A quinhydrone-type 21 acceptor-donor charge transfer complex obtained via a solvent-free reaction

Marcel Bouvet, Bernard Malezieux, Patrick Herson

- To cite this version:

Marcel Bouvet, Bernard Malezieux, Patrick Herson. A quinhydrone-type 21 acceptor-donor charge transfer complex obtained via a solvent-free reaction. Chemical Communications, 2006, 16, pp.17511753. 10.1039/b600345a . hal-02289252v1

HAL Id: hal-02289252
https://hal.science/hal-02289252v1
Submitted on 16 Sep 2019 (v1), last revised 18 Sep 2019 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A Quinhydrone-Type 2:1 Acceptor-Donor Charge Transfer Complex Obtained Via a Solvent-free Reaction

Marcel BOUVET*, Bernard MALEZIEUX, Patrick HERSON
Laboratoire de Chimie Inorganique et Matériaux Moléculaires, Université Pierre et Marie Curie - Paris 6, CNRS - UMR 7071, 4 place Jussieu, Case 5 courrier 42, 75252 Paris cedex 05, France. Fax: +331 442738 41; Tel: +331442730 83; E-mail: marcel.bouvet@espci.fr

A 2:1 2-methoxybenzoquinone $\left(B Q_{\text {оме }}\right)$ - hydroquinone $\left(H_{2} \mathrm{Q}\right)$ complex (5) obtained as single crystals by a solvent-free reaction combines dipolar and $\pi-\pi$ interactions, as well as H-bonding.
${ }_{10}$ Non-covalent interactions, namely hydrogen bonding, halogen bonding, $\pi-\pi$ and dipole-dipole interactions stabilize numerous organic, organometallic and biological molecular networks. ${ }^{1-6}$ Considering the example of quinhydrone, a well-known charge transfer complex between benzoquinone (BQ) and $\mathrm{H}_{2} \mathrm{Q}, \pi-\pi$ 15 interactions exist inside the donor-acceptor stacks, while infinite molecular chains form through hydrogen bonds between neighboring stacks. ${ }^{7,8}$ Elsewhere, charge transfer complexes of the quinhydrone-type were involved in recognition processes ${ }^{9}$ and recently used to self-organize calixarenes. ${ }^{10}$ In unsymmetrically ${ }_{20}$ substituted quinhydrones, interconversion by hydrogen transfer was shown to occur between the two components of the complex in the solid state, ${ }^{11-13}$ but only one crystal structure was reported. ${ }^{12}$ Concerning the association of $\mathrm{BQ}_{\mathrm{OMe}}$ and $\mathrm{H}_{2} \mathrm{Q}$, a charge transfer band has been observed but without any information about the ${ }_{25}$ stoechiometry of the interation. ${ }^{14}$

scheme 1
In this paper, we describe a new synthetic route to obtain single crystals of quinhydrones through a solvent-free reaction. The starting materials, 2-methoxyhydroquinone $\mathrm{H}_{2} \mathrm{Q}_{\mathrm{OMe}}$ (1) and BQ (2), undergo a redox reaction to lead to $\mathrm{BQ}_{\mathrm{OMe}}(3)$ and $\mathrm{H}_{2} \mathrm{Q}$ (4) (scheme 1) that ${ }_{30}$ evolve to give 5^{\ddagger} as black needles (space group: P-1). ${ }^{\S}$ The asymmetric unit is composed of one molecule of 3 and half a molecule of 4 (Fig. 1). Hydroquinone lies on an inversion center. So, compound 5 has to be considered as a $2: 1$ acceptor/donor (AAD) complex. Molecules arrange, in columns with repeated AAD 35 sequences, parallel to the $\binom{r}{c-b}$ vector, and make an angle of 30° with this axis. The distance between the molecular planes of A and D components in a column varies between 3.09 and $3.17 \AA$ (mean value: $3.13 \AA$), which indicates a strong $\pi-\pi$ interaction (Fig. 1). This A-D π stacking distance is comparable to that observed in the ${ }_{40}$ unsubstituted quinhydrone $(3.2 \AA) .{ }^{8}$ We note however that A and D are tilted by 2°. Further, the distance between two neighboring moieties A $(3.35 \AA)$ is typical of a $\pi-\pi$ interaction, comparable to the intermolecular distance observed in pure $3 .{ }^{15}$ The AA pairs in which each molecule corresponds to its twin by an inversion center are

