) > 0. But the comparison principle gives

t m Et H m (h) ≤ Et H m (v t ) ≤ Et H m (u) = 0, which is a contradiction. Corollary 3.16. If φ is a model potential then u ∈ E φ iff P [u] = φ.
Proof. If u ∈ E φ then the domination principle, Theorem 3.15, gives P [u] = φ. Assume now that P [u] = φ. Since P [u] is the increasing limit of P (min(u + t, 0)) The reverse inequality follows directly from the definition.

as t → +∞, Theorem 3.3 gives X H m (u) = X H m (P [u]), hence u ∈ E φ . Corollary 3.17. If φ is a model potential and u ∈ E φ then u -sup X u ≤ φ. Lemma 3.18. If u, v ∈ SH m (X, ω) and P (u, v) ∈ SH m (X, ω) then P [min(u, v)] = P [P (u, v)].
3.5. Strongly m-positive currents. We borrow the idea in [START_REF] Darvas | The metric geometry of singularity types[END_REF].

Theorem 3.19. Assume that b > 1, u, v ∈ SH m (X, ω), u ≤ v, and X H m (v) > b m X H m (v) - X H m (u) . Then P (bu -(b -1)v) ∈ SH m (X, ω).
If v = 0 and X H m (u) > 0 then by the above result there exists b > 1 such that P (bu) ∈ SH m (X, ω). Therefore b -1 P (bu) is a strongly ω-m-sh function lying below u. This will be used in proving the existence of solutions to complex Hessian equations with prescribed singularity.

Proof. We can assume that P [v] = v.

For t > 0 set u t := max(u, v -t), ϕ t := P (bu t -(b -1)v) ∈ SH m (X, ω), and D := {ϕ t = bu t -(b -1)v}. Then b -1 ϕ t + (1 -b -1 )v ≤ u t with equality on D, hence Proposition 2.10 gives

1 D b -m H m (ϕ t ) ≤ 1 D H m (b -1 ϕ t + (1 -b -1 )v) ≤ 1 D H m (u t ).
Fix s < t. By the above inequality and Proposition 3.10 we have

{ϕt≤v-bs} H m (ϕ t ) ≤ b m {but≤bv-bs} H m (u t ) = b m {u≤v-s} H m (u t ) = b m X H m (v) - {u>v-s} H m (u t ) = b m X H m (v) - {u>v-s} H m (u) ,
where in the last line we use Lemma 2.7.

We want to prove that ϕ t decreases to some ω-m-subharmonic function on X. Assume by contradiction that it is not the case. Then sup X ϕ t decreases to -∞. Since v = P [v], by Corollary 3.17 we have ϕ t ≤ v + sup X ϕ t . Thus, for s > 0 fixed and for t large enough {ϕ t ≤ v -s} = X. Fixing s > 0 and letting t → +∞ we obtain

X H m (v) ≤ b m X H m (v) - {u>-s} H m (u) .
Now, letting s → +∞ we obtain a contradiction with the assumption.

Corollary 3.20. Assume that u, v ∈ SH m (X, ω), P [u] = P [v] and X H m (v) > 0. Then for all b > 1, P (bu -(b -1)v) ∈ E P [v] .
Proof. We can assume that u, v ≤ 0. Then u ≤ P

[u] = P [v]. Fix b > 1. We first observe that P (bu -(b -1)P [v]) ∈ SH m (X, ω) as follows from Theorem 3.19. Hence P (bu -(b -1)v) ∈ SH m (X, ω). For t > b we have u ≥ P (bu -(b -1)P [v]) ≥ bt -1 P (tu -(t -1)P [v]) + (1 -bt -1 )P [v].
By monotonicity of mass, see Theorem 3.4, we have

X H m (P (bu -(b -1)P [v])) ≥ (1 -bt -1 ) m X H m (P [v]).
Letting t → +∞ we obtain P (bu

-(b -1)P [v]) ∈ E P [v] . We also have b -1 P (bu -(b -1)v) + (1 -b -1 )v ≤ u,
hence, by Lemma 3.9 we have b

-1 P [P (bu -(b -1)v)] + (1 -b -1 )P [v] ≤ P [u] = P [v], which implies P [P (bu -(b -1)v)] ≤ P [v].
But we have already proved that

P [P (bu -(b -1)v)] ≥ P [P (bu -(b -1)P [v])] = P [v].
We thus have equality. 

P (bu -bv) ≥ bt -1 P (tu -(t -1)v) + (1 -bt -1 )v.
Comparing total mass and letting t → +∞ we obtain the result. Proof. The proof is similar to that of Theorem 3.19. We first prove that P (u, v) ∈ SH m (X, ω). For t > 0 set u t := max(u, φ -t), v t := max(v, φ -t), and ϕ t := P (u t , v t )) ∈ E φ . We want to prove that ϕ t decreases to some ω-m-subharmonic function on X. Assume by contradiction that it is not the case. Then sup X ϕ t decreases to -∞. Since φ = P [φ], by Corollary 3.17 we have ϕ t ≤ φ+sup X ϕ t . Thus, for s > 0 fixed and for t large enough we have {ϕ t ≤ φ-s} = X. Using this and Corollary 3.11 we obtain

X H m (φ) = {ϕt≤φ-s} H m (ϕ t ) ≤ {u≤φ-s} H m (u t ) + {v≤φ-s} H m (v t ) = 2 X H m (φ) - {u>φ-s} H m (u) - {v>φ-s} H m (v).
Letting s → +∞ we obtain X H m (φ) ≤ 0, a contradiction. Thus P (u, v) ∈ SH m (X, ω). Now, by Corollary 3.20 we have that, for all b > 1,

u b := P (bu -(b -1)φ) ∈ E φ and v b := P (bv -(b -1)φ) ∈ E φ .
Hence by the previous step we have P (u b , v b ) ∈ SH m (X, ω). We also have that P (u, v) is more singular than φ and

P (u, v) ≥ b -1 P (u b , v b ) + (1 -b -1 )φ. Thus X H m (P (u, v)) ≥ (1 -b -1 ) m X H m (φ).
Letting b → +∞ we arrive at the conclusion.

