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Abstract

Cloud Radio Access Network (C-RAN) has been proposed as a promising ar-

chitecture to overcome the challenges of next generation mobile networks (5G).

The main concept of C-RAN is to decouple the BaseBand Units (BBU) and

the Remote Radio Heads (RRH), and place the BBUs in common edge data

centers (or BBU pools) for centralized processing. The optimal assignment of

RRHs (or antennas) to edge data centers when jointly optimizing the fronthaul

latency and resource consumption is one of the key issues in the deployment of

C-RAN. This problem is NP-Hard and network operators need new assignment

algorithms that can scale with large problem sizes and find good solutions in

acceptable times. In this paper, we first model our constrained resource alloca-

tion problem by an exact approach based on Integer Linear Programming (ILP)

formulation. Then, and for sake of scalability, we propose new heuristic algo-

rithms with reduced complexity to rapidly achieve optimal (or near-optimal)

solutions for the assignment of antennas demands to the available edge data

centers. Simulation results highlight the efficiency and scalability of our pro-

posed approximation algorithms and their ability to provide good solutions in

negligible times.
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1. Introduction and motivation

To cope with dynamic and insatiable end-users demands in the telecommuni-

cations domain, Telecommunications Service Providers (TSPs) are investigating

new solutions to reduce CAPEX (CAPital EXpenses) and OPEX (OPerating

EXpenses) of their new infrastructures often based on Network Functions Vir-5

tualization (NFV) paradigm [1]. In fact, by sharing their NFV-Infrastructures

(NFVI), these players can significantly reduce their operational costs and hence

maximize their profit when satisfying larger number of end-users and subscribers

of their new virtualized services.

The virtualization and cloudification of Radio Access Networks (RAN) have10

been identified as a good candidate to efficiently optimize the network deploy-

ment costs, e.g. CAPEX and OPEX, of these actors. In this context, C-RAN

has been proposed as a promising network architecture for next generation mo-

bile networks, that combines NFV and cloud computing concepts to enhance

the network utilization efficiency and achieve cost savings. In fact, unlike con-15

ventional networks where the baseband functions reside on the cell sites along

with the antennas, C-RAN decouples the traditional base station into RRHs and

centralized BBUs that are pooled in common locations called BBU pools and

used as shared resources between multiple cell sites. Figure 1 illustrates C-RAN

architecture and focuses on three main components: (i) RRHs (antennas), (ii)20

BBU pools (edge data centers) and (iii) fronthaul network.

The centralization of computing resources in C-RAN enables to achieve costs

savings and resource utilization gains (see [2], [3] and [4], for instance). How-

ever, such gains can be only reached when optimally assigning the heterogeneous

antennas demands, with strict latency and processing expectations, to the avail-25

able edge data centers. Hence, TSPs are investigating new resource allocation

algorithms to efficiently allocate the limited processing resources of the edge

data centers to the antennas demands when jointly meeting the latency and

processing requirements.
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Figure 1: C-RAN architecture and components

1.1. Objective and contributions30

This paper focuses on proposing new optimization algorithms to efficiently

assign the antennas demands to the edge data centers in order to improve the

efficiency of network resource utilization when meeting strong latency require-

ments on the fronthaul network. To reach these objectives, we propose an exact

approach based on ILP formulation to derive an appropriate algorithm to find35

optimal solutions for the RRH-BBU assignment problem. This exact approach

provides the best RRH-BBU assignment strategies by jointly reducing the fron-

thaul latency and the resource consumption. However, the ILP approach can

only deal with small and medium problem instances. Thus, for larger problem

instances, we propose three approximation algorithms, based on exact theories40

and approaches, that scale well and converge reasonably fast. Our proposed

algorithms, exact and heuristics, are summarized as follows:

1. ILP formulation: is an exact approach based on the convex hull de-

scription of the constrained resource allocation problem to identify the

most appropriate strategies for the assignment of antennas demands to45
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the available edge data centers. The proposed ILP formulation will jointly

optimize the communication latency and the network resource consump-

tion. This approach guarantees optimal (best) solutions for the RRH-BBU

assignment problem.

2. Matroid-based algorithm: we propose a new approximation algorithm50

based on Matroid theory [5] to deal with RRH-BBU assignment problem.

Matroid is an exact approach and we use it with minor modifications

to propose a heuristic algorithm for the addressed problem. It is worth

noting that this is the first time matroid theory will be used to address

constrained resource allocation problems in the context of C-RAN.55

3. b-Matching-based algorithm: we investigate new formulation based

on b-matching approach [6] that aims to find the minimum weight match-

ing between antennas and edge data centers, with limited capacity of

processing, when satisfying the expected communication latency.

4. Multiple knapsack-based algorithm: we propose an approximation60

algorithm based on multiple knapsack formulation, which has been very

used in the literature to solve many variants of resource allocation prob-

lems (for instance [7], [8], [9] and [10]). In this paper, we use the multiple

knapsack formulation to address the RRH-BBU assignment problem in

the context of C-RAN.65

1.2. Paper organization

The rest of this paper is organized as follows: Section 2 is dedicated to deeply

analyze the most relevant works in the literature addressing the RRH-BBU as-

signment problem. Section 3 describes our system model for the addressed

problem and discusses its complexity. Section 4 introduces our proposed algo-70

rithms, exact and heuristics. Numerical results are presented in Section 5 to

highlight the performance of our proposed algorithms using several scenarios.

Conclusion and future research challenges are presented in Section 6.
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2. Related work

The deployment of C-RAN architecture, where the infrastructure is shared75

across multiple cell sites, is expected to reduce network costs (CAPEX and

OPEX) as well as to improve the resource utilization efficiency [11]. To achieve

these goals, TSPs investigate new algorithms to determine the best strategies to

assign RRHs to BBUs (known as RRH-BBU assignment problem) when jointly

meeting the strong latency expectations and the processing requirements of80

antennas demands.

In this context, authors in [12] and [13] discussed new mathematical modeling

to cope with RRH-BBU assignment problem. They proposed a mathematical

formulation based on ILP approach in which only BBUs processing capacity

constraints are considered. The proposed exact optimization model does not85

take into account the transmission delay on the fronthaul network and the la-

tency requirements of antennas demands. To cope with scalability issues, both

these references proposed approximation algorithms that do not guarantee the

convergence to an optimal solution. In our paper, we address the RRH-BBU

assignment problem when taking into account strong latency expectations and90

respecting the edge data centers’ limited capacity constraints. Our joint opti-

mization is represented by an exact formulation before investigating heuristic

algorithms that converge to near-optimal solutions in acceptable times.

