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The metric geometry of singularity types

Tamás Darvas, Eleonora Di Nezza, Chinh H. Lu

Abstract

Let X be a compact Kähler manifold. Given a big cohomology class {θ}, there is a natural
equivalence relation on the space of θ-psh functions giving rise to S(X, θ), the space of singularity
types of potentials. We introduce a natural pseudometric dS on S(X, θ) that is non-degenerate
on the space of model singularity types and whose atoms are exactly the relative full mass
classes. In the presence of positive mass we show that this metric space is complete. As
applications, we show that solutions to a family of complex Monge-Ampère equations with
varying singularity type converge as governed by the dS -topology, and we obtain a semicontinuity
result for multiplier ideal sheaves associated to singularity types, extending the scope of previous
results from the local context.

1 Introduction and main results

Let (X,ω) be a Kähler manifold with a smooth closed (1, 1)-form θ. An integrable real-valued
potential u belongs to PSH(X, θ) if locally u is the sum of a smooth function and a plurisubharmonic
function, moreover θ+ i∂∂̄u ≥ 0 in the sense of currents. The set PSH(X, θ) has plenty of members
when {θ} ∈ H2(X,C) is big, an assumption we will make throughout the paper.

Two potentials u, v ∈ PSH(X, θ) have the same singularity type if and only if there exists C ∈ R
such that u−C ≤ v ≤ u+C. This is easily seen to yield an equivalence relation, whose equivalence
classes [w], w ∈ PSH(X, θ) give rise to the space of singularity types S(X, θ). This latter space plays
an important role in transcendental algebraic geometry, as its elements represent the building blocks
of multiplier ideal sheaves, log-canonical thresholds, etc., bridging the gap between the algebraic
and the analytic viewpoint on the subject. We refer to the survey [Dem15] and references therein
for insight into this ever expanding circle of ideas.

The space PSH(X, θ) has a natural complete metric space structure given by the L1 metric.
However the L1 metric does not naturally descend to S(X, θ) making the study of variation of
singularity type quite awkward and cumbersome. Indeed, reviewing the literature, “convergence
of singularity types” is only discussed in an ad-hoc manner, under stringent conditions on the
potentials involved.

On the other hand, “approximating” an arbitrary singularity type [u] with one that is much
nicer goes back to the beginnings of the subject. Perhaps the most popular of these approximation
procedures is the one that uses Bergman kernels, as first advocated in this context by Demailly
[Dem92]. Here, using Ohsawa-Takegoshi type theorems one obtains a (mostly decreasing) sequence
[uj,B] that in favorable circumstances approaches [u] in the sense that multiplier ideal sheaves,
log-canonical thresholds, vanishing theorems, intersection numbers etc. can be recovered in the
limit (see for example [Bo02, Bo04, DP04, Ca14, Dem15] and references therein). Still, no metric
topology seems to be known that could quantify the effectiveness or failure of the “convergence”
[uj,B] → [u] (or that of other approximating sequences, for example the transcendental Bergman
kernels suggested in [Ber18]). In this work we propose an alternative remedy to this.

We introduce a natural (pseudo)metric dS on S(X, θ) and point out that it fits well with some
already existing approaches in the literature. The precise definition of dS uses the language of
geodesic rays from [DDL3, DL18] and is delayed until Section 3, however for the sake of a gentle
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introduction we note that there exists an absolute constant C > 1 only dependent on dimCX such
that:

dS([u], [v]) ≤
n∑
j=0

(
2

∫
X
θjVθ ∧ θ

n−j
max(u,v) −

∫
X
θjVθ ∧ θ

n−j
v −

∫
X
θjVθ ∧ θ

n−j
u

)
≤ CdS([u], [v]).

This is proved in Proposition 3.5. Here Vθ is the least singular potential of PSH(X, θ) and the
integration is carried out over the respective non-pluripolar products introduced in [BEGZ10].
Also, by [WN19] we have that the expression in the middle is indeed non-negative, and as a result
of dS being a pseudo-metric, this expression will also satisfy the quasi-triangle inequality!

As we will see in Theorem 3.3 below, dS([u], [v]) = 0 when the singularities of u and v are
essentially indistinguishable (the Lelong numbers, multiplier ideal sheaves, mixed masses of [u]
and [v] are the same). More precisely, dS([u], [v]) = 0 if and only if u and v belong to the same
relative full mass class, as introduced in [DDL2, Section 3]. In particular, u ∈ E(X, θ) if and only
if dS([u], [Vθ]) = 0. Consequently, the degeneracy of dS is quite natural!

Given the dS-continuity of [u]→
∫
X θ

n
u (Lemma 3.7) it is quite natural to introduce the following

subspaces for any δ ≥ 0:

Sδ(X, θ) := {[u] ∈ S(X, θ) :

∫
X
θnu ≥ δ}.

These spaces are dS-closed, and according to our first main result they are also complete:

Theorem 1.1. For any δ > 0 the space (Sδ(X, θ), dS) is complete.

Unfortunately the space (S(X, θ), dS) is not complete. This is quite natural however, as issues
may arise if the non-pluripolar mass vanishes in the dS-limit (see Section 4.2, where we adapt an
example of Demailly–Peternell–Schneider [DPS94] to our context).