A metric on E 1

Following [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF], we introduce a metric on E 1 (X, ω, m) and use it to construct subextensions of a family of ω-m-subharmonic functions. Most of this section are taken from [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF] but we recall them for completeness, since we will crucially use Theorem 4.11.

Define a metric on E

1 . Given u, v ∈ E 1 we define d(u, v) := E(u) + E(v) -2E(P (u, v)).
Here P (u, v) := P (min(u, v)) is the largest ω-m-sh function lying below min(u, v). This is called the rooftop envelope [START_REF] Darvas | Kiselman's principle, the Dirichlet problem for the Monge-Ampère equation, and rooftop obstacle problems[END_REF] which plays a crucial role in the recent developments in Geometric Pluripotential Theory (see [START_REF] Darvas | Geometric pluripotential theory on Kähler manifolds[END_REF]). The proof of [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF]Theorem 3.6], applied to the Hessian setting, shows that P (u, v) ∈ E 1 . Arguing as in [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF] we can show that d is a metric and (E 1 , d) is compete, along with many useful properties. 

(i) If u ≤ v then d(u, v) = E(v) -E(u). (ii) If u ≤ v ≤ w then d(u, v) + d(v, w) = d(u, w). (iii) (Pythagorean formula) d(u, v) = d(u, P (u, v)) + d(v, P (u, v)).
Proposition 4.2. Let u, v be bounded ω-m-sh functions, and set

ϕ t := P ((1 -t)u + tv, v), t ∈ [0, 1]. Then d dt E(ϕ t ) = X (v -min(u, v))H m (ϕ t ), ∀t ∈ [0, 1].
Proof. We will only prove the formula for the right derivative as the same argument can be applied to treat the left derivative. Fix t ∈ [0, 1) and let s > 0 be small. For notational convenience we set

f t (x) := min((1 -t)u(x) + tv(x), v(x)), x ∈ X, t ∈ [0, 1].
It follows from [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]Theorem 3.2] that H m (ϕ t ) is supported on the set {ϕ t = f t }. Combining this with the concavity of the energy E, see Proposition 2.13, we obtain

E(ϕ t+s ) -E(ϕ t ) ≤ X (ϕ t+s -ϕ t )H m (ϕ t ) = X (ϕ t+s -f t )H m (ϕ t ) ≤ X (f t+s -f t )H m (ϕ t ).
On the other hand we have that f t+s -f t = s(v -min(u, v)). It thus follows that

lim s→0 + E(ϕ t+s ) -E(ϕ t ) s ≤ X (v -min(u, v))H m (ϕ t ).
We use the same argument to prove the reverse inequality:

E(ϕ t+s ) -E(ϕ t ) ≥ X (ϕ t+s -ϕ t )H m (ϕ t+s ) = X (f t+s -ϕ t )H m (ϕ t+s ) ≥ X (f t+s -f t )H m (ϕ t+s ) = s X (v -min(u, v))H m (ϕ t+s ).
As s → 0 + we have that ϕ t+s converges uniformly to ϕ t . Moreover, v-min(u, v) is a bounded quasi continuous function on X, hence [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF]Proposition 3.12] gives

lim s→0 + E(ϕ t+s ) -E(ϕ t ) s ≥ X (v -min(u, v))H m (ϕ t ).
This completes the proof.

Corollary 4.3. Let u, v, ϕ t be as in Proposition 4.2. Then

E(v) -E(P (u, v)) = 1 0 X (v -min(u, v))H m (ϕ t )dt. Proposition 4.4. If u, v ∈ E 1 then d(max(u, v), u) ≥ d(v, P (u, v)).
Proof. Set ϕ = max(u, v), ψ = P (u, v). Observe that since v ≥ ψ and ϕ ≥ u, the inequality to be proved is equivalent to

E(v) -E(ψ) ≤ E(ϕ) -E(u).
Recall that for any w ∈ E 1 the sequence of bounded potentials w k := max(w, -k) decreases to w. Consequently, using approximation, we can assume that both u and v (hence also ϕ and ψ) are bounded. Using the formula for the derivative of t → E((1-t)u+tϕ), see [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]Lemma 6.3], [6, Eq. (2.2)], we can write (4.1)

E(ϕ) -E(u) = 1 0 X (ϕ -u)H m ((1 -t)u + tϕ) dt.
Set w t := (1 -t)u + tv, for t ∈ [0, 1], and observe that (1 -t)u + tϕ = max(w t , u) and

1 {wt>u} = 1 {v>u} , ∀t ∈ (0, 1].
It then follows from the plurifine locality that

1 {v>u} H m (max(w t , u)) = 1 {wt>u} H m (max(w t , u)) = 1 {v>u} H m (w t ).
Using this, (4.1), and the equality ϕ -u = 1 {v>u} (v -u), we can write

E(ϕ) -E(u) = 1 0 {v>u} (v -u)H m (w t ) dt.
On the other hand, it follows from Corollary 3.11 that