Authors of reference [14] proposed a load-aware dynamic mapping between

RRHs and BBUs with the aim of minimizing the number of active BBUs required95

to process the computational resource demands. The authors introduced a

heuristic DRA (Dynamic RRH Assignment) to dynamically optimize the BBU

pooling gain. They claimed that their approach delivers an almost optimal

performance in terms of computational resource gain and convergence time as

compared to First-Fit Decreasing (FFD) algorithm. Similarly, another resource100

allocation algorithm was introduced in [15] to minimize the number of active

BBUs, that are required to serve all users in the network, in order to save more

energy. In our work, and in addition to the proposed ILP formulation used as
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reference to benchmark other algorithms, we propose three heuristic approaches

to guarantee the convergence of the constrained resource allocation problem to105

optimal solutions in negligible times.

Another work addressing the RRH-BBU assignment problem was proposed

in [16]. Indeed, the authors of this paper proposed a greedy algorithm to assign

the aggregated demands of each cell to the BBU pool in such a way that the

power consumption of the physical resources is minimized. The authors did not110

consider the latency requirements of cells in their optimization model. Since the

latency and transmission delay constraints are very strong in the context of C-

RAN, we propose exact and heuristic algorithms based on a joint optimization

of communication latency and computing resource allocation.

In [17], the authors introduced a mathematical formulation based on ILP to115

optimally assign antennas demands to different BBU pools. This work aims to

minimize the length of fiber while maximizing the statistical multiplexing gain

for each BBU pool hosting the baseband functions. The proposed approach

shows that the optimal assignment of RRHs to the BBU pools depends on

the length of fiber and BBU resources. In this paper, we proposed an exact120

formulation for the same problem and to scale, our contribution consists in

investigating new and rapid approaches to guarantee the convergence to near

optimal solutions when considering the same parameters than those used in [17].

Authors in [18] investigated new algorithms to determine the best strate-

gies for RRH-BBU mapping by finding the optimal clustering of existing RRHs.125

They modeled this problem as bin packing problem when considering two main

constraints : (i) the radio resources of each active BBU must be enough to

meet the demands of its mapped RRHs and (ii) the set of antennas that will

be assigned to a BBU should be geographically adjacent. Exact and heuristic

algorithms are provided to reduce the network power consumption when guaran-130

teeing good Quality of Service (QoS) for end-users. Nevertheless, the proposed

formulation did not consider the communication latency on the fronthaul net-

work joining RRHs to BBU pools. In our work, we address the same problem by

proposing an exact approach based on ILP model and approximation algorithms

6



to find the best assignment of antennas to centralized data centers when jointly135

considering the limited processing capacity in BBU pools and the transmission

delay on fronthaul links.

Authors in [19] proposed an exact approach based on ILP formulation to

determine the optimal placement of BBU pools over a Wavelength Division

Multiplexing (WDM) aggregation network. Their optimization proposal jointly140

minimizes the number of necessary BBU pools and the total number of optical

fiber links when meeting the strong latency expectations on the fronthaul net-

work. In our paper, and in addition to the ILP formulation, we propose three

approximation algorithms to find good strategies to assign antennas demands to

the centralized data centers when considering different transport requirements145

and limited capacity of processing in BBU pools. The aim of our algorithms is

to jointly satisfy the latency requirements and achieve resource utilization gains

in terms of number of necessary BBU pools. The obtained solutions by the

ILP-based approach will be used to benchmark the performance of our heuristic

algorithms in terms of resource utilization, convergence time and scalability.150

Authors in [20] discussed the placement of the fog nodes in a Fog Com-

puting/NFV environment (equivalent to BBU pools in the context of C-RAN)

while meeting 5G mobile network requirements. They proposed a mathemat-

ical formulation based on Mixed-Integer Linear Programming (MILP) which

consists in minimizing the number of fog nodes and their capacities under strict155

latency requirements and limited processing capacity constraints. Then, for

sake of scalability, they proposed a heuristic algorithm called Hybrid Simulated

Annealing (Hybrid-SA) that combines SA method and some local search tech-

niques to reduce the necessary time to obtain solutions, especially for large

problem instances. Simulation results highlight the efficiency of the Hybrid-SA160

algorithm and its ability in minimizing the number of fog nodes. However, the

convergence time of this algorithm remains a bit high when considering large

problem instances. In our paper, we investigate an exact approach based on

ILP model and three heuristic algorithms with similar objective and constraints

to deal with the RRH-BBU assignment problem in the context of C-RAN. Ac-165
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cording to different performance metrics, we deeply analyze the performance

of our heuristic algorithms with the aim of providing optimal or near optimal

solutions in a negligible convergence time (compared to the convergence time of

the Hybrid-SA algorithm) even for large network sizes.

Some other existing works (for instance [21], [22] and [23]) addressed the170

resource allocation problem in the context of C-RAN by only focusing on min-

imizing the energy consumption in the BBU pool without taking into account

the fronthaul latency constraints. In our work, we seek new algorithms to re-

duce the network costs by jointly optimizing the resource consumption and the

communication latency in order to achieve optimal utilization of computing re-175

sources.

3. Problem statement

In this section, we describe the system model that we consider to address the

RRH-BBU assignment problem and we introduce all variables and parameters

used in the description of the problem. Then, and before providing our proposed180

algorithms, we discuss the complexity of the RRH-BBU assignment problem

when considering all constraints that will be defined below.

3.1. System model

We consider the system model, as shown in Figure 2, to define the con-

strained resource allocation problem that aims to efficiently assign the antennas185

demands to the most appropriate edge data centers when strict latency and pro-

cessing requirements are met. Our system model represents a C-RAN network

where RRHs (antennas) and BBU pools (edge data centers) are deployed in a

large area. As depicted in Figure 2a, our network architecture contains a set

of antennas, denoted by I , each of which is defined by a position on the plane.190

These antennas i ∈ I have variable expected latencies li and processing require-

ments in terms of CPU cores ci, depending on aggregated end-users’ demands.

The RRHs are served by a finite set of available edge data centers denoted by
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J . Each edge data center j ∈ J has a limited computing processing capacity Cj

expressed as number of CPU cores.195

ED1(C1)

ED2(C2)

A1

A2

A3

A4(c4; l4) A5

A6

A7

L21

(a) Network topology

ED1(C1)

ED2(C2)

A1

A2

A3

A4(c4; l4)

A5

A6

A7

L21

(b) bipartite graph

C1 (resp. C2) : total number of available CPU cores in BBU pool ED1 (resp. ED2)

c4 : number of CPU cores requested for processing the demands of antenna A4

l4 : expected latency for processing the demands of antenna A4

L21 : communication latency on the fronthaul link between A2 and ED1

Figure 2: System model for constrained resource allocation problem

The antennas are connected to the edge data centers via fronthaul network,

which is represented by a set of communication links. Each fronthaul link be-

tween an antenna i ∈ I and an edge data center j ∈ J has a transmission

delay Lij that should be kept below 1 millisecond in order to meet HARQ1

requirements (see [2], [24] and [25]). This requires that the maximum distance200

dij between RRH i and BBU pool j must not exceed 20 to 40 kilometers ([2]

and [26]). The data traffic on the fronthaul network can be transmitted using

different protocols, most commonly CPRI [27], or in some cases OBSAI [28]. In

our system model, and according to [2] and [29], the transmission delay on the

fronthaul network is 5 microseconds per Kilometer and thus the commu-205

nication (fronthaul) latency between RRHs and BBU pools vary between 100

1HARQ (Hybrid Automatic Repeat reQuest) is the process that poses the most stringent

delay requirement for cellular networks
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and 200 microseconds at the most.