[^0]${ }_{45}$ stabilized by a dipole-dipole interaction. The dipole moment of $\mathbf{3}$ has been calculated to be 0.81 Debye (MNDO). ${ }^{15}$ Hydrogen bonds exist between $\mathrm{H}_{2} \mathrm{Q}$ and $\mathrm{BQ}_{\mathrm{OMe}}$ molecules belonging to adjacent columns, defining planes parallel to the plane (011); dO3-O4' $=2.717(2) \AA$, angle $\mathrm{O} 3-\mathrm{H} 1^{\prime}-\mathrm{O} 4^{\prime}=164^{\circ}$ (Fig. 1). These hydrogen bonds involve 50 the carbonyl group in meta position with respect to the methoxy group. Interatomic distances of subunits $\mathbf{3}$ in $\mathbf{5}$ are slightly different from those measured in single crystals of free $\mathbf{3}$ (space group $\left.\mathrm{P} 2{ }_{1} / \mathrm{c}\right) .{ }^{15}$ Due to the existence of H bonding involving O 3 , the difference between the two carbonyl distances (C4-O3-C1-O1) ${ }_{55}$ suffers a slight increase from $0.005(5)$ to $0.027(5) \AA$, while the COH distance is not significantly shortened as compared to pure 4.

$\left.{ }_{65} \mathrm{~b}\right)$

c)

Fig. 1 X-ray crystal structure of 5: a) ORTEP (30% probability level) representation of the asymmetric unit including atomic numbering and bond lengths in \AA, the prime (') symbol indicates that these atoms are at 75 equivalent position (1-x, $2-y,-z$), b) view of a triad AAD $(100 \%$ van der Waals radii) and c) a schematic view of the structure with interplanar distances in \AA (projection on the plane (011), segments indicate the main axis of molecules, and arrows the direction of the dipolar moment of A).
${ }_{80}$ For subunit 4, we compared data measured in 5 with the mean value obtained from the three independent molecules constituting the asymmetric unit in $\mathbf{4}$, obtained as single crystals by sublimation under vacuum (α-form). ${ }^{\text {! }}$ The C-C distances measured in $\mathbf{5}$ are $0.007(4) \AA$ longer than those measured in free 4 (mean values on all
85 the C-C bonds). In spite of the marginal significance of this value, one can note that the difference is $0.014 \AA$ when going from 4 to the $\mathrm{BQ} / \mathrm{H}_{2} \mathrm{Q}$ quinhydrone, both determined at RT. ${ }^{8,16}$
The ${ }^{1} \mathrm{H}$ NMR spectrum of an equimolar mixture of $\mathbf{1}$ and $\mathbf{2}$ in $\mathrm{CD}_{3} \mathrm{CN}$ indicates that the reaction depicted in scheme 1 is quantitative after
${ }_{90}$ few minutes. The spectrum of crystals of 5 dissolved in $\mathrm{CD}_{3} \mathrm{CN}$ confirms that $\mathbf{3}$ and $\mathbf{4}$ are in a ratio 2 to 1 . Peaks attribution of $\mathbf{3}$ was achieved from the different coupling constants and homogeneous decoupling experiments. In contrast with previously published works, the signal at 6.71 is not a singlet, ${ }^{17,18}$ but remains as two
${ }_{95}$ doublets (Fig. 2). The methoxy group does not appear as a singlet but as one doublet. Irradiation at 3.8 ppm induces a modification of the peak at 6.0 ppm , which then appears as a doublet of doublet, without modification of the other signals. Reversebly, irradiation at 6.0 ppm transforms the signal at 3.8 ppm into a singlet. So, a 100 coupling phenomenon exists between protons of methoxy group and H5. That could be also observed in pure CDCl_{3} and when solution was diluted ten times in $\mathrm{CD}_{3} \mathrm{CN}$. No variation of chemical shift was observed between pure $\mathbf{3}^{¥}$ and mixtures of $\mathbf{3}$ and $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{CN}$, indicating no intermolecular interaction between acceptor and donor ${ }_{105}$ components in that solvent.

Fig. $2{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}$ in $\mathrm{CD}_{3} \mathrm{CN}$.
In acetonitrile, reaction occurs rapidly between $\mathbf{1}$ and $\mathbf{2}$ at room temperature, but absorption spectra of equimolar mixtures of $\mathbf{1}$ and ${ }_{110} \mathbf{2}$ correspond to the superimposition of individual spectra of $\mathbf{3}$ and $\mathbf{4}$ (Fig. 3) indicating that products $\mathbf{3}$ and $\mathbf{4}$ do not interact.
The absorption spectrum of $\mathbf{5}$ obtained in the solid state from a KBr pellet shows a strong and broad absorption band centered at 575 nm (Fig. 3). Films are violet in color. Solid mixtures of $\mathbf{1}$ and $\mathbf{2}$ and of $\mathbf{3}$ 115 and $\mathbf{4}$ show the same spectra as $\mathbf{5}$, indicating that the redox reaction occurs rapidly, in the minute range, at room temperature.
We also prepared films from acetonitrile solutions of $\mathbf{1}$ and poly(methyl metacrylate) (PMMA), which after exposure to $\mathbf{2}$ at RT exhibit the same charge transfer band. We are now applying the same 120 synthetic route to other more elaborated molecules.