H m (P (w t , v)) ≤ 1 {wt≤v} H m (w t ) + 1 {wt≥v} H m (v).
Using this, Corollary 4.3 and the fact that {w t ≤ v} = {u ≤ v}, for t ∈ [0, 1), we get

E(v) -E(ψ) = 1 0 X (v -min(u, v))H m (P (w t , v)) dt ≤ 1 0 {u<v} (v -u)H m (w t ) dt,
hence the conclusion. Observe that the last identity follows from the fact that P (P (u, w), v) = P (u, w, v) and P (u, w, v) = P (w, v) since v ≤ u. Now, we remove the assumption u ≥ v. Since min(u, v) ≥ P (u, v) we can use the first step to write d(u, P (u, v)) ≥ d(P (u, w), P (u, v, w)), and d(v, P (u, v)) ≥ d(P (v, w), P (u, v, w)). To finish the proof, it suffices to use Lemma 4.1(iii) and to note that P (P (u, w), P (v, w)) = P (u, v, w). . By the domination principle, see [START_REF] Dinew | Mixed Hessian inequalities and uniqueness in the class E(X, ω, m)[END_REF] (or Theorem 3.15), we obtain that P (u, v) ≥ u, hence trivially u = P (u, v). By symmetry v = P (u, v), implying that u = v. It remains to prove the triangle inequality: for u, v, ϕ ∈ E 1 we want to prove that

d(u, v) ≤ d(u, ϕ) + d(v, ϕ).
Using the definition of d this amounts to showing that

E(P (ϕ, u)) -E(P (u, v)) ≤ E(ϕ) -E(P (ϕ, v)).
But this follows from Lemma 4.5, as we have the following sequence of inequalities:

E(ϕ) -E(P (ϕ, v)) = d(ϕ, P (ϕ, v)) ≥ d(P (ϕ, u), P (P (ϕ, v), u)) = E(P (ϕ, u)) -E(P (ϕ, v, u)) ≥ E(P (ϕ, u)) -E(P (u, v)),
where in the last line we have used the monotonicity of E, Lemma 4.1.

Comparison with

I 1 . Lemma 4.7. For all u, v ∈ E 1 we have d u, u+v 2 ≤ 3(m+1) 2 d(u, v).
Proof. We have the following estimates:

d u, u + v 2 = d u, P u, u + v 2 + d u + v 2 , P u, u + v 2 ≤ d(u, P (u, v)) + d u + v 2 , P (u, v) ≤ X (u -P (u, v))H m (P (u, v)) + X u + v 2 -P (u, v) H m (P (u, v)) ≤ 3 2 X (u -P (u, v))H m (P (u, v)) + 1 2 X (v -P (u, v))H m (P (u, v)) ≤ 3(m + 1) 2 d(u, P (u, v)) + m + 1 2 d(v, P (u, v)) ≤ 3(m + 1) 2 d(u, v),
where in the second line we have additionally used that P (u, v) ≤ P (u, (u + v)/2).

Theorem 4.8. For all u, v ∈ E 1 we have

d(u, v) ≤ X |u -v|(H m (u) + H m (v)) ≤ 3(m + 1)2 m+2 d(u, v). Proof. It follows from Lemma 4.1 that d(u, v) = d(u, P (u, v)) + d(v, P (u, v)).
Since the energy E is concave along affine curves, Proposition 2.13, we have

d(u, P (u, v)) = E(u) -E(P (u, v)) ≤ X (u -P (u, v))H m (P (u, v)) ≤ {v=P (u,v)} (u -v)H m (v) ≤ X |u -v|H m (v).
Similarly we get d(v, P (u, v)) ≤ X |u -v|H m (u). Putting these two inequalities together we get the first inequality.

Next we establish the lower bound for d. By Lemma 4.7 and the Pythagorean formula we have

3(m + 1) 2 d(u, v) ≥ d u, u + v 2 ≥ d u, P u, u + v 2 ≥ X u -P u, u + v 2 H m (u).
Proof. The argument is due to Darvas [START_REF] Darvas | The Mabuchi geometry of finite energy classes[END_REF][START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF], see also [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF]Theorem 3.10]. We can assume that d(u j , u j+1 ) ≤ 2 -j , j ≥ 1.

As in the proof of [START_REF] Darvas | The Mabuchi completion of the space of Kähler potentials[END_REF]Theorem 9.2] we introduce the following sequences ψ j,k := P (u j , u j+1 , . . . , u k ), j ∈ N, k ≥ j.

Observe that, for k ≥ j + 1, ψ j,k = P (u j , ψ j+1,k ) and hence it follows from Lemma 4.1(iii) and the triangle inequality that

d(u j , ψ j,k ) ≤ d(u j , ψ j+1,k ) ≤ d(u j , u j+1 ) + d(u j+1 , ψ j+1,k ) ≤ 2 -j + d(u j+1 , ψ j+1,k ).
Repeating this argument several times we arrive at

(4.2) d(u j , ψ j,k ) ≤ 2 -j+1 , ∀k ≥ j + 1.
Using the triangle inequality for d and the above we see that

d(0, ψ j,k ) ≤ d(0, u j ) + d(u j , ψ j,k ) ≤ d(0, u 1 ) + 2 + 2 -j+1
is uniformly bounded. It follows from Theorem 4.8 and Lemma 4.9 that I 1 (0, ψ j,k ), as well as sup X ψ j,k , is uniformly bounded. We then infer, using the triangle inequality for d, that d(0, ψ j,k -sup X ψ j,k ) is uniformly bounded hence so is E(ψ j,k ). Therefore, Proposition 2.14 ensures that ψ j := lim k ψ j,k belongs to E 1 . From (4.2) we obtain that d(u j , ψ j ) ≤ 2 -j+1 , hence we only need to show that the d-limit of the increasing sequence {ψ j } j ⊂ E 1 is in E 1 . Lemma 4.9 implies that sup X ψ j is uniformly bounded, hence ψ := lim j ψ j ∈ SH m (X, ω). Now ψ j increases a.e. towards ψ, hence ψ ∈ E 1 . Therefore by Proposition 2.14 we have I 1 (ψ j , ψ) → 0. It thus follows from Theorem 4.8 that d(ψ j , ψ) → 0.