As alluded to above, in general L1-convergence of potentials (or even convergence in capacity)
does not imply dS–convergence of their singularity types. However we note in Lemma 4.1 below
that if uj ↗ u pointwise a.e. then dS([uj ], [u]) → 0. In fact, Theorem 5.6 below gives a good
intuition in general about what dS-convergence really means. Omitting technicalities and somewhat
abusing precision, this result shows that dS([uj ], [u])→ 0 if and only if uj can be (subsequentially)
sandwiched between two sequences of potentials ψj ≤ uj ≤ χj such that {ψj}j is increasing, {χj}j
is decreasing and

∫
X θ

l
Vθ
∧ θn−lψj

↗
∫
X θ

l
Vθ
∧ θn−lu along with

∫
X θ

l
Vθ
∧ θn−lχj ↘

∫
X θ

l
Vθ
∧ θn−lu for any

l ∈ {0, . . . , n− 1}.
Suppose that u, v ∈ PSH(X, θ) is such that P (u, v) := sup{h ∈ PSH(X, θ) : h ≤ min(u, v)} ∈

PSH(X, θ). Then [max(u, v)] and [P (u, v)] represent the maximum and the minimum of the singu-
larity types [u], [v] respectively, and these four singularity types form a “diamond” in the semi-lattice
S(X, θ). The following inequality between the masses of these potentials is of independent interest,
and will be of great use in the proof of Theorem 5.6 mentioned above.

Theorem 1.2. Suppose that u, v, P (u, v) ∈ PSH(X, θ). Then∫
X
θnu +

∫
X
θnv ≤

∫
X
θnmax(u,v) +

∫
X
θnP (u,v).

As we will see, in case dimX = 1, the above inequality is actually an identity, however strict
inequality may occur if dimX ≥ 2 (see Remark 5.5).
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Applications to multiplier ideal sheaves. For [v] ∈ S(X, θ) we denote by J [v] the multiplier
ideal sheaf associated to the singularity type [v]. Recall that J [v] is the sheaf of germs of holomor-
phic functions f such that |f |2e−v is locally integrable on X. Providing a positive answer to the
Demailly strong openness conjecture [DK01], Guan–Zhou have shown that for any uj , u psh such
that uj ↗ u a.e. we have that J [uj ] = J [u] for j ≥ j0 [GZh15, GZh16], with a partial result ob-
tained earlier by Berndtsson [Bern15] (see also [Dem15, Hiep14, Le17] for related results). Below we
extend the scope of this theorem to the global context, providing a result that uses dS-convergence
and avoids the condition uj ≤ u:

Theorem 1.3. Let [u], [uj ] ∈ S(X, θ), j ≥ 0, such that dS([uj ], [u])→ 0. Then there exists j0 ≥ 0
such that J [u] ⊆ J [uj ] for all j ≥ j0.

The proof of this theorem involves an application of Theorem 1.2 and the local Guan–Zhou
result for increasing sequences [GZh15, GZh16]. Lastly, since uj ≤ u trivially gives J [uj ] ⊆ J [u],
together with the dS-convergence criteria of Lemma 4.1, our theorem contains the global version
of the Guan–Zhou result for increasing sequences of θ-psh potentials.

Motivated by a possible local analog of Theorem 1.3 it would be interesting to see if a local
version of the dS metric exists on the space of singularity types of local psh potentials.

Note that equality in the inclusion J [u] ⊆ J [uj ] of Theorem 1.3 can not be expected in general.
Indeed, dS([λu], [u]) → 0 as λ ↗ 1 for any u ≤ 0, however if u has log type singularity at some
x ∈ X, but is locally bounded on X \ {x}, then J [u] ( J [λu] = OX , λ ∈ (0, 1).

Applications to variation of complex Monge–Ampère equations. Finally, we turn to the
application that motivated our introduction of the dS-topology.

In a series of works [DDL2, DDL3, DDL4] the authors studied solutions to equations of complex
Monge–Ampère type with prescribed singularity. In a nutshell, one starts with a potential φ ∈
PSH(X, θ) and a density 0 ≤ f ∈ Lp(X), p > 1, and is looking for a solution ψ ∈ PSH(X, θ) such
that θnψ = fωn and [ψ] = [φ]. By [WN19] the condition

∫
X θ

n
φ =

∫
X fω

n > 0 is necessary for the
solvability of this equation. Beyond this normalization condition, as it turns out, the necessary and
sufficient condition for the well posedness is that [φ] satisfies [φ] = [P [φ]], where

P [φ] := sup{v ∈ PSH(X, θ) : [v] ≤ [u], v ≤ 0}.

Singularity types [φ] satisfying the above condition are of model type, and they appear in many
natural contexts, as described in [DDL2].

One might ask the question, what happens if one considers a family of such equations, where
the prescribed singularity type [φj ] converges to some fixed singularity type [φ]. In our next result
we obtain that in such a case, the solutions ψj converge to ψ in capacity as expected, further
evidencing the practicality of the dS-topology:

Theorem 1.4. Given δ > 0 and p > 1 suppose that:
◦ [φj ], [φ] ∈ Sδ(X, θ), j ≥ 0 satisfy [φj ] = [P [φj ]], [φ] = [P [φ]] and dS([φj ], [φ])→ 0.
◦ fj , f ≥ 0 are such that ‖f‖Lp , ‖fj‖Lp, p > 1, are uniformly bounded and fj →L1 f .
◦ ψj , ψ ∈ PSH(X, θ), j ≥ 0 satisfy supX ψj = 0, supX ψ = 0 and{

θnψj = fjω
n

[ψj ] = [φj ]
,

{
θnψ = fωn

[ψ] = [φ].

Then ψj converges to ψ in capacity, in particular ‖ψj − ψ‖L1 → 0.
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Organization. In Section 2 we recall several results in relative pluripotential theory developed
recently by the authors. The metric dS along with its basic properties are introduced in Section 3.
Theorem 1.1 is proved in Section 4 where an example is also given showing that the positive mass
condition is necessary. Theorem 1.2 is proved in Section 5, Theorem 1.3 is proved in Section 6, and
Theorem 1.4 is proved in Section 7.

Acknowledgments. The first named author has been partially supported by NSF grants DMS-
1610202 and DMS-1846942(CAREER). This work was finished while the authors participated in the
“Research in Paris” program of Institut Henri Poincaré, and we would like to thank the institute for
the hospitality and support. We thank the referees for the useful remarks/comments/clarifications
which improved the presentation of the paper.