Fig. 3 Absorption spectrum of an equimolar mixture of 1 and 2 in acetonitrile (dotted line), and in the solid state (KBr pellet) (solid line).

We would like to thank E.S.P.C.I - Paris and UPMC for supporting ${ }_{125}$ this work. Drs R. Thouvenot and J. Canny (UPMC) are gratefully acknowledged for NMR decoupling experiments.

Notes

\ddagger Synthesis of compound 5: A Schlenk tube containing a mixture of $\mathbf{1}$ (50 $\mathrm{mg}, 0.35 \mathrm{mmol})$ and $2(50 \mathrm{mg}, 0.46 \mathrm{mmol})$ was purged under argon, then

130 evacuated under primary vacuum and closed. The Schlenk is heated in an home-made vertical oven from room temperature to $100^{\circ} \mathrm{C}$, at an heating rate of $0.1^{\circ} \mathrm{min}^{-1}$, then maintained at $100^{\circ} \mathrm{C}$ for 13 h . Black needles, 2 cm long, were formed 2 cm above the oven. 5: M.P.: $136{ }^{\circ} \mathrm{C}$ (dec.) IR (KBr): 1677, $1640(\mathrm{~s})(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$, UV-Visible: $\lambda_{\max }(\mathrm{KBr}) 575 \mathrm{~nm},{ }^{1} \mathrm{H}$ NMR of 135 dissolved crystals ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=3.81\left[\mathrm{~d}, \mathrm{~J}_{\text {ОСн3-5 }}=0.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, OCH_{3}]; 6.01 [ddq, $\mathrm{J}_{5-6}=1.9 \mathrm{~Hz}, \mathrm{~J}_{5-3}=0.4 \mathrm{~Hz}, \mathrm{~J}_{5-\mathrm{OCH} 3}=0.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}$], 6.46 [s broad, $2 \mathrm{H}, \mathrm{OH}], 6.70[\mathrm{~s}, 4 \mathrm{H}, \mathrm{ArH}], 6.705\left[\mathrm{~d}, \mathrm{~J}_{5-6}=1.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6}\right]$, $6.71\left[\mathrm{~d}, \mathrm{~J}_{3-5}=0.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}\right],{ }^{13} \mathrm{C}$ NMR ($75,47 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) 57.2 (OCH3), 108.7 (C3), 116.9 (CH, H2Q), 135.7 and 138.0 (C5, C6), 151.1 $140\left(\mathrm{COH}, \mathrm{H}_{2} \mathrm{Q}\right), 160.1(\mathrm{C} 2), 183.0$ and $189.0(\mathrm{C1}$ and C4). Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{8}$: C, 62.18%; H, 4.70%. Found: C, $61.54 \% ; \mathrm{H}, 4.92 \%$.
$¥$ Compound $\mathbf{3}$ was synthesized from $\mathbf{1}(130 \mathrm{mg}, 0.93 \mathrm{mmol})$ and $\mathbf{2}(100$ $\mathrm{mg}, 0.92 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}$ and purified on silicagel (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). Yield $=70 \%$. 3: M.P.: $136^{\circ} \mathrm{C}$ (dec.), lit. $134^{15} \mathrm{IR}$ (KBr): 1679 (s), 1647 (s) (C=O)
$145 \mathrm{~cm}^{-1}$, UV-Visible: $\lambda_{\text {max }}\left(\mathrm{CH}_{3} \mathrm{CN}\right) 252 \mathrm{~nm}(\log \varepsilon=4.0), 357 \mathrm{~nm}(\log \varepsilon=$ 3.2), ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta=3.81\left[\mathrm{~d}, \mathrm{~J}_{\mathrm{OCH}-5}=0.4 \mathrm{~Hz}, 3 \mathrm{H}\right.$, OCH_{3}]; 6.01 [ddq, $\mathrm{J}_{5-6}=1.9 \mathrm{~Hz}, \mathrm{~J}_{5-3}=0.4 \mathrm{~Hz}, \mathrm{~J}_{5-\mathrm{OCH} 3}=0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{5}$], $6.705\left[\mathrm{~d}, \mathrm{~J}_{5-6}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{6}\right], 6.71\left[\mathrm{~d}, \mathrm{~J}_{3-5}=0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}\right]$.
§ Crystal data for 5: $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{8}, \mathrm{Fw}=386.36$, triclinic, $\mathrm{P}-1, \mathrm{a}=6.6793$ (14), $150 \mathrm{~b}=8.117$ (2), $\mathrm{c}=9.238$ (2) $\AA, \alpha=69.157$ (14), $\beta=69.931$ (19), $\gamma=81.34$ (2) ${ }^{\circ}, \mathrm{V}=439.42$ (19) $\AA^{3}, \mathrm{Z}=1, \mathrm{D}_{\mathrm{c}}=1.46 \mathrm{~g} \mathrm{~cm}^{-3}$, were measured on a KAPPACCD-Enraf Nonius diffractometer. $\lambda(\mathrm{MoK} \alpha)=0.71073 \AA, \mu$ $(\mathrm{MoK} \alpha)=1.14 \mathrm{~cm}^{-1}, 8218$ reflections $\left(\mathrm{T}=200 \mathrm{~K}, 2<\theta<32{ }^{\circ}\right)$, nb of independent data collected: 2825, nb of independent data used for 155 refinement: $1387\left((\mathrm{Fo})^{2}>1.5 \sigma(\text { Fo })^{2}\right.$, merging $\mathrm{R}=0.034, \mathrm{R}=\Sigma| | \mathrm{Fo}|-| \mathrm{Fc}$ $\| / \Sigma \mid \mathrm{Fo}=0.0578, \mathrm{Rw}^{*}=\left[\Sigma \mathrm{w}(| | \mathrm{Fo}|-| \mathrm{Fc} \|)^{2} / \Sigma \mathrm{wFo}^{2}\right]^{1 / 2}=0.0597$, $0.297<\Delta \rho<0.424$.