4.4. ω-m-subharmonic subextension. In the previous sections, we easily adapted the arguments in [START_REF] Darvas | L 1 metric geometry of big cohomology classes[END_REF]. These are necessary to derive the following result which is important in the sequel. Theorem 4.11. Assume that u j ∈ E satisfies sup X u j = 0 and H m (u j ) ≤ AH m (ψ), for some positive constant A and some ψ ∈ SH m (X, ω) ∩ L ∞ (X). Then u j ∈ E 1 , and a subsequence of u j d-converges to some u ∈ E 1 . In particular, we can extract a subsequence of u j , still denoted by u j , such that

lim l→+∞ P (u k , ..., u k+l ) ∈ E 1 , ∀k.
The result above is also new in the Monge-Ampère case. It produces in particular a ω-m-sh function lying below a suitably chosen subsequence of (u j ).

Proof. We will use C 1 , C 2 , ... to denote uniform constants.

We can assume that -1 ≤ ψ ≤ 0 and u j converges in L 1 to u ∈ SH m (X, ω). By the Chern-Levine-Nirenberg inequality [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF]Corollary 3.18] we have that

X |u j |H m (u j ) ≤ A X |u j |H m (ψ) ≤ C 1 , ∀j.
It thus follows from Proposition 2.13 that u j ∈ E 1 and |E(u j )| ≤ C 1 . Thus by [50, Lemma 6.8] we have

X u 2 j H m (ψ) ≤ 2 +∞ 0 tCap m (u j < -t)dt ≤ C 2
is also uniformly bounded. Therefore, by the proof of [START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF]Lemma 11.5] we have X (u ju)H m (ψ) → 0. Define ũk := (sup(u l , l ≥ k)) * . Then

|u k -u| = 2 max(u, u k ) -u -u k ≤ 2(ũ k -u) + u -u k .
Since ũk decreases to u, it follows that (4.3)

X |u j -u|H m (u j ) ≤ A X |u j -u|H m (ψ) → 0.
We next claim that H m (u) ≤ AH m (ψ). The proof of this part is taken from [START_REF] Cegrell | Pluricomplex energy[END_REF], [START_REF] Guedj | The weighted Monge-Ampère energy of quasiplurisubharmonic functions[END_REF]. After extracting a subsequence we can assume that

X |u j -u|H m (u j ) ≤ 2 -j .
We define v j := max(u j , u -1/j). Then v j converges in m-capacity to u. Hence by [47, Theorem 3.9] H m (v j ) weakly converges to H m (u). On the other hand we have

{u j ≤u-1/j} H m (u j ) ≤ j X |u j -u|H m (u j ) ≤ j2 -j → 0.
We thus have, for any positive continuous function χ,

X χH m (u) = lim j→+∞ X χH m (v j ) ≥ lim sup j→+∞ {u j >u-1/j} χH m (u j ) ≥ lim sup j→+∞ X χH m (u j ),
where in the first inequality we have used Lemma 2.7. But H m (u j ) and H m (u) have the same total mass, hence H m (u j ) weakly converges to H m (u) and therefore H m (u) ≤ AH m (ψ) as claimed. This together with (4.3) yields I 1 (u j , u) → 0, hence by Theorem 4.8 we have d(u j , u) → 0. The last statement follows from Theorem 4.10.

Complex Hessian equations with prescribed singularity

Given a non-pluripolar positive measure µ and a model potential φ such that µ(X) = X H m (φ) > 0, we want to find u ∈ E φ such that H m (u) = µ.

The strategy is described in [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] which is inspired by the supersolution method of [START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF]. One constructs supersolutions of a well chosen family of equations and takes the lower envelope of supersolutions to get a solution. The main issue is to bound the supersolutions from below. To make the arguments of [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] work in Hessian setting we need a volume-capacity comparison of the form :

E f ω n ≤ Cap φ (E) 1+ε , E ⊂ X,
for some ε > 0.

Here

Cap φ (E) = sup E H m (u) | u ∈ SH m (X, ω), φ -1 ≤ u ≤ φ .
In the flat case where ω = dd c z 2 and X = Ω ⊂ C n , it was conjectured by Błocki [START_REF] Błocki | Weak solutions to the complex Hessian equation[END_REF] that SH m (Ω) ⊂ L q (Ω), for all q < nm/(n -m). If the compact manifold version of Błocki's conjecture holds then the L ∞ estimate in [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] can be adapted in the Hessian setting giving solution for L p densities p > n/m. In the general case of non-m-polar measures the approach in [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] using Cegrell's method [START_REF] Cegrell | Pluricomplex energy[END_REF] also breaks down in the Hessian setting. Below, we will follow the main lines of [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] with several modifications. One of this is the use of the complete metric d in E 1 to construct subextensions of a d-converging sequence in E 1 . This procedure not only replaces the relative L ∞ estimate in [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] but also allows us to solve the complex Hessian equation directly without regularizing the measure µ by taking local convolution. 5.1. Existence of solutions for bounded densities. To explain the main ideas of the proof we first start with the case where µ = f ω n for some 0 ≤ f ∈ L ∞ (X, ω n ), and φ = P [αφ 0 ], for some α ∈ (0, 1) and φ 0 ∈ SH m (X, ω). The general case, which is more involved and requires extra work, will be treated later.