2 Preliminaries

In this section we recall terminology and relevant results from the literature with focus on the works
[DDL1, DDL2, DDL3, DDL4], as well as [DL18]. We also point out some differences and extend
the scope of some results whenever necessary.

2.1 Model potentials and relative full mass classes

Let (X,ω) be a compact Kähler manifold of dimension n and fix θ a smooth closed (1, 1)-form
whose cohomology class is big. Our notation is taken from [DDL2, DDL3, DDL4] and we refer to
these works for further details.

A function u : X → R∪{−∞} is called quasi-plurisubharmonic (quasi-psh) if locally u = ρ+ϕ,
where ρ is smooth and ϕ is a plurisubharmonic (psh) function. We say that u is θ-plurisubharmonic
(θ-psh) if it is quasi-psh and θu := θ+i∂∂̄u ≥ 0 in the weak sense of currents onX. We let PSH(X, θ)
denote the space of all θ-psh functions on X which are not identically −∞. The class {θ} is big
if there exists ψ ∈ PSH(X, θ) satisfying θ + i∂∂̄ψ ≥ εω for some ε > 0. By the fundamental
approximation theorem of Demailly [Dem92], if {θ} is big there are plenty of θ-psh functions.

Given u, v ∈ PSH(X, θ), we say that

• u is more singular than v, i.e., u � v, if there exists C ∈ R such that u ≤ v + C;

• u has the same singularity as v, i.e., u ' v, if u � v and v � u.

The classes [u] ∈ S(X, θ) of this latter equivalence relation are called singularity types. When θ is
non-Kähler, all elements of PSH(X, θ) are quite singular, and we distinguish the potential with the
smallest singularity type in the following manner:

Vθ := sup{u ∈ PSH(X, θ) such that u ≤ 0}.

A function u ∈ PSH(X, θ) is said to have minimal singularity if it has the same singularity type as
Vθ, i.e., [u] = [Vθ].

Given θ1, ..., θn smooth closed (1, 1)-forms and ϕj ∈ PSH(X, θj), j = 1, ...n, following Bedford-
Taylor [BT76, BT82] in the local setting, it has been shown in [BEGZ10] that the sequence of
positive measures

1
⋂
j{ϕj>Vθj−k}θ

1
max(ϕ1,Vθ1−k)

∧ . . . ∧ θnmax(ϕn,Vθn−k) (1)

has total mass (uniformly) bounded from above and is non-decreasing in k ∈ R, hence converges
weakly to the so called non-pluripolar product

θ1ϕ1
∧ . . . ∧ θnϕn .
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The resulting positive measure does not charge pluripolar sets. In the particular case when ϕ1 =
ϕ2 = . . . = ϕn = ϕ and θ1 = ... = θn = θ we will call θnϕ the non-pluripolar Monge-Ampère measure
of ϕ, which generalizes the usual notion of volume form in case θϕ is a smooth Kähler form.

An important property of the non-pluripolar product is that it is local with respect to the
plurifine topology (see [BT87, Corollary 4.3],[BEGZ10, Section 1.2]). For convenience we record
the following version for later use.

Lemma 2.1. Fix closed smooth big (1, 1)-forms θ1, ..., θn. Assume that ϕj , ψj , j = 1, ..., n are
θj-psh functions such that ϕj = ψj on U an open set in the plurifine topology. Then

1Uθ
1
ϕ1
∧ ... ∧ θnϕn = 1Uθ

1
ψ1
∧ ... ∧ θnψn .

Lemma 2.1 will be referred to as the plurifine locality. For practice we note that sets of the
form {u < v}, where u, v are quasi-psh functions, are open in the plurifine topology.

As a consequence of Bedford-Taylor theory, the measures in (1) all have total mass less than∫
X θ

n
Vθ

, in particular, after letting k → ∞ we notice that
∫
X θ

n
ϕ ≤

∫
X θ

n
Vθ

. In fact it was proved in
[WN19, Theorem 1.2] that for any u, v ∈ PSH(X, θ) the following monotonicity result holds for the
masses:

v � u =⇒
∫
X
θnv ≤

∫
X
θnu .

This result was extended in [DDL2] for non-pluripolar products building on the following fun-
damental convergence property.

Theorem 2.2. Let θj , j ∈ {1, . . . , n} be smooth closed (1, 1)-forms on X whose cohomology classes
are big. Suppose that for all j ∈ {1, . . . , n} we have uj , u

k
j ∈ PSH(X, θj) such that ukj → uj in

capacity as k →∞. If χk ≥ 0 is a sequence of uniformly bounded quasi-continuous functions which
converges in capacity to a quasi-continuous function χ ≥ 0, then

lim inf
k→+∞

∫
X
χkθ

1
uk1
∧ . . . ∧ θnukn ≥

∫
X
χθ1u1 ∧ . . . ∧ θ

n
un . (2)

If additionally, ∫
X
θ1u1 ∧ . . . ∧ θ

n
un ≥ lim sup

k→∞

∫
X
θ1
uk1
∧ . . . ∧ θnukn , (3)

then θ1
uk1
∧ . . . ∧ θn

ukn
weakly converges to θ1u1 ∧ . . . ∧ θ

n
un.

Note that this result is slightly more general than [DDL2, Theorem 2.3] but the proof is the
same. Shadowing Bedford–Taylor theory [BT82, BT87], the above convergence and monotonicity
results opened the door to the development of relative finite energy pluripotential theory, whose
terminology we now partially recall from [DDL2, Sections 2-3].

The relative full mass classes E(X, θ, φ). Fixing φ ∈ PSH(X, θ) one can consider only θ-psh
functions that are more singular than φ. Such potentials form the set PSH(X, θ, φ). Since the map
[u]→

∫
X θ

n
u is monotone increasing, but not strictly increasing, it is natural to consider the set of

φ-relative full mass potentials:

E(X, θ, φ) :=

{
u ∈ PSH(X, θ, φ) such that

∫
X
θnu =

∫
X
θnφ

}
.
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Naturally, when v ∈ PSH(X, θ, φ) we only have
∫
X θ

n
v ≤

∫
X θ

n
φ. As pointed out in [DDL2, DDL4],

when studying the potential theory of the above space, the following well known envelope construc-
tions are of great help:

Pθ(ψ, χ), Pθ[ψ](χ), Pθ[ψ] ∈ PSH(X, θ).