As depicted in Figure 2, our network topology (Figure 2a) can be modeled

by a weighted bipartite graph G = (I ∪ J , E) containing a set of antennas I in

one side, a set of edge data centers J in the other side and a set of fronthaul links210

represented by the set of edges E. The weight value, denoted by Lij , on each

edge in the graph G represents the communication latency between the antenna

i ∈ I and the edge data center j ∈ J . The bipartite graph G = (I ∪ J , E) will

be used to efficiently assign each antenna to exactly one edge data center

when meeting the processing and latency requirements.215

For sake of clarity, we give in Figure 3 a simple example of C-RAN network

which is composed by 6 RRHs (antennas), 2 edge data centers (BBU pools) and

a fronthaul network represented by a set of communication links.

(a) Initial graph (b) Final graph

Figure 3: A solution example of the constrained resource allocation problem

The constrained resource allocation problem consists in determining the opti-

mal strategies to assign the antennas demands to the available edge data centers220

under strict processing and latency requirements. Hence, we aim to select, in the

bipartite graph of Figure 3a, the optimal matching of all considered antennas
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with the available edge data centers. The optimal assignment of all considered

antennas to the BBU pools is achieved when latency and resource consumption

(number of used edge data centers) are minimized. The right graph (Figure 3b)225

represents a feasible solution of the RRH-BBU assignment problem.

For sake of clarity, we summarize in Table 1 all variables and parameters

that will be used, in the following, to model the constrained resource allocation

problem.

Table 1: Variables and parameters

G = (I ∪ J , E) : weighted bipartite graph

I : set of antennas/RRHs

J : set of edge data centers/BBU pools

E : set of communication links between I and J

dij : distance between an antenna i (with coordinates (xi, yi)) and an edge

data center j (with coordinates (xj , yj))

ci : total number of CPU cores requested for processing the aggregated de-

mands of antenna i

Cj : available computing resources (CPU cores) in each edge data center j

li : expected latency for processing the aggregated demands of antenna i

Lij : transmission delay (latency) on the communication link between an an-

tenna i and an edge data center j

230
3.2. Problem complexity

Before investigating new algorithms to solve the RRH-BBU assignment prob-

lem, we address in this section the problem’s complexity. We provide a theorem

and a proof confirming the problem’s NP-Hardness.

Theorem 3.1. Finding the optimal assignment of the antennas (RRHs) de-235

mands to available edge data centers (BBU pools) is an NP-Hard problem.
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Proof As it is described above, the constrained resource allocation problem

consists in finding the optimal assignment of antennas demands to the available

edge data centers with the aim of satisfying latency and processing require-

ments and minimizing network resource utilization. Our problem is close to the240

Generalized Assignment Problem (GAP) (see [30] for more details), which is a

classical generalization of both multiple knapsack problem [31] and bin packing

problem [32]. Indeed, GAP consists in finding a feasible packing of the items

(each item is defined by a size and a profit) into the bins (each bin has a limited

capacity) that maximizes the total profit.245

Our constrained resource allocation problem is very similar to GAP in which

the antennas can be considered as items and edge data centers are the bins. Fur-

thermore, compared to GAP, our constrained resource allocation problem has

additional constraints concerning the latency requirements on the communica-

tion links joining the antennas and edge data centers. Hence, the relaxation250

of these constraints give an instance of GAP which means that the optimal

solution of GAP is a feasible (not necessarily optimal) solution for RRH-BBU

assignment problem.

Authors in [31] and [33] have proven the NP-Hardness of GAP. Therefore, by

using the previous linear reduction from our problem to GAP, we deduce that255

our RRH-BBU assignment problem is also NP-Hard which means that finding

the optimal assignment of the antennas demands to the available edge data

centers is an NP-Hard problem.

4. Proposed algorithms260

In this section, we provide an exact approach based on ILP formulation to

determine the optimal assignment of antennas demands to the edge data centers.

Since the NP-hardness of the addressed problem (see the proof in Section 3.2),

we propose three approximation algorithms to rapidly deal with the RRH-BBU

assignment problem even for large problem instances.265
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4.1. Mathematical formulation based on ILP model

In this section, we investigate a new mathematical formulation based on ILP

approach to optimally solve the RRH-BBU assignment problem. It is worth not-

ing that this approach is proposed to provide optimal (best) solutions for small

and medium network sizes and these solutions will be used then as reference270

to benchmark the performance of our proposed heuristic algorithms according

to several performance metrics.

Decision variables

We start our problem’s modeling by introducing two decision variables as

follows:275

• xij is a binary decision variable, the value of which is 1 if the antenna

i ∈ I is assigned to the edge data center j ∈ J , and 0 otherwise.

• yj is a binary decision variable, the value of which is 1 if the edge data

center j is used (activated) to host at least one RRH (antenna), and 0

otherwise.280

Objective function

The objective of our RRH-BBU assignment problem is to efficiently allocate

the computing resources of the most appropriate (”best”) edge data centers to

the antennas demands when jointly satisfying their processing and latency re-

quirements. This objective will be reached by finding the best trade-off between

transport requirements on the fronthaul network and the number of active edge

data centers. In fact, similarly to [12], [19], [21] and [34], our objective function

(1) contains two terms : the first denotes the total assignment cost in terms

of communication latency on the fronthaul network and the second term repre-

sents the total network resource utilization in terms of used edge data centers.