Theorem 5.1. Assume that φ = P [αφ 0 ], where α ∈ (0, 1),

φ 0 ∈ SH m (X, ω), 0 ≤ f ∈ L ∞ (X) and X H m (φ) = X f ω n . Then there exists u ∈ E φ (X, ω, m) such that H m (u) = f ω n .
As shown in [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Di Nezza | Complex Monge-Ampère equations on quasi-projective varieties[END_REF], in this case one can use the φ-capacity to establish a L ∞ -estimate. We propose, however, in this section a different approach using the envelope which is interesting in its own right. Lemma 5.2. Fix α ∈ (0, 1) and let φ 0 be a ω-m-sh function on X, normalized by sup X φ 0 = 0. Assume that u ∈ SH m (X, ω) is less singular than αφ 0 and

H m (u) = f ω n , sup X u = 0,
where f ∈ L p (X, ω n ), p > n/m. Then, for a constant C depending on p, n, m, X, ω, α, f p , we have u ≥ αφ 0 -C. 

-m H m (v b ) = 1 D b -m H m (v b ) ≤ 1 D H m (b -1 v b + αφ 0 ) ≤ 1 D H m (u).
Next, we want to bound sup X v b . Let q be the conjugate of p: 1 p + 1 q = 1. By Proposition 3.10 we have

X |v b | 1/q H m (v b ) = D |bu -(b -1)φ 0 | 1/q H m (v b ) ≤ X (|bu| + |(b -1)φ 0 |) 1/q b m f ω n .
Using the Hölder inequality we see that the above term is uniformly bounded. Since X H m (v b ) = 1 we infer that sup X v b is uniformly bounded. We thus can invoke [START_REF] Dinew | A priori estimates for complex Hessian equations[END_REF], [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF] to obtain a uniform bound for v b , hence bu ≥ αbφ 0 -C. This completes the proof.

Using the same idea we obtain the following estimate :

Lemma 5.3. Fix a ∈ (0, 1), φ 0 ∈ SH m (X, ω), sup X φ 0 = 0. Assume that u ∈ E satisfies H m (u) ≤ f ω n + aH m (φ 0 ), sup X u = 0,
where f ∈ L p (X, ω n ), p > n/m. Then, for a constant C depending on p, n, m, X, ω, a, f p , we have u ≥ a 1/m φ 0 -C. 

1 D b -m H m (v b ) + (1 -b -1 ) m H m (φ 0 ) ≤ 1 D H m (u).
Using the above inequality, the assumption, and Proposition 3.10 we deduce that

H m (v b ) = 1 D H m (v b ) ≤ b m f ω n .
Having this, we can proceed as in the proof of Lemma 5.2. The details are left to the interested readers.

Proof of Theorem 5.1. We use the supersolution method of [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF].

Construction of supersolutions. Fix a ∈ (0, 1) and solve, for each k > 0

H m (u k ) = a1 {φ≤-k} H m (max(φ, -k)) + c k f ω n , with u k ∈ E , sup X u k = 0.
Here c k > 0 is a constant ensuring that the two sides have the same total mass. The existence of the solution was proved in [START_REF] Lu | Degenerate complex Hessian equations on compact Kähler manifolds[END_REF]. Computing the total mass we see that c k c(a) ≥ 1 defined by

a 1 - X H m (φ) + c(a) X H m (φ) = 1.
It follows from Lemma 5.3 that, for a uniform constant C 1 depending on the fixed parameters (and also on a), u k ≥ φ -C 1 . For each l > 0 we define ũk,l := P (min(u k , u k+1 , ..., u k+l )). Then by Corollary 3.11, for t > 0 fixed and k > t we have

1 {φ>-t} H m (ũ k,l ) ≤ c k f ω n . As l → +∞, ũk,l decreases to a function ũk ∈ SH m (X, ω) such that φ -C 1 ≤ ũk ≤ 0. Thus by Theorem 3.3 we have 1 {φ>-t} H m (ũ k ) ≤ c k f ω n . As k → +∞, ũk increases a.e. to a function ũ ∈ SH m (X, ω) such that φ -C 1 ≤ ũ ≤ 0 and by Theorem 3.3 we have 1 {φ>-t} H m (ũ) ≤ cf ω n .
Letting t → +∞ we arrive at H m (ũ) ≤ cf ω n .

Envelope of supersolutions is a solution. The above analysis shows that for each j ∈ N, there exists w j ∈ SH m (X, ω) such that φ -C j ≤ w j ≤ 0 and

H m (w j ) ≤ (1 + 2 -j )f ω n .
Adding a constant we can assume that sup X w j = 0. By Lemma 5.2 we have

w j ≥ αφ 0 -C,
for a uniform constant C. For k, l ∈ N, we set as above wk,l := P (min(w k , ..., w k+l )).