- Crystal data for 4: R-3, at $200 \mathrm{~K} \mathrm{a}=\mathrm{b}=38.567, \mathrm{c}=5.6650 \AA$ (α-form, lit. ${ }^{16}$ at $\left.300 \mathrm{~K}, \mathrm{a}=\mathrm{b}=38.46, \mathrm{c}=5.650 \AA\right), \alpha=\beta=90$ and $\gamma=120^{\circ}$, and Z $160=18$.

References

G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
M. C. T. Fyfe and J. F. Stoddart, Acc. Chem. Res., 1997, 30, 393.
P. Metrangolo and G. Resnati, Chem. Eur. J., 2001, 2511.
165^{4} M. Oh, G. B. Carpenter, and D. A. Sweigart, Organometallics, 2002, 21, 1290.
5 J. Moussa, C. Guyard-Duhayon, P. Herson, H. Amouri, M. N. Rager, and A. Jutand, Organometallics, 2004, 23, 6231.
${ }^{6}$ J. Regeimbal, S. Gleiter, B. L. Trumpower, C.-A. Yu, M. Diwakar, D. 170 P. Ballou, and J. C. A. Bardwell, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13779.
${ }^{7}$ T. Sakurai, Acta Crystallogr., 1965, B19, 320.
8 T. Sakurai, Acta Crystallogr., 1968, B24, 403.
${ }^{9}$ F. D'Souza and G. R. Deviprasad, J. Org. Chem., 2001, 66, 4601.
$175{ }^{10}$ S. Meddeb-Limem, B. Malézieux, S. Besbes-Hentati, H. Said, P. Herson, J.-C. Blais, and M. Bouvet, J. Phys. Org. Chem., 2005, 18, 1176.

11 G. R. Desiraju, D. Y. Curtin, and I. C. Paul, J. Org. Chem., 1977, 42, 4071.
180^{12} A. O. Patil, D. Y. Curtin, and I. C. Paul, J. Am. Chem. Soc., 1984, 106, 4010.
${ }^{13}$ A. O. Patil, D. Y. Curtin, and I. C. Paul, J. Am. Chem. Soc., 1984, 106, 348.

14 K. K. Kalninsh, J. Chem. Soc., Perkin Trans. 2, 1984, 80, 1529.
185^{15} E. M. D. Keegstra, A. L. Spek, J. W. Zwikker, and L. W. Jenneskens, J. Chem. Soc., Chem. Commun., 1994, 1633.

16 S. C. Wallwork and H. M. Powell, J. Chem. Soc., Perkin Trans. 2, 1980, 641.
${ }^{17}$ J. M. Saa, A. llobera, A. Garcia-Raso, A. Costa, and P. M. Deya, J. $190 \quad$ Org. Chem., 1988, 53, 4263.

18 T. Ling, E. Poupon, E. J. Rueden, S. H. Kim, and E. A. Theodorakis, J. Am. Chem. Soc., 2002, 124, 1226.

[^0]: \dagger Electronic Supplementary Information (ESI) available: 1. Crystallographic data for compound 5 are available free of charge from the Cambridge Data Center via Internet at http://www.ccdc.cam.ac.uk/data request/cif (CCDC 294809). 2. Optical absorption spectra of a thin film of 1 in PMMA exposed to 2 , as a function of time (2a) and difference from the starting film showing the charge transfer band (2b). See http://dx.doi.org/10.1039/b000000x/