Using this objective function, we aim to find an optimal solution for the RRH-

BBU assignment problem which is equivalent to select, in the final graph, the

optimal matching of all antennas to the available edge data centers when jointly
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optimizing the latency and the resource consumption (as shown in the example

of Figure 2).

min F =
∑
j∈J

∑
i∈I

Lij × xij +
∑
j∈J

yj (1)

Constraints

Constraints (2) guarantee that each antenna i is connected to exactly one

edge data center j. These constraints are considered in the graph solution of

Figure 3 where each antenna is mapped on exactly one edge data center.∑
j∈J

xij = 1, ∀i ∈ I (2)

Constraints (3) ensure that the assignment of antennas demands to the BBU

pools does not violate the edge data centers’ limited capacity constraints. In

fact, as mentioned in Section 3.1, each edge data center j has a limited processing

capacity Cj in terms of CPU cores and thus the total number of CPU cores

requested for processing all antennas must not exceed the available computing

resources of the selected edge data center.∑
i∈I

ci × xij ≤ Cj × yj , ∀j ∈ J (3)

Our optimization will select the most appropriate fronthaul links that satisfy

the latency requirements of the antennas demands. In fact, constraints (4)

impose that the transmission delay Lij on the selected communication link

between the antenna and the edge data center must not exceed the expected

latency li. Thus, as shown in Figure 3, only expected latencies will be kept in

the final solution. This is guaranteed by the following inequalities:

Lij × xij ≤ li, ∀i ∈ I ,∀j ∈ J (4)

Constraints (5) ensure that if there exists at least one antenna assigned to

the edge data center j (i.e.
∑
i∈I xij ≥ 1), then this edge data center is activated

(i.e. yj = 1) and can be used to host other antennas as long as its processing

capacity is not exceeded. We recall that the optimal assignment of antennas

14



demands to the edge data centers is reached when the number of used edge data

centers is minimized. This will help network operators to reduce their network

costs.

yj ≤
∑
i∈I

xij , ∀j ∈ J (5)

Our mathematical model is hence characterized by the above ILP formu-

lation which is represented by the objective function (1) and the set of above285

constraints (2), (3), (4) and (5). Using a Branch-and-Bound methods [35], our

proposed mathematical model explores all feasible solutions for the RRH-BBU

assignment problem and selects the best one allowing to find the optimal strate-

gies to assign the limited processing resources in the available edge data centers

to the antennas demands. This allows to achieve resource utilization gains by290

using a small number of edge data centers when meeting latency requirements.

Nevertheless, our addressed RRH-BBU assignment problem is NP-Hard (see

the proof in Section 3.2) and thus the necessary convergence time to obtain op-

timal solutions using this approach exponentially increases with the increase of

number of antennas demands. Hence, we need to investigate new approximation295

algorithms that converge rapidly and provide optimal or near-optimal solutions

for large problem instances.

In the following, we introduce three heuristic algorithms (i) matroid-based

approach, (ii) b-matching formulation and (iii) multiple knapsack-based algo-

rithm. We recall that the obtained solution by the exact approach based on300

ILP formulation is optimum (”best” solution) and will be used to evaluate the

quality of solutions provided by the proposed heuristic algorithms.

4.2. Matroid-based algorithm

In addition to the above exact model based on ILP formulation, we inves-

tigate new polynomial time algorithm that can scale to larger number of an-305

tennas and edge data centers. Since the exact solution is efficiently optimizing

the latency and the resource allocation jointly, we propose an approximation

algorithm based on matroid theory with similar properties and criteria.
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4.2.1. Matroids background and construction

In the following, we introduce the definition of a matroid using the theorem310

provided by [35].

Definition A matroid M = (E,F) is a structure in which E is a finite set

of elements and F is a family of subsets of E verifying the following principal

properties:

1. ∅ ∈ F .315

2. If A ∈ F and B ⊆ A, then B ∈ F .

3. If A,B ∈ F , and | B |>| A | thus ∃e ∈ B \A, such that A ∪ {e} ∈ F .

If F is only satisfying the properties (1) and (2), then we are invoking an

independent system. A basis of E is a maximal set in E, and all basis of a

matroid have the same cardinality. More details on matroid theory can be320

found in [5], [36] and [37].

Using the bipartite graph G = (I ∪ J , E) of Figure 3, the optimal solution

of the RRH-BBU assignment problem consists in hosting each antenna demand

in one edge data center. Similarly, in the bipartite graph G, each vertex i ∈ I

will be assigned to exactly one vertex j ∈ J , and each vertex j ∈ J can be a325

neighbor of different vertices in I as each edge data center can host more than

one antenna demand. This yields a solution as presented in Figure 3, showing a

forest of trees optimally linking antennas (RRHs) and edge data centers (BBU

pools). Thus, we propose the following theorem that defines our assignment

algorithm using matroid theory.330

Theorem 4.1. Let G = (I ∪ J , E) be a weighted bipartite graph as shown in

Figure 3. By relaxing data centers’ limited capacities constraints, M = (E,F)

is a matroid, with F = {I ⊆ E, I is a forest of trees}.

For the best of our knowledge, our matroid-based algorithm is well known in

the literature (see [5] for instance) and it is noted by the graphic matroid.335
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Proof The proof is given as follows:

• The first condition (1) of the definition 4.2.1 concerning matroids, is trivial.

• The second condition (2) of the definition 4.2.1: Suppose we have A ∈ F ,

and according to the definition of F , A is a forest of trees. Thus, if B ⊆ A,

then the connected components of B are also trees even by deleting one340

or multiple edges in A. This leads to easily conclude that B ∈ F .

• To prove the last condition (3) of the definition 4.2.1, we note by A =

∪ki=1Ai which represents the connected components (trees) of A. Then,

for all i = 1, . . . , k, we suppose Gi = (Ti, Ai), where Gi is a tree with |Ti|

vertices and |Ai| edges. This leads to deduce the number of vertices of A

given by

nA =

k∑
i=1

| Ti |=| A | +k. (6)

We also suppose B = ∪tj=1Bj , we note by G
′

i = (T
′

i , Bi), where G
′

i is a

tree with |T ′

i | vertices and |Bi| edges. The number of nodes of B is then

given by :

nB =

t∑
j=1

| T
′

i |=| B | +t. (7)

By using | B |>| A |, two cases are discussed:

1. If nB > nA (t > k) : We suppose that B reaches more vertices than

A, so there exists a vertex x covered by B and not by A. Suppose

that e ∈ B is an edge which contains x as one of its two extremities,345

we finally deduce that A ∪ {e} ∈ F .

2. If nB < nA : We suppose that the edges of B connects each couple

of nodes in A in the same connected component (tree) Ai. Using the

absurd reasoning, we suppose that there is no edge e ∈ B \A, leading

to get A ∪ {e} ∈ F . This means that:350

– The edge e ∈ B, relies two vertices in the same component (tree)

Ai and forms a cycle.
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In this case, the number of edges of B will verify | B |≤| V1 | + |

V2 | + . . .+ | Vk |, then | B |≤| A | which contradicts our hypothesis

| B |>| A |.355

The proposed matroid formulation, given by theorem 4.1, does not consider

the hypothesis of edge data centers’ limited capacity constraints, which are very

important in our RRH-BBU assignment problem. In fact, these constraints

influence the choice of the solicited edge data center to host antennas demands.