Then, wk,l ≥ αφ 0 -C, for all k, l, hence wk := lim l wk,l ∈ SH m (X, ω). Since H m ( wk,l ) ≤ (1 + 2 -k )f ω n it follows from Theorem 3.3 and Theorem 3.7 that H m ( wk,l ) weakly converges to H m ( wk ). We thus have

H m ( wk ) ≤ (1 + 2 -k )f ω n , wk ≥ αφ 0 -C.
As k → +∞, wk increases a.e. to w. Again, it follows from Theorem 3.3 that H m ( wk ) weakly converges to H m ( w), hence H m ( w) ≤ f ω n . Since w ≥ αφ 0 -C, it follows from Theorem 3.4 that X H m ( w) ≥ X f ω n . We thus have equality, finishing the proof.

5.2.

Existence of solutions for non-m-polar measures.

Theorem 5.4. Assume that µ is a positive measure vanishing on m-polar sets, and φ is a model potential such that µ(X) = X H m (φ) > 0. Then there exists a unique u ∈ E φ such that H m (u) = µ.

Proof. It suffices to treat the case when µ ≤ AH m (ψ 0 ), for some constant A > 0 and some ψ 0 ∈ SH m (X, ω), with -1 ≤ ψ 0 ≤ 0. The general case will follow by a well-known projection argument due to Cegrell as shown in [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Guedj | Degenerate complex Monge-Ampère equations[END_REF].

In the arguments below we use C to denote various uniform constants.

Construction of supersolutions.

For each c > 1, we claim that there exists u c ∈ SH m (X, ω) such that P [u c ] ≥ φ, and H m (u c ) ≤ cµ.

To prove the claim, we fix a ∈ (0, 1) and solve, using [50, Theorem 1.3], for each k > 0

H m (u k ) := a1 {φ≤-k} H m (max(φ, -k)) + c k µ, with u k ∈ E , sup X u k = 0.
Recall that E := E (X, ω, m) is the class of ω-m-sh functions u with full mass, X H m (u) = 1. Here c k > 0 is a constant ensuring that the two sides have the same total mass. Computing the total mass we see that c k → c(a) ≥ 1 defined by

(5.1) a 1 - X H m (φ) + c(a) X H m (φ) = 1. Fix b > 1 such that (1 -b -1 ) m = a and set v k := P (bu k -(b -1) max(φ, -k)). Since 0 = P [u k ], it follows from Corollary 3.20 (with u, v ∈ E hence P [u] = P [v] = 0) that v k ∈ E . Setting D k := {v k = bu k -(b -1) max(φ, -k)}, it follows from Proposition 2.10 that 1 D k b -m H m (v k ) + (1 -b -1 ) m H m (max(φ, -k)) ≤ H m (u k ).
By the choice of b and by Proposition 3.10 we have H m (v k ) ≤ c k b m µ. By Proposition 3.10 again we have

X |v k |H m (v k ) ≤ D k |bu k -(b -1) max(φ, -k)|b m c k µ ≤ C,
where the last estimate follows from [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF]Corollary 3.18]. It thus follows that sup X v k is uniformly bounded. We can invoke Theorem 4.11 to construct a subsequence, still denoted by v j , such that for all k,

ṽk := lim l→+∞ P (v k , v k+1 , ...v k+l ) ∈ E 1 .
For each k, l we define ũk,l := P (u k , ..., u k+l ); ũk := lim l→+∞ ũk,l , ũ := lim k→+∞ ũk * .

By the above construction we have that

u k ≥ b -1 v k + (1 -b -1 )φ, hence ũk ≥ b -1 ṽk + (1 -b -1 )φ.
It thus follows from Lemma 3.9 that P [ũ k ] ≥ φ, hence P [ũ] ≥ φ. Fixing t > 0, by Corollary 3.11 we have that, for all k > t, Moreover, it follows from Proposition 3.10 that

1 {φ>-t} H m (ũ k,l ) ≤ c k µ.
X |h j |H m (h j ) ≤ 2 X (|bw j | + (b -1)|P (λφ)|)b m µ ≤ C,
where the last estimate follows from the Chern-Levine-Nirenberg inequality [START_REF] Lu | Solutions to degenerate complex Hessian equations[END_REF]Corollary 3.18]. It thus follows that sup X h j is uniformly bounded, as well as E(h j ). As in the proof of the claim we can find a subsequence, still denoted by h j , such that hk := lim By Theorem 3.7 again we have H m ( w) ≤ µ and X H m ( w) ≥ µ(X), hence equality.

5.3.

Uniqueness. To prove uniqueness, as shown in [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF], one can follow closely the argument of S. Dinew [START_REF] Dinew | Uniqueness in E(X, ω)[END_REF]. We provide here a new proof using the orthogonal property of the envelopes. We hope that this proof, which is also new in the Monge-Ampère case, will be useful in studying Monge-Ampère type equations on non-Kähler manifolds. From (5.5) and the assumption that µ vanishes on m-polar sets, we infer that sup X ϕ b is uniformly bounded. Now, letting b → +∞ we see that the function lim b→+∞ (ϕ b -sup X ϕ b ) is a ω-m-sh function which takes value -∞ in the set {u < v}. This forces {u < v} to be m-polar, hence u = v.

Step 2. We treat the general case. We normalize u, v by sup X u = 0, sup X v = 0. Set µ := H m (u) = H m (v). It follows from Lemma 2.9 that w := max(u, v) satisfies H m (w) ≥ µ, and since u ≤ w ≤ φ we have by Theorem 3.4, X H m (w) = µ(X), hence H m (w) = µ. Thus, we can assume that u ≤ v

We use the same notations and repeat the same arguments as above to arrive at (5.4). We [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF] to prove the following result: Theorem 5.6. Assume that µ is a non-m-polar positive measure on X and φ is a model potential. Then there exists a unique u ∈ E φ such that H m (u) = e u µ.