In the context of Kähler geometry these were introduced by Ross and Witt Nyström [RWN14],
using slightly different notation. Given any f : X → [−∞,+∞] the starting point is the envelope
Pθ(f) := usc(sup{v ∈ PSH(X, θ), v ≤ f}). Then, for ψ, χ ∈ PSH(X, θ) we can introduce the
“rooftop envelope” Pθ(ψ, χ) := Pθ(min(ψ, χ)). This allows us to further introduce

Pθ[ψ](χ) := usc
(

lim
C→+∞

Pθ(ψ + C,χ)
)
.

It is easy to see that Pθ[ψ](χ) depends on the singularity type [ψ]. When χ = Vθ, we will simply
write P [ψ] := Pθ[ψ] := Pθ[ψ](Vθ) and call this potential the envelope of the singularity type [ψ].
It follows from [DDL2, Theorem 3.8], [Ber18], [GLZ17] that θnP [ψ] ≤ 1{P [ψ]=0}θ

n. Also, by [DDL3,

Proposition 2.3 and Remark 2.5] we have that
∫
X θ

n
P [ψ] =

∫
X θ

n
ψ.

Using such envelopes, in [DDL2, Theorem 1.3] we characterized membership in E(X, θ, φ):

Theorem 2.3. Suppose φ ∈ PSH(X, θ) and
∫
X θ

n
φ > 0. Then u ∈ E(X, θ, φ) if and only if

u ∈ PSH(X, θ, φ) and P [u] = P [φ].

For further results about the connection of envelopes and relative full mass classes we refer to
[DDL2, Section 3].

The ceiling operator and model potentials. We consider the ceiling operator C : PSH(X, θ)→
PSH(X, θ) defined by

C(u) := usc(supFu),

where

Fu :=

{
v ∈ PSH(X, θ) : [u] ≤ [v], v ≤ 0,

∫
X
θkv ∧ θn−kVθ

=

∫
X
θku ∧ θn−kVθ

, k ∈ {0, ..., n}
}
. (4)

As it turns out, there is no reason to take the upper semi-continuous regularization in the definition
above, as C(u) is a candidate in its defining family Fu. This is confirmed by the next lemma.

Lemma 2.4. Assume that u ∈ PSH(X, θ) and u ≤ 0. Then

C(u) = lim
ε→0+

P [(1− ε)u+ εVθ] ∈ Fu. (5)

In particular, if φ, ψ ∈ PSH(X, θ) with [φ] ≤ [ψ] then C(φ) ≤ C(ψ), i.e., C is monotone increasing.

Proof. We have that limε→0+((1− ε)u + εVθ) = u and that uε := P [(1− ε)u+ εVθ] ≥ P [u] ≥ u is
decreasing as ε→ 0+. We denote by u0 its limit. Next, we claim that u0 ∈ Fu. First, observe that
since u0 ≥ u, by [DDL2, Theorem 1.1] we have that, fixing k ∈ {1, 2, ..., n},∫

X
θku0 ∧ θ

n−k
Vθ
≥
∫
X
θku ∧ θn−kVθ

.

Moreover, it follows from the multilinearity of the non-pluripolar product that for all ε > 0,∫
X
θku0 ∧ θ

n−k
Vθ

≤
∫
X
θkuε ∧ θ

n−k
Vθ

=

∫
X
θk(1−ε)u+εVθ ∧ θ

n−k
Vθ

= (1− ε)k
∫
X
θku ∧ θn−kVθ

+O(ε),
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where in the first inequality we used [DDL2, Theorem 1.1], in the first equality we used [DDL2,
Proposition 2.1, Theorem 2.2] and the definition of P [(1− ε)u+ εVθ], and in the second equality
we used the multilinearity of the non-pluripolar product. Letting ε→ 0 we prove the claim, hence
u0 ≤ C(u).

On the other hand, as (1 − ε)u + εVθ satisfies the non-collapsing condition
∫
X θ

n
(1−ε)u+εVθ ≥

εn
∫
X θ

n
Vθ
> 0, it follows from [DDL2, Remark 2.5] and [DDL2, Theorem 3.12] that P [(1− ε)u+ εVθ]

is the maximal element of F(1−ε)u+εVθ . Due to multilinearity of non-pluripolar products, it follows
from the above definition of Fu that

(1− ε)Fu + εVθ ⊂ F(1−ε)u+εVθ . (6)

This implies that (1−ε)C(u)+εVθ ≤ P [(1− ε)u+ εVθ]. Hence letting ε→ 0+ we obtain C(u) ≤ u0,
proving the first statement. The last statement follows from (5) together with the fact that if
[φ] ≤ [ψ] then P [(1− ε)φ+ εVθ] ≤ P [(1− ε)ψ + εVθ].

In this work, we say that a potential φ ∈ PSH(X, θ) is a model potential if φ = C(φ), i.e., if
φ is a fixed point of C. Similarly, the corresponding singularity types [φ] are called model type
singularities. We note that this definition is seemingly different from the one in [DDL2, DDL3,
DDL4], where we said that φ is model in case φ = P [φ]! Thankfully, this inconsistency will cause
little to no disruption: in the important particular case of non-vanishing mass, i.e.

∫
X θ

n
φ > 0,

[DDL2, Remark 2.5, Theorem 3.12] gives that P [φ] = C(φ), hence these two definitions are indeed
the same. We predict that this is the case in general as well:

Conjecture 2.5. For any φ ∈ PSH(X, θ) we have that P [φ] = C(φ).