To introduce these constraints in our solution, we propose a simple modification360

in the matroid-based algorithm as illustrated below.

Algorithm 1 Matroid-based algorithm for RRH-BBU assignment problem

Put A = ∅;

le1 ≤ le2 ≤ . . . ≤ lem ;

for i = 1 to m do

if A ∪ {ei} ∈ F then

if cI(ei) ≤ CT (ei) then

A := A ∪ {ei}

CT (ei)− = cI(ei)

end if

end if

end for

lei is the communication latency on the edge ei;

I(ei) (resp. T (ei)) represents the initial (resp. terminal) extremity of the edge ei;

cI(ei) represents the number of CPU cores requested for processing the antenna demand

I(ei);

CT (ei)
represents the available amount of CPU in an edge data center T (ei).

4.2.2. Matroid-based algorithm’s complexity

It is important to evaluate the complexity of our proposed matroid-based

algorithm (Algorithm 1). We note that the addressed problem is NP-Hard, and

we need rapid and cost-efficient approaches to cope with this complexity.365
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Our proposed matroid-based algorithm, as described in Algorithm 1, has a

global complexity (in the worst case) of O (m ln(m) +m), where m ln(m) is the

complexity of sorting a set of m edges according to their weights (latency in our

case), and the ”For” loop indicated in Algorithm 1 iterates m times.

In addition to the matroid-based algorithm, we introduce in the following370

another heuristic algorithm based on b-matching approach. This proposal aims

to find the optimal mapping between RRHs and BBUs, when satisfying all

antennas demands. Using the b-matching algorithm, we seek to rapidly reach

optimal or near-optimal solutions for large instances of RRH-BBU assignment

problem. This may not be feasible with matroid-based approach, especially375

when the number of antennas demands becomes important (more than 100

antennas) and the computing resources in available edge data centers are limited.

4.3. b-Matching algorithm

To address larger problem instances, we propose a new heuristic approach

based on b-matching theory to attend optimal or near optimal solution in neg-380

ligible times. The proposed heuristic considers the bipartite graph described in

Section 3.1 and consists in finding the minimum weight b-matching to rapidly

assign the antennas demands to the available edge data centers. The definition

of the b-matching problem is introduced in the following [35] :

Definition Let G be an undirected graph with integral edge capacities u :385

E(G)→ N∪{∞} and numbers b : V (G)→ N. Then a b-matching in (G, u) is a

function f : E(G)→ Z+ with f(e) ≤ u(e) for all e ∈ E(G) and
∑
e∈δ(v) f(e) ≤

b(v) for all v ∈ V (G).

where V (G) (resp. E(G)) denotes the set of vertices (resp. edges) in the graph

G and δ(v) is a set of incident edges of v.390

According to this definition, we introduce new algorithm that solves the con-

strained resource allocation problem by finding the minimum weight b-matching

in the bipartite graph G = (I ∪ J , E). This algorithm will jointly consider the

latency constraints and the edge data center capacity constraints.
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Proposition 4.2. Let G = (I ∪ J , E) be a weighted bipartite graph as shown395

in Figure 3. The RRH-BBU assignment problem can be solved by finding the

minimum weight b-matching while considering the following parameters:

• The integral edge capacities : u = 1.

• b(v) = 1, ∀v ∈ I (I is a set of antennas).

• b(v) = min{|Iv|, b Cv
c(v)
c}, ∀v ∈ J (J is a set of edge data centers).400

where :

• Iv is a subset of antennas that can be assigned to the edge data center v ∈ J

when satisfying the expected latency and CPU cores number requested for

each antenna demand : Iv = {i ∈ I | li ≥ Lij ∧ ci ≤ Cj}.

• c(v) is the average number of CPU cores of antennas demands that can405

be assigned to the edge data center v ∈ J : c(v) =
∑
i∈Iv

ci

|Iv| .

In addition and in order to help our optimization to find optimal solution

with integer variables, we add the blossom inequalities given by the following

formula :∑
e∈E(G[X])

xe +
∑
e∈F

xe ≤ b
1

2
(
∑
v∈X

b(v) + |F |)c, ∀X ⊆ I ∪ J , F ⊆ δ(X) (8)

where E(G(X)) represents a subset of edges in the subgraph G(X) generated

by a subset of vertices X and δ(X) is a set of incident edges of X (for more

details, see [35] and [38]).

Finally, we use the obtained result of Proposition 4.2 to provide a new min-410

imum weighted b-matching formulation to polynomially solve the RRH-BBU

assignment problem. The mathematical formulation is given by the following
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model:

min F =
∑
e∈E Le × xe

S.T. :

∑
e∈δ(v) xe = 1, ∀v ∈ I ;

∑
e∈δ(v) xe ≤ min{|Iv|, b

Cv
c(v)
c}, ∀v ∈ J ;

∑
e∈E(G[X]) xe +

∑
e∈F xe ≤ b

1
2 (
∑
v∈X b(v) + |F |)c, ∀X ⊆ I ∪ J , F ⊆ δ(X);

xe ∈ R+, ∀e ∈ E;

(9)

4.3.1. b-Matching algorithm’s complexity

To assess the ability of the b-matching algorithm to find good solutions415

with large-scale graph instances in reasonable times, we analyze in this sec-

tion the complexity of the proposed algorithm. We note that the objective of

this algorithm is to assign antennas demands to available edge data centers

under hard latency requirements and limited processing capacity constraints.

The complexity of our proposed linear programming or b-matching solution is420

O
(
|V ||E|2 ln( |V |

2

|E| )
)

where V = I ∪J and E is the set of weighted links between

I and J . This approach is a simple linear program with a negligible complexity.

For interested readers, more details can be found in [39].

In the following, we introduce another heuristic algorithm using the multiple

knapsack formulation. As mentioned before, the multiple knapsack approach425

has been very well used to address resource allocation problems in different

contexts. In the context of C-RAN, we propose a modified algorithm based

on multiple knapsack formulation to solve the RRH-BBU assignment problem.

The solutions provided by this algorithm will be benchmarked with matroid,

b-matching and ILP algorithms to better evaluate the performance of our algo-430

rithms under different simulation scenarios and performance metrics.
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4.4. Multiple knapsack-based algorithm

In this section, we propose an approximation algorithm based on multiple

knapsack formulation. In fact, the multiple knapsack formulation is a gener-

alization of the classical knapsack problem (KP) from a single knapsack to m435

knapsacks with different capacities. The objective of multiple knapsack algo-

rithm is to assign each item to at most one of the knapsacks such that none of

the capacity constraints are violated and the total profit of the items put into

knapsacks is maximized. The multiple knapsack algorithm is introduced in the

following definition.440

Definition Given a set of n items and a set of m knapsacks (m < n), with pj

= profit of item j, wj = weight of item j, ci = capacity of knapsack i, find m

disjoint subsets of items with the total profit of the selected items is a maximum,

and each subset can be assigned to different knapsacks whose capacity is less

than the total weight of items in the subset.445

According to this definition and by considering the bipartite graph G =

(I ∪ J , E) described in Figure 3, we obtain the following equivalence between

the constrained resource allocation problem addressed in this paper and the

multiple knapsack formulation :

• The knapsacks are the edge data centers (j ∈ J ).450

• The antennas demands (i ∈ I ) are the items to be inserted in the knap-

sacks (data centers).