We omit the proof of the above theorem and refer the interested readers to [START_REF] Darvas | Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity[END_REF][START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF]. 5.5. A Hodge index type inequality. The proof of Theorem 1.3 is very similar to that of [START_REF] Darvas | Log-concavity of volume and complex Monge-Ampère equations with prescribed singularity[END_REF]Theorem 5.1] given Theorem 1.1, Theorem 1.2 and the mixed Hessian inequality (Lemma 2.12). For the reader's convenience we give the details below.

Proof of Theorem 1.3. For each j = 1, ..., m, let v j ∈ E P [u j ] solve H m (v j ) = c j ω n , where c j = X H m (v j ) = X H m (u j ). The existence of v j follows from Theorem 1.2. The mixed Hessian inequality, Lemma 2.12, gives H m (v 1 , ..., v m ) ≥ (c 1 ...c m ) 1/m ω n . By Lemma 3.8 we have that X H m (v 1 , ..., v m ) = X H m (u 1 , ..., u m ), hence integrating the above inequality over X, we obtain the result.

X

  H m (u 1 , ..., u m ) ≥ m k=1 X H m (u k ) 1/m.

Proposition 3 . 10 .

 310 hence letting C → +∞ we obtain the result. Assume that f = aϕ-bψ, where ϕ, ψ ∈ SH m (X, ω), and a, b are positive constants. If P (f ) ≡ -∞ then {P (f )<f } H m (P (f )) = 0.

  Let u := (lim j→+∞ u j ) * . It follows from [47, Proposition 3.12] that X (min(f -u, 1)H m (u) = 0, hence {u<P (f )} H m (u) = 0 and the domination principle[START_REF] Dinew | Mixed Hessian inequalities and uniqueness in the class E(X, ω, m)[END_REF] Lemma 3.5] gives u = P (f ).

Proof.

  By definition we have P [min(u, v)] = lim C→+∞ P (min(u + C, v + C, 0)) * ≤ lim C→+∞ P (min(P (u, v) + C, 0) * = P [P (u, v)].

Corollary 3 . 21 .

 321 Assume that u, v ∈ SH m (X, ω) are such that P [u] ≥ P [v] and X H m (v) > 0. Then, for all b > 1, P (bu -bv) ∈ E . Proof. We can assume that u, v ≤ 0. Then v ≤ P [v] ≤ P [u], hence u ≤ max(u, v) ≤ P [u]. It thus follows that max(u, v) ∈ E P [u] .Hence by Corollary 3.20 we have, for all b > 1, P (bu -bv) ≥ P (bu -(b -1) max(u, v)) ∈ SH m (X, ω). For t > b > 1, we have

Proposition 3 . 22 .

 322 If φ is a model potential and u, v ∈ E φ then P (u, v) ∈ E φ .

Lemma 4 . 1 .

 41 Let u, v, w ∈ E 1 . Then the following hold:

Lemma 4 . 5 .

 45 For all u, v, w ∈ E 1 we have d(u, v) ≥ d(P (u, w), P (v, w)).Proof. We first assume that v ≤ u. It follows that v ≤ max(v, P (u, w)) ≤ u, hence by Lemma 4.1(iii) and Proposition 4.4 we have d(v, u) ≥ d(v, max(v, P (u, w))) ≥ d(P (u, w), P (P (u, w), v)) = d(P (u, w), P (v, w)).

Theorem 4 . 6 .

 46 d is a distance on E 1 .Proof. The quantity d is non-negative, symmetric and finite by definition. The fact that d is non degenerate is a simple consequence of the domination principle. Suppose d(u, v) = 0. Lemma 4.1(iii) implies that d(u, P (u, v)) = d(v, P (u, v)) = 0. Moreover, Lemma 4.1(iii) gives that P (u, v) ≥ u a.e. with respect to H m (P (u, v))

Proof.

  Set b := (1 -α) -1 and v b := P (bu -αbφ 0 ) ∈ SH m (X, ω). From the assumption that u is less singular than αφ 0 we deduce that bu -bαφ 0 is bounded from below, hence v b is bounded. Then b -1 v b + αφ 0 ≤ u with equality on D := {v b = bu -αbφ 0 }. Hence by Proposition 2.10, Lemma 2.11 and Proposition 3.10 we have b

Proof. Fix a constant b > 1

 1 such that (1 -b -1 ) m = a, and setv b := P (bu -(b -1)φ 0 ), D := {v b = bu -(b -1)φ 0 }. It follows from Theorem 3.19 that v b ∈ E . Since b -1 v b + (1 -b -1 )φ 0 ≤ uwith equality on D, by Proposition 2.10 and Lemma 2.11, we have

Since

  {φ > -t} is quasi-open, we can invoke Theorem 3.3 to obtain, letting l → +∞ and then k → +∞, 1 {φ>-t} H m (ũ) ≤ c(a)µ, Letting t → +∞ we obtain H m (ũ) ≤ c(a)µ. From (5.1) we see that c(a) → 1 as a → 1, hence c(a) can be made arbitrarily near 1. This proves the claim. Envelope of supersolutions is a solution. The first step shows that for each j ∈ N, there exists w j ∈ SH m (X, ω) such that sup X w j = 0, P [w j ] ≥ φ, and H m (w j ) ≤ (1 + 2 -j )µ. It follows from Theorem 3.19 that there exists a constant λ > 1 such that P (λφ) ∈ SH m (X, ω). Fix b > 1 such that b = (b -1)λ. It follows from P [w j ] ≥ (1 -b -1 )λφ ≥ (1 -b -1 )P (λφ) and Corollary 3.21 that h j := P (bw j -(b -1)P (λφ)) ∈ E .

l→+∞P 1 .