To finish this paragraph we list and prove a number of basic properties of the ceiling operator:

Proposition 2.6. Suppose v ∈ PSH(X, θ). The following hold:
(i) if

∫
X θ

n
v > 0 then C(v) = P [v].

(ii) limε→0 C((1− ε)v + εVθ) = limε→0 P [(1− ε)v + εVθ] = C(v).
(iii) C(C(v)) = C(v).
(iv) C(P [v]) = C(v).

Proof. The first property is a consequence of [DDL2, Theorem 2.5, Theorem 3.12]. The statement
in (ii) follows from Lemma 2.4 together with (i). To prove (iii) we note that FC(v) ⊂ Fv implies
that C(C(v)) ≤ C(v) (via Lemma 2.4). Since v ≤ C(v), the other inequality in (iii) follows from
monotonicity of C. Note that [DDL2, Remark 2.5] implies that P [v] ∈ Fv, hence v ≤ P [v] ≤ C(v).
Applying C to these inequalities together with (iii) gives (iv).

The Monge–Ampère energy I and the finite energy class E1(X, θ). As further evidenced
by the next lemma, potentials with model type singularity play a distinguished role in the theory
(see [DDL4, Lemma 2.2] for a more precise result):

Lemma 2.7. Let φ ∈ PSH(X, θ) and φ = P [φ]. Then, for all u ∈ PSH(X, θ, φ) we have supX(u−
φ) = supX u, and the set

F := {u ∈ PSH(X, θ, φ) : sup
X

(u− φ) = 0}

is relatively compact in the L1-topology of potentials.
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Proof. Let u ∈ PSH(X, θ, φ). Since φ ≤ 0 it follows that supX(u − φ) ≥ supX u. For the other
direction we notice that u− supX u ≤ φ, hence supX(u− φ) ≤ supX u. Relative compactness of F
then follows from [GZ17, Proposition 8.5].

We define the Monge-Ampère energy of any θ-psh function u with minimal singularities as

I(u) :=
1

n+ 1

n∑
k=0

∫
X

(u− Vθ)θku ∧ θn−kVθ
.

We then define the Monge-Ampère energy for arbitrary u ∈ PSH(X, θ) as

I(u) := inf{I(v) : v ∈ PSH(X, θ), v has minimal singularities, and u ≤ v}.

We let E1(X, θ) denote the set of all u ∈ PSH(X, θ) such that I(u) is finite. Since θ will be fixed
throughout the paper we will occasionally denote this space simply as E1. In the next theorem we
collect basic properties of the Monge-Ampère energy:

Theorem 2.8. Suppose u, v ∈ E1(X, θ). The following hold:
(i) I(u)− I(v) = 1

n+1

∑n
k=0

∫
X(u− v)θku ∧ θn−kv .

(ii) If u ≤ Vθ then,
∫
X(u− Vθ)θnu ≤ I(u) ≤ 1

n+1

∫
X(u− Vθ)θnu .

(iii) I is non-decreasing and concave along affine curves. Additionally, the following estimates hold:∫
X(u− v)θnu ≤ I(u)− I(v) ≤

∫
X(u− v)θnv .

In particular, we observe that u ≤ v implies I(u) ≤ I(v). We refer to [DDL3, Theorem 2.1 and
Proposition 2.2] for a proof.

Lemma 2.9. Let u, v ∈ E1(X, θ) be such that u ≥ v and I(u) = I(v). Then u = v.

Proof. Since I(u) = I(v), and u ≥ v, Theorem 2.8(i) implies that
∫
X(u− v)θnv = 0. We then have

θnv (u > v) = 0, hence the domination principle [DDL1, Proposition 2.4] gives u = v.

We recall that, given u, v ∈ E1(X, θ), it has been shown in [DDL1, Theorem 2.10] that P (u, v)
belongs to E1(X, θ) as well. As in [DDL3, Section 3] we define:

d1(u, v) = I(u) + I(v)− 2I(P (u, v)). (7)

By [DDL3, Theorems 1.1] the space (E1(X, θ), d1) is a complete geodesic metric space whose
geodesic segments arise as d1-limits to solutions to a degenerate complex Monge-Ampère equa-
tion (they are sometimes referred to as finite energy geodesics). Also, the Monge-Ampère energy
is linear along these geodesics. In the following we adapt some results of [BDL15] and [Dar15] to
the big setting.

Proposition 2.10. Suppose [0, 1] 3 t → ut, vt ∈ E1 are finite energy geodesics. Then the maps
t → I(ut), t → I(vt) are linear and the map t → I(P (ut, vt)) is concave. Consequently, the map
t→ d1(ut, vt) is convex.

Proof. The first statement is a consequence of [DDL1, Theorem 3.12]. The rest follows using the
same arguments as in the Kähler case [BDL15, Proposition 5.1], relying on the analogous results
from the big case in [DDL1, Theorems 2.10, 3.12 and Proposition 3.2].

Next we point out that the d1-geodesics are “endpoint stable”:
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Proposition 2.11. Let [0, 1] 3 t → ujt ∈ E1 be a sequence of finite energy geodesic segments such
that d1(u

j
0, u0), d1(u

j
1, u1)→ 0. Then d1(u

j
t , ut)→ 0 for all t, where [0, 1] 3 t→ ut ∈ E1 is the finite

energy geodesic segment connecting u0, u1.

Proof. Exactly the same as [BDL15, Proposition 4.3].

Proposition 2.12. Given u, v ∈ E1, we have |I(u)− I(v)| ≤ d1(u, v).

Proof. We observe that by the monotonicity of the energy (Theorem 2.8(i)) and since P (u, v) ≤
min(u, v) we have I(P (u, v)) ≤ min(I(u), I(v)). The result then follows directly from the definition
of d1.

Lastly, we point out the analog of [Dar15, Remark 5.6]:

Proposition 2.13. Given u, v ∈ E1, there exists C = C(n) > 1 such that

d1(u, v) ≤ d1(u,max(u, v)) + d1(max(u, v), v) ≤ Cd1(u, v).