• The weight wj is the amount of CPU cores ci requested for processing the

antenna demand i.

• The profit pj does not vary between different antennas demands and can455

be set to 1 (pj = 1).

This formulation addresses our resource allocation problem by only focusing

on the processing capacity of the edge data centers without considering the la-

tency requirements of antennas demands. The relaxation of latency constraints

22



influences the choice of which edge data center will host the antennas demands.460

Therefore, in order to consider these constraints in our solution, we introduce a

simple modification in the multiple knapsack algorithm which consists in check-

ing if the expected latency is guaranteed before assigning the antenna demand

to the edge data center. We illustrate our multiple knapsack formulation in

Algorithm 2.465

Algorithm 2 Modified multiple knapsack Algorithm

Input: G = (I ∪ J , E), Antenna demands, Edge data centers.

Output: A joint mapping (CPU, Latency) of all antennas demands on the

available edge data centers.

This is summarized formally in steps:

Step 1: Sort the edge data centers (j ∈ J ) in increasing order of their CPU

capacities Cj ;

Step 2: Select the antennas demands that can be assigned to the selected

edge data center j by checking if :

• The expected latency of the antenna demand is provided by the com-

munication link joining it to the selected edge data center j;

• The available computing resources in the selected edge data center j

are greater than the number of CPU cores requested by the antenna

demand;

Step 3: Pick as many antennas demands as possible to the selected edge data

center using the dynamic programming approach (see [40], for instance);

Step 4: Update the total number of available CPU cores in the selected edge

data center;

Step 5: Repeat Steps 2, 3 and 4 until all considered antennas demands are

assigned to the edge data centers;
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5. Performance evaluation

The simulation and experiments use the optimization solver Cplex [41] for

the linear programming approaches, the exact approach based on ILP formu-

lation (Section 4.1) and the b-matching formulation (given by formula (9) in

Section 4.3 ). We first evaluate the performance of the exact algorithm and470

then we compare the obtained solutions (optimum) with those found by our

heuristic algorithms in terms of convergence time, scalability and optimality.

Each simulation scenario is run 100 times using different parameters.

5.1. Simulation settings and parameters

The performance evaluation of our algorithms is conducted using a 2.40 GHz475

PC with 8 GB RAM. The number of antennas is generated following a Poisson

process with a parameter Λ = λ× space dimensions, where λ is varying in the

range [0.1; 1], and space dimensions in the range [5; 20].

(a) space dimensions =

10× 10, λ = 0.3

(b) space dimensions =

10× 10, λ = 0.5

(c) space dimensions =

10× 10, λ = 0.8

(d) space dimensions =

10× 10, λ = 1.0

Figure 4: Example of simulation scenarios for RRH-BBU assignment problem
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In Figure 4, we illustrate four examples of simulation scenarios when con-

sidering a cellular network in a region of space dimensions space dimensions =480

10× 10 and varying the density of antennas λ ∈ {0.3; 0.5; 0.8; 1}.

Each antenna comprises a random number of demands (from end-users)

presented in terms of an amount of CPU cores in the [5; 10] interval (some papers

such as [16] and [42] are considering allocation of Physical Resources Blocks

PRBs, this is not changing our mathematical modeling and the convergence of485

our algorithms to good solutions). The number of edge data centers is set to

20, each of which has random computing resources (number of available CPU

cores) drawn in the [50; 200] CPU cores range. The workloads (i.e. aggregated

amount of end-users demands in terms of equivalent CPU cores) of the antennas

demands are expecting a latency to not exceed 1 millisecond and this is drawn490

randomly in the [0.1; 1] milliseconds range. For sake of clarity, we summarize

the simulation settings and parameters in Table 2.

Table 2: Simulation settings and parameters

Parameters Values

Density of antennas λ ∈ [0.1; 1]

Space dimensions 10× 10; 20× 20;...

Poisson parameter Λ = λ× space dimensions

Number of antennas Poisson distribution: P(Λ)

Antenna coordinates Uniform distribution:

U(0, space dimensions)

Number of edge data centers 20

Latency between antenna i and edge

data center j

5 µs/km

Expected latency of antenna i li ∈ [0.1ms; 1ms]

Number of CPU cores required by each

antenna i

ci ∈ [5; 10]

Number of CPU cores in each edge data

center j

Cj ∈ [50; 200]
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5.2. Performance metrics

The metrics used for the performance assessment of our algorithms (exact495

and heuristics) are detailed in the following :

• Convergence time: is the time needed by the algorithms to converge to

their best solutions.

• Resource utilization rate: is defined as the percentage of edge data

centers that are used to host the aggregated antennas demands and it can

be expressed as follows :

Resource utilization rate(%) =

∑
j∈J yj

|J |
× 100 (10)

where |J | is the total number of available edge data centers.

• Gap: is used to benchmark the proposed heuristics with the exact ILP

algorithm used as “reference and optimal solution”. With no loss of gener-

ality, we focus on the comparison of CPU resource consumption (expressed

by the percentage of edge data centers used to host all antennas demands).

We note that the quality of the solution provided by the heuristic algo-

rithms is better when the cost gap value is smaller (optimum when the

gap is equal to 0). This metric is formally expressed as:

Gap(%) =| Utilization rate(ILP)− Utilization rate(Heuristic) | (11)

• Rejection rate: is the average of the percentage of antennas demands

that cannot be assigned to each edge data center. This metric, can be ex-

pressed as a function of the decision variables (Section 4.1) and parameters

described in Table 1 :

Rejection rate(%) =
|I | −

∑
j∈J

∑
i∈I xij

|I |
× 100 (12)

where |I | is the total number of antennas.500

• SLA violations rate: is the average of over-used edge data centers in

terms of CPU cores. This metric will be mainly used to evaluate the ability
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of the matroid-based approach in finding optimal solutions that do not

violate the edge data centers’ limited capacity constraints (which are

defined, in the ILP formulation, by constraints (3)). We only focus on505

matroid-based algorithm (as defined by theorem 4.1) because there are no

SLA violations with ILP, b-matching and multiple knapsack approaches.