 1 (h k , ..., h k+l ) ∈ E As in the first step we set wk,l := P (w k , ..., w k+l ), wk := lim l→+∞ wk,l , w := lim k→+∞ wk *.By construction we havewk ≥ b -1 hk + (1 -b -1 )P (λφ),hence wk ∈ SH m (X, ω). It follows from Proposition 3.22 that wk,l ∈ E φ . By Corollary 3.11 we haveH m ( wk,l ) ≤ (1 + 2 -k )µ, X H m ( wk,l ) ≥ µ(X).By Theorem 3.7 we have that H m ( wk,l ) weakly converges to H m ( wk ), henceH m ( wk ) ≤ (1 + 2 -k )µ, X H m ( wk ) ≥ µ(X).

Theorem 5 . 5 .1+ 1

 551 Let φ be a model potential and let u, v∈ E φ . If H m (u) = H m (v) then u -v is constant. Proof.Step 1. We first assume that µ is concentrated on {u = v} 1 . Fix b > 1 and setϕ b := P (bu -(b -1)v), D := {ϕ b = bu -(b -1)v}. It follows from Theorem 3.19 that ϕ b ∈ E φ . Since b -1 ϕ b + (1 -b -1 )v ≤ u,with equality on D, it follows from Proposition 2.10 that (5.2)1 D H m (b -1 ϕ b + (1 -b -1 )v) ≤ 1 D H m (u).Combining this with the fact that H m (ϕ b ) is concentrated on D, and Lemma 2.11, we arrive atb -m H m (ϕ b ) = b -m 1 D H m (ϕ b ) ≤ 1 D H m (u).One can also invoke the domination principle.Writing H m (ϕ b ) = f b µ, for some 0 ≤ f b ∈ L 1 (µ), and using the mixed Hessian inequality (Lemma 2.12), and multilinearity of the Hessian measure (Lemma 2.11) we obtainH m (b -1 ϕ b + (1 -b -1 )v) ≥ m k=0 m k b -k (1 -b -1 ) m-k ω k ϕ b ∧ ω m--b -1 m µ ≤ 1 D H m (b -1 ϕ b + (1 -b -1 )v) ≤ 1 D µ. We thus have f b ≤ 1, hence f b = 1, µ-a.e. because X f b µ = µ(X). It thus follows from (5.3) that, for ψ b := b -1 ϕ b + (1 -b -1 )v, we have H m (ψ b ) ≥ µ with the same total mass, hence H m (ψ b ) = µ. Thus, we have µ = H m (ψ b ) = H m (ϕ b ), therefore (5.4) µ(ψ b < u) = {ψ b <u} H m (ψ b ) = {ϕ b <bu-(b-1)v} H m (ϕ b ) = 0,where in the last equality we use the fact that H m (ϕ b ) is concentrated in the contact set {ϕ b = bu -(b -1)v}, thanks to Proposition 3.10. Now, we use the assumption that µ is concentrated on {u = v} to deduce, using (5.4), that µ is concentrated on the set {ϕ b = u = v}. Therefore (5.5) µ(X) = µ(u = ϕ b ) ≤ µ(u ≤ sup X ϕ b ).

  then get H m (ψ b ) = H m (u) = µ, ψ b ≤ u, and µ(ψ b < u) = 0. Using the first step we have that u = ψ b , hence ϕ b = bu -(b -1)v, and sup X ϕ b = 0 since u ≤ v ≤ 0 and sup X u = 0. Letting b → +∞ we obtain u = v. 5.4. Aubin-Yau equation. Having the solutions to the complex Hessian equation H m (u) = µ, one can follow

  ). Using Lemma 2.7 we then have that1 U t 1 {u=v} H m (v) ≥ 1 U t 1 {u=v} H m (u).We finally let t → +∞ to arrive at the conclusion. Lemma 2.11. Assume that u 1 , ..., u m are ω-m-sh on X and t 1 , ..., t m ∈ [0, 1] with m

			p=1 t p =
	1. Then	m	
	H m	t p u p =	t σ(1) ...t σ(m) H m (u σ(1) , ..., u σ(m) ),
		p=1	σ∈Σ

By a similar reasoning as above, and the fact that 2 m H m ((u + v)/2) ≥ H m (u) we can write:

Adding the last two estimates we obtain

By symmetry we also have

, and adding these last two estimates together the lower bound for d is established.

Lemma 4.9. There exists A, B ≥ 1 such that for any

Proof. If sup X ϕ ≤ 0, then the right-hand side inequality is trivial, while

We therefore assume that sup X ϕ ≥ 0. In this case the left-hand inequality is trivial. By compactness property of the set of normalized ω-m-sh functions [47, Lemma 2.13] we have

where C 1 > 0 is a uniform constant. Using Theorem 4.8 the result then follows in the following manner:

Theorem 4.10. Assume that u j is a Cauchy sequence in (E 1 , d). Then u j d-converges to u ∈ E 1 . In particular, we can extract a subsequence, still denoted by u j , such that lim l→+∞ P (u k , u k+1 , ...., u k+l ) ∈ E 1 .