Proof. The first inequality follows from the triangle inequality. The second inequality follows from
[DDL3, Theorem 3.7 and eq. (6)].

2.2 The chordal geometry of geodesic rays

By R(X, θ) we denote the space of finite energy geodesic rays emanating from Vθ:

R(X, θ) := {[0,∞) 3 t→ ut ∈ E1(X, θ) s.t. u0 = Vθ and t→ ut is a d1 geodesic ray}.

As shorthand convention we will use the notation {ut}t ∈ R(X, θ) when referring to rays.
According to the constructions in [DDL3] the above space has plenty of elements. In [DL18,

Section 4] the first and last author carried out a detailed analysis of the space of Lp geodesic rays
in the Kähler case. For similar flavour results in the non-Archimedean context we refer to [BBJ18]
and references therein.

Given that our main focus here is on the space of singularity types, in the present paper we
only focus on the basic analysis of the space of L1 rays in the more general case of big cohomology
classes.

In case of the Euclidean topology of Rn, the space of (unit speed) geodesic rays emanating from
the origin, is just the collection of half lines emanating from 0, that can be identified with the
unit sphere. Inspired by this simple analogy and the chordal metric structure on the sphere, we
introduce the chordal L1 geometry on R(X, θ):

dc1({ut}t, {vt}t) := lim
t→∞

d1(ut, vt)

t
. (8)

Note that by Proposition 2.10 it follows that t→ d1(ut, vt) is convex, hence the map t→ d1(ut, vt)/t
is increasing, implying that the limit in (8) is well defined. We also note the following theorem:

Theorem 2.14. The space (R(X, θ), dc1) is a complete metric space.

One expects that actually (R(X, θ), dc1) is a geodesic metric space, as in the Kähler case [DL18,
Theorem 1.4].
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Proof. The triangle inequality is inherited from the d1-geometry of E1(X, θ). To show that dc1 is
non-degenerate, suppose dc1({ut}t, {vt}t) = 0 and fix t0 > 0. By Proposition 2.10 we have:

d1(ut0 , vt0)

t0
≤ lim

t→∞

d1(ut, vt)

t
= 0. (9)

Since d1 is non-degenerate, we obtain that ut0 = vt0 and since t0 > 0 was arbitrary, we obtain that
the geodesics t→ ut and t→ vt are the same.

Now we argue that (R(X, θ), dc1) is complete. Let {t→ ukt }k be a dc1-Cauchy sequence. For fixed
t0 > 0 by (9) we deduce that {ukt0}k is a d1-Cauchy sequence in (E1(X, θ), d1). By the completeness
of the latter space there exists ut0 ∈ E1(X, θ) such that d1(u

k
t0 , ut0) → 0 as k → +∞. As a result

we obtain a “limit curve” [0,∞) 3 t → ut ∈ E1(X, θ). By Proposition 2.11 we obtain that t → ut
is in fact a finite energy geodesic ray emanating from u0 = Vθ.

To finish the proof, we have to argue that dc1({ukt }, {ut}) → 0. Fix ε > 0. By (9) there exists
jε > 0 such that d1({ukt }, {ult}) < εt for all t > 0 and k, l > jε. Letting k → ∞, we obtain that
d1({ut}, {ult}) < εt, hence dc1({ut}t, {ult}t) < ε for all l > jε, finishing the proof.

The radial Monge-Ampère energy of R(X, θ). For {ut}t ∈ R(X, θ) it is natural to introduce

the radial Monge–Ampère energy I{·} : R(X, θ) → R by the formula I{ut} = limt
I(ut)
t = I(u1),

where in the last equality we have used the linearity of I along geodesic rays Theorem 2.10. By the
d1-Lipschitz property of I on E1(X, θ) (Proposition 2.12) and the fact that the map t→ d1(ut, vt)/t
is increasing it follows that:∣∣I{ut} − I{vt}∣∣ ≤ dc1({ut}t, {vt}t), {ut}t, {vt}t ∈ R(X, θ). (10)

The metric decomposition inequality of R(X, θ). The analog of the Pythagorean formula
holds for the space (R(X, θ), dc1) (see [Xia19, Example 3.2] for the argument in the Kähler case
that translates easily to our context as well). However this formula does not descend to S(X, θ).
Out of this reason, we derive the radial analog of Proposition 2.13 instead. Though perhaps not
as “flashy” as the Pythagorean formula, this “decomposition inequality” has a number of similar
consequences, and it also descends to S(X, θ) as well (see Section 3 below).

First we define the maximum of two geodesic rays {ut}t, {vt}t ∈ R(X, θ). This is simply the
smallest ray {ht}t ∈ R(X, θ) that lies above both {ut}t, {vt}t. It is elementary to see that such a
ray does exist. Indeed, ht = usc(liml→∞w

l
t), where [0, l] 3 t → wlt ∈ E1(X, θ) is the finite energy

geodesic segment joining wl0 = Vθ and wll = max(ul, vl). Since {max(ut, vt)}t is a subgeodesic ray,
by the comparison principle [DDL1, Proposition 3.3] it can be seen that each sequence {wlt}l is
increasing, proving that {ht}t is indeed a geodesic ray. By construction this ray has to be the
smallest ray lying above {ut}t, {vt}t, hence it makes sense to introduce the notation:

maxR(ut, vt) := ht, t ≥ 0.