The average of SLA violations rate can be expressed as a function of

decision variables (Section 4.1) and parameters (described in Table 1).

SLA violations rate(%) =
1

|J |
×
∑
j∈J

∑
i∈I ci × xij − Cj × yj

Cj × yj
× 100 (13)

where |J | is the total number of available edge data centers.510

5.3. Performance analysis

5.3.1. Performance evaluation of ILP based approach

Table 3 depicts the performance results in terms of convergence time and

rejection rate of the exact algorithm based on ILP formulation. This algo-

rithm explores all feasible solutions before finding the optimum. This causes515

an exponential increase of the convergence time when increasing the number of

antennas. Indeed, the ILP approach needs more than 4 minutes (4.39 minutes)

to converge to optimal solutions for an instance of 400 antennas and 20 available

edge data centers. This is expected since the addressed problem is NP-Hard.

Thus, the ILP approach can be used for small or medium instances with a num-520

ber of antennas not exceeding 100. Furthermore, the rejection rate is always

equal to 0 which means that the exact approach based on ILP formulation is

always able to assign all antennas demands to the available edge data centers.
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Table 3: Performance of the exact approach based on ILP formulation

Space λ #Antennas Convergence time Rejection rate

10× 10

0.3 30 9.63s 0

0.5 50 10.92s 0

0.8 80 11.87s 0

1 100 12.58s 0

20× 20

0.3 120 62.09s 0

0.5 200 86.56s 0

0.8 320 2.87min 0

1 400 4.39min 0

5.3.2. Performance evaluation of heuristic algorithms525

In Table 4, we consider different simulation scenarios by varying the dimen-

sions of the considered space area as well as the density of deployed antennas

(see the examples in Figure 4). Using these simulations, we would like to evalu-

ate the performance of our proposed approximation algorithms: matroid-based

algorithm (Algorithm 1), b-matching formulation given by (9) and the multiple530

knapsack-based approach (Algorithm 2).

As shown in Table 4, our heuristic algorithms are benchmarked with the ILP

approach, that provides optimum solutions, using three performance metrics :

the convergence time, the gap (11) to compare with optimal solutions provided

by the exact approach and the rejection rate (12). We note that we calculate the535

gap only if the rejection rate is equal to 0, otherwise it is not really significant.

Table 4 highlights clearly the efficiency of the matroid-based algorithm in

finding near optimal solutions faster than the exact approach based on ILP

formulation. Indeed, the matroid approach provides good solutions with an

average gap not exceeding 7% in worst cases and needs 2 milliseconds to540

converge when considering large graphs of 400 antennas and 20 available edge

data centers. Thus, the matroid-based approach can be used to cope with large

problem instances.
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Table 4: Heuristic algorithms’ performance assessment

Space λ #Antennas Heuristic algorithm Convergence Gap(%) Rejection
time rate(%)

10× 10

0.3 30

matroid 0.28ms 7 0

b-matching 0.34s 7 0

multiple knapsack 0.57ms 8 0

0.5
50

matroid 0.38ms 5 0

b-matching 0.36s 5 0

multiple knapsack 1.01ms 11 0

0.8 80

matroid 0.51ms 6 0

b-matching 0.26s 5 0

multiple knapsack 1.69ms 15 0

1 100

matroid 0.88ms 6 0

b-matching 0.39s 4 0

multiple knapsack 3.35ms 15 0

20× 20

0.3 120

matroid 0.94ms - 1

b-matching 0.4s 4 0

multiple knapsack 4.35ms - 1

0.5 200

matroid 1.02ms - 4

b-matching 0.39s 6 0

multiple knapsack 7.71ms - 1

0.8 320

matroid 1.75ms - 17

b-matching 0.34s 6 0

multiple knapsack 25.44 - 3

1 400

matroid 2ms - 19

b-matching 0.33s 5 0

multiple knapsack 39.89ms - 4

However, the matroid approach comes with some drawbacks such as it cannot545

assign all antennas demands for large problem instances. This is shown by the

rejection rate metric of which its value can reach 19% for an instance of 400

antennas and 20 edge data centers.

To better evaluate the performance of our matroid-based algorithm, we cal-

culate the rejection rate when increasing the number of considered edge data550

centers. For that, we consider two network instances of 320 and 400 antennas

and we adjust the number of edge data centers from 20 to 60. The obtained

results of these simulations are represented by Figure 5.
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Figure 5: Matroid-based approach : rejection rate variation when increasing number of edge

data centers

The simulation results in Figure 5 show that the rejection rate depends

on the amount of available computing resources and thus decreases when the555

number of available edge data centers increases. In fact, for the first simulation

scenario (320 antennas), matroid-based algorithm attends a rejection rate equal

to 0 when there are at least 40 available edge data centers, while for the second

simulation scenario (400 antennas), the rejection rate vanishes when there are

at least 50 available edge data centers. This means that the matroid-based560

algorithm becomes more efficient when more resources (edge data centers) are

considered.

In addition and in order to get a better grasp of the relative performance

of the matroid-based approach, we illustrate in Figure 6 the SLA violations

rate behavior according to different network sizes. In fact, we consider four565

simulation scenarios : 50, 100, 200, 320 antennas to be efficiently assigned to a

number of edge data centers ranging from 20 to 100. We recall that, for this

simulation, we consider the matroid-based algorithm (as defined in theorem

4.1) when relaxing the edge data centers’ limited capacity constraints and we

calculate the SLA violations rate as defined by Formula (13).570
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Figure 6: SLA violations rate behavior of the matroid-based approach

Simulation results in Figure 6 confirm that the SLA violations rate decreases

when more processing resources (edge data centers) are considered. This con-

firms that the efficiency of the matroid-based algorithm depends on the amount

of the available processing resources and attends good solutions when more

resources (edge data centers) are used.575

5.3.3. Resource utilization behavior

Figure 7 depicts the percentage of resource utilization (in terms of num-

ber of used edge data centers) obtained by the three approximation algorithms

(matroid, b-matching and multiple knapsack) and the ILP approach. With a

weak advantage of the ILP method which consists in investigating all the feasi-580

ble solutions before keeping the optimal one, the matroid-based approach and

b-matching algorithms can find an efficient assignment of antennas demands to

the available edge data centers while the solution obtained by multiple knapsack

algorithm consumes a larger number of edge data centers (as shown in Figure

7a).585

It is important to mention that for larger problem instances (Figure 7b),

b-matching algorithm always provides a near-optimal solution in terms of re-

source utilization compared to the ILP solution with a rejection rate equal

to 0%. However, for matroid and multiple knapsack algorithms, the resource
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Figure 7: Resource utilization in different space dimensions
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utilization rate depends on the rejection rate (negligible but different from zero)590

in the case of large network size (see Figure 7b). Therefore, we deduce that

b-matching algorithm can easily scale when large problem instances

are considered and thus can be used by network operators to efficiently reduce

their network costs (CAPEX and OPEX) and achieve network utilization gains.