Next we show that the rays ut, vt,maxR(ut, vt) satisfy a “metric decomposition inequality”:

Proposition 2.15. There exists C > 1 such that, for all {ut}t, {vt}t ∈ R(X, θ),

dc1({ut}t, {vt}t) ≤ dc1({ut}t, {maxR(ut, vt)}t)+dc1({maxR(ut, vt)}t, {vt}t) ≤ Cdc1({ut}t, {vt}t). (11)

Proof. The first estimate follows from the triangle inequality. Since maxR(ut, vt) ≥ ut, from (7) we
have that

dc1({ut}t, {maxR(ut, vt)}) = lim
t→∞

I(maxR(ut, vt))− I(ut)

t
= I(maxR(u1, v1))− I(u1), (12)
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where the last identity follows from the linearity of I along geodesic rays (Theorem 2.10).
By construction of the ray t→ maxR(ut, vt) it follows that

I(maxR(u1, v1)) = lim
l→∞

I(max(ul, vl))

l
,

and this last limit exists as l → I(max(ul, vl)) is convex thanks to [DDL1, Theorem 3.8]. Conse-
quently, we can build on (12) in the following manner:

dc1({ut}t, {maxR(ut, vt)}t) = lim
l→∞

I(max(ul, vl))

l
− I(u1) = lim

l→∞

I(max(ul, vl))− I(ul)

l

= lim
l→∞

d1(max(ul, vl), ul)

l
≤ C lim

l→∞

d1(ul, vl)

l
= Cdc1({ut}t, {vt}t),

where in the last inequality we have used Proposition 2.13. Using symmetry of {ut}t, {vt}t, the
proof is finished.

3 The metric geometry of singularity types

The aim of this section is to show that S(X, θ) embeds naturally in R(X, θ), endowing the former
space with a natural pseudo-metric structure.

Given ψ ∈ PSH(X, θ) with ψ ≤ 0, generalizing the methods of [Dar13, Section 4], it is possible
to define a geodesic ray {r[ψ]t}t ∈ R(X, θ) whose potentials have minimal singularities. The specific
construction is as follows. Let [0, l] 3 t→ r(ψ)lt ∈ E1(X,ω) be the geodesic segment with minimal
singularity type joining r(ψ)l0 = Vθ and r(ψ)ll = max(ψ, Vθ − l). Using the comparison principle
([DDL1, Proposition 3.2]) numerous times, it can be shown that for any fixed t > 0 the family
{r(ψ)lt}l≥0 is increasing as l → ∞, and its limit equals the geodesic ray with minimal singularity
type t → r[ψ]t. Along the way we also obtain the lower bound max(ψ, Vθ − t) ≤ r[ψ]t for all
t ∈ [0,∞).

Since ψ ≤ ψ′ implies that r[ψ]t ≤ r[ψ′]t and r[ψ]t = r[ψ + C]t, C ∈ R, we obtain that the
construction of the ray only depends on the singularity type, giving us a map:

r[·] : S(X, θ)→ R(X, θ). (13)

The basic idea will be to pull back the metric geometry ofR(X, θ) recalled in the previous section to
S(X, θ) via this map. Before we do this we carry out some preliminary analysis. Since [0,∞) 3 t→
max(ψ, Vθ − t) is a subgeodesic ray with minimal singularities we have that t→ I(max(ψ, Vθ − t))
is convex by [DDL1, Theorem 3.8] and non-increasing by Theorem 2.8.

Via our embedding in (13), we can introduce the Monge-Ampère energy of singularity types

IS [ψ] := I{r[ψ]t}.

Theorem 3.1. For ψ ∈ PSH(X, θ) we have

IS [ψ] = −
∫
X
θnVθ +

1

n+ 1

n∑
j=0

∫
X
θjVθ ∧ θ

n−j
ψ . (14)

The proof of the above theorem is analogous to [Dar13, Theorem 2.5] that deals with the case when
θ is Kähler. Nevertheless, given its central role in this work, we are going to give the details for the
reader’s convenience.
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Proof. We can assume w.l.o.g. that ψ ≤ Vθ ≤ 0. Setting ψt := max(ψ, Vθ − t), by [DDL1, Lemma
3.15] we have that

IS [ψ] = lim
t→+∞

I(r[ψ]t)

t
= lim

t→+∞

I(ψt)

t
=

1

n+ 1

n∑
k=0

lim
t→+∞

∫
X

ψt − Vθ
t

θkψt ∧ θ
n−k
Vθ

.

Note that
∫
X θ

n
ψt

=
∫
X θ

n
Vθ

since ψt has minimal singularity. By Lemma 2.1, we have∫
X

ψt − Vθ
t

θψt =

∫
{ψ>Vθ−t}

ψt − Vθ
t

θnψt −
∫
{ψ≤Vθ−t}

θnψt

=

∫
{ψ>Vθ−t}

ψ − Vθ
t

θnψ −
∫
X
θnψt +

∫
{ψ>Vθ−t}

θnψt

=

∫
{ψ>Vθ−t}

ψ − Vθ
t

θnψ −
∫
X
θnVθ +

∫
{ψ>Vθ−t}

θnψ.

The functions 1{ψ>Vθ−t}
ψ−Vθ
t are uniformly bounded in [−1, 0] and they converge pointwise to 0

outside a pluripolar set on which the measure θnψ vanishes. Hence

lim
t→+∞

∫
X

ψt − Vθ
t

θnψt = −
∫
X
θnVθ +

∫
X
θnψ.

Since for any j = 1, . . . , n,
∫
X θ

n−j
ψt
∧ θjVθ =

∫
X θ

n
Vθ

, the exact same arguments give

lim
t→+∞

∫
X

ψt − Vθ
t

θn−jψt
∧ θjVθ = −

∫
X
θnVθ +

∫
X
θn−jψ ∧ θjVθ , j = 1, . . . , n.

This gives the conclusion.

Finally, we list and prove the properties of the map r[·] that will be most important to us,
finding a link with the ceiling operator C in the process:

Proposition 3.2. Suppose [ψ], [χ] ∈ S(X, θ) such that ψ, χ ≤ 0. Then the following hold:
(i) r[ψ]∞ := limt→∞ r[ψ]t = C(ψ).
(ii) r[ψ]t = r[C(ψ)]t. In particular, r[C(ψ)]∞ = C[ψ].
(iii) r[ψ]t = r[χ]t if and only if C(ψ) = C(χ).
(iv) P [C(ψ)] = C(ψ).