5.3.4. Algorithms’ performance evaluation using real traces595

To better evaluate the performance of our proposed algorithms, we consider

a real trace from a 4G-LTE cell map of the network operator Orange, in a

small area in Paris [43]. As shown in Figure 8, this topology represents a

cellular network containing 50 antennas with their given geographical positions600

(coordinates). Then, according to [2] and [24], we place 20 edge data centers on

the cell map such that the distance separating the antennas and the edge data

centers is between 20 and 40 Kilometers. Similarly to the simulation parameters

described in Table 2, we consider that each edge data center has a limited

capacity of processing in terms of CPU cores while the antennas demands have605

variable processing and latency requirements.

Figure 8: Real trace : Orange 4G-LTE cell map in Paris. Source: [43]
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In this experimentation, we apply our exact approach based on ILP formu-

lation (as described in Section 4.1) and the three proposed approximation algo-

rithms, including matroid-based algorithm (Algorithm 1), b-matching formula-

tion (9) and multiple knapsack-based approach (Algorithm 2), on the 4G-LTE610

cell map of Figure 8. The solutions provided by these algorithms are bench-

marked according to three performance metrics : convergence time, resource

utilization rate given by (10) and rejection rate defined by (12).

Table 5 shows that both matroid-based approach and b-matching formu-

lation provide optimal solutions (the same solution provided by the ILP ap-615

proach) in negligible times. In fact, with a weak advantage of the matroid-based

approach which converges to the optimum in 0.58 ms, the b-matching algorithm

can also find an efficient assignment of antennas demands to the available edge

data centers in 23.52 ms. However, the solution obtained by multiple knap-

sack algorithm consumes a larger number of edge data centers, with a resource620

utilization rate equal to 25%. Regarding the rejection rate metric, all proposed

algorithms can assign all considered antennas demands to the the available edge

data centers and satisfy their latency and processing requirements without SLA

violations.

Table 5: Performance evaluation using a real cellular network in Paris

Algorithm Convergence Resource utilization Rejection
time (ms) rate (%) rate (%)

ILP formulation 334.21 15 0

b-Matching algorithm 23.52 15 0

Matroid-based approach 0.58 15 0

Multiple knapsack algorithm 1.7 25 0

625
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5.3.5. Scalability evaluation

The performance assessment would not be complete without addressing the

scalability for very large problem instances. In fact, we propose a simulation

scenario with an instance of 400 antennas and number of edge data centers

in {60, 80} which are both generated according to the parameters detailed630

in the Table 2. Simulation results in Table 6 show the efficiency of matroid-

based approach and b-matching algorithm in finding good solutions in negligible

times compared to ILP approach. Indeed, the matroid algorithm provides near

optimal solutions (gap not exceeding 2%) in less than 28 milliseconds and the

b-matching algorithm can optimally solve the assignment problem in less than635

4 seconds (with gap value not exceeding 3%). However, the ILP approach

is not converging in more than 1hour due to the exploration of all feasible

solutions.

Table 6: Algorithms’ scalability assessment

#Antennas1 #Edge data
ILP b-Matching Matroid Multiple knasapck

centers2 Time Time Gap Time Gap Time Gap

400
60 34.28min 1.47s 3 6.42ms 2 82.84ms 18

80 1.02hour 3.97s 2 27.16ms 2 107.4ms 19

This simulation is executed 100 times with different parameters.

1 Antennas are generated as described in Table 2.

2 Edge data centers are randomly distributed as mentioned in Section3.1.

5.3.6. Comparative analysis of proposed algorithms

In this section, we present a comprehensive comparison of the proposed640

algorithms for the joint constrained resource allocation and RRH-BBU assign-

ment problem. A taxonomy of these approaches in terms of: i) computational

complexity ii) cost savings(including OPEX and CAPEX), iii) scalability, iv)

implementation difficulty are highlighted in Table 7. Thus, the matroid and

b-matching algorithm are globally more efficient in finding good solutions in645
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negligible times and in scaling larger problem instances. However, we note that

it is not easy to implement the b-matching algorithm (described in 9) due to the

high difficulty in the implementation of the blossom inequalities (constraints 8).

Table 7: Algorithms’ qualitative comparison

Algorithm Complexity Cost savings Scalability Implementation

difficulty

ILP-based algorithm Exponential

b-Matching algorithm Polynomial

Matroid-based algorithm Logarithmic

Multiple knaspack algo-

rithm

Linear

6. Conclusion650

In this paper, we addressed the RRH-BBU assignment problem with the ob-

jective of determining the best strategies to assign antennas demands to available

edge data centers when jointly optimizing communication latency and resource

consumption. For that, we proposed an exact algorithm based on ILP formula-

tion to find optimal solutions for small and medium network sizes. The exact655

algorithm optimizes the resource consumption (in terms of used edge data cen-

ters) and communication latency associated for assigning antennas demands

to the most appropriate edge data centers. However, this algorithm is known

to not to scale for large problem instances. Therefore, we proposed three ap-

proximation algorithms : matroid-based approach, b-matching algorithm and660

multiple knapsack-based algorithm to meet larger number of antennas demands

in negligible times.
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The performance evaluation has been conducted using different simulation

scenarios and a real 4G-LTE cellular network in a small region in Paris. Ac-665

cording to several performance metrics, the simulation results have revealed the

efficiency of the matroid-based approach and b-matching algorithm compared to

multiple knaspack formulation (the most used approach the literature to address

constrained resource allocation problems) and their ability in rapidly finding

optimal or near-optimal solutions even for large problem instances.670

This also was confirmed by the numerical results when considering a real trace

from a 4G-LTE cell map.

As a future work, we will consider the processing delay (compute latency)

of antennas demands in edge data centers. In fact, for sake of simplicity, we675

only considered the communication latency (transmission delay) on the fron-

thaul network joining antennas and edge data centers to model our RRH-BBU

assignment in the context of C-RAN. It would be very interesting to consider

also the BBU processing time required to perform different BBU functions, co-

located in the edge data centers. This can lead to nonlinear objective functions680

that should be efficiently optimized. The problem becomes more complex and

requires depth studies relying on Lagrangian relaxations, for instance. Further-

more, the data traffic on the fronthaul network, which connects the antennas to

the BBU pools, can be transmitted using different protocols including CPRI and

OBSAI. The fronthaul network can be realized by different technologies, such685

as optical fiber communication, standard wireless communication, or mmWave

communication [44]. The impact of these protocols and technologies can be

investigated to better evaluate the performance of our proposed models and

algorithms.
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