In particular, part (i) of this proposition proves that the image of the ceiling operator C is
exactly the collection of θ-psh functions that can arise as time limits of geodesic rays of the type
{r[ψ]t}t.

Proof. First, we claim that given u, v ∈ PSH(X, θ) such that v ∈ Fu then r[u] = r[v], and in

particular r[u]∞ = r[v]∞. Indeed, by (14) we know that limt→+∞
I(r[u]t)

t = limt→+∞
I(r[v]t)

t . The
linearity of the energy I (Theorem 2.10) then insures that I(r[v]`) = I(r[u]`) for any ` ≥ 0. Since
r[u]` ≤ r[v]` it follows from Lemma 2.9 that r[u]` = r[v]`, ∀` ≥ 0.

Now, set u := r[ψ]∞ and we claim that r[u]t = r[ψ]t. Since u ≥ ψ, we get that r[u]t ≥ r[ψ]t.
For the other direction, we note that r[ψ]t ≥ u and r[ψ]t ≥ Vθ− t, thus r[ψ]t ≥ max(u, Vθ− t). The
inequality r[u]t ≤ r[ψ]t then follows by the construction of {r[u]t}t together with the comparison
principle.
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As a consequence of this second claim we have that I(r[u]t) = I(r[ψ]t). From (14) and [DDL2,
Proposition 3.1] we get ∫

X
θku ∧ θn−kVθ

=

∫
X
θkψ ∧ θn−kVθ

, ∀k = 0, · · · , n.

This means that u ≤ C(ψ). Moreover, our claims give r[ψ]t = r[u]t = r[C(ψ)]t for any t, hence
u = r[u]∞ = r[C(ψ)]∞ ≥ C(ψ). Thus u = C(ψ) addressing (i). The statement in (ii) is just a
consequence of the second claim above.

If r[ψ] = r[χ], then by (i) we have that C(ψ) = r[ψ]∞ = r[χ]∞ = C(χ). Conversely if C(ψ) =
C(χ), then by (ii) we have r[ψ] = r[χ]. This proves (iii).

Lastly, since inft∈[0,∞) r[ψ]t = r[ψ]∞ = C(ψ), by [DDL1, Lemma 3.17] we have that P [C(ψ)] =
C(ψ), establishing (iv).

Finally, as previously advertised, we consider the L1 (pseudo)metric structure of S(X, θ), by
pulling back the chordal metric structure from R(X, θ):

dS([ψ], [χ]) := dc1({r[ψ]t}t, {r[χ]t}t).

Our main result about (S(X, θ), dS) in this subsection characterizes the singularity types that are
at zero distance apart with respect to the dS pseudo-metric:

Theorem 3.3. (S(X, θ), dS) is a pseudo-metric space. More precisely, the following are equivalent:
(i) dS([ψ], [χ]) = 0.
(ii) r[ψ] = r[χ].
(iii) C(ψ) = C(χ).

Proof. Theorem 2.14 gives the equivalence (i)⇔ (ii). Proposition 3.2(iii) gives that (ii)⇔ (iii).

In case [u] ≤ [v], using (14), the expression for dS([u], [v]) is especially simple :

Lemma 3.4. If [u], [v] ∈ S(X, θ) is such that [u] ≤ [v] then

dS([u], [v]) =
1

n+ 1

n∑
j=0

(∫
X
θjVθ ∧ θ

n−j
v −

∫
X
θjVθ ∧ θ

n−j
u

)
.

Observe that, it is a direct consequence of the above that if [u] ≤ [v] ≤ [w] then dS([u], [w]) ≥
dS([v], [w]).

When [u] 6≤ [v], then a similar simple expression for dS([u], [v]) may not be available, however one
can find a useful expression that totally governs the behavior of dS([u], [v]), as shown in Proposition
3.5 below.

It is clear that for [u], [v] ∈ S(X, θ) it makes sense to define [max(u, v)] ∈ S(X, θ), which does
not depend on the choice of representatives u, v ∈ PSH(X, θ). We start by arguing that

maxR(r[u]t, r[v]t) = r[max(u, v)]t, t ≥ 0, (15)

where {maxR(r[u]t, r[v]t)}t is the smallest ray that lies above max(r[u]t, r[v]t) that was constructed
in Section 2.2. But {r[max(u, v)]t}t has this “extremal” property as well. Indeed by construction
we have max(r[u]t, r[v]t) ≤ r[max(u, v)]t, and any ray {wt}t that satisfies max(r[u]t, r[v]t) ≤ wt has
to also satisfy r[max(u, v)]t ≤ wt.

Next we notice that (15) and Proposition 2.15 allow to establish the following decomposition
inequality for the dS pseudo-metric:
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Proposition 3.5. There exists C > 1 such that, for all [u], [v] ∈ S(X, θ),

dS([u], [v]) ≤ dS([u], [max(u, v)]) + dS([max(u, v)], [v]) ≤ CdS([u], [v]). (16)

As dS([ψ], [φ]) = IS [ψ] − IS [φ] if [ψ] ≥ [φ], we note the following corollary of (14), somewhat
reminiscent of [Dar15, Proposition 4.9]:

Lemma 3.6. Suppose uj , u ∈ PSH(X, θ) are such that either [uj ] ≤ [u] or [u] ≤ [uj ]. Then
dS([uj ], [u])→ 0 if and only if

∫
X θ

k
Vθ
∧ θn−kuj →

∫
X θ

k
Vθ
∧ θn−ku , k ∈ {0, . . . , n}.

It follows from (10) that |IS [u] − IS [v]| ≤ dS([u], [v]). By the next lemma it turns out that a
similar statement holds for the individual components of the sum in (14) as well:

Lemma 3.7. There exists C > 1 such that for all k ∈ {0, . . . , n} and [u], [v] ∈ S(X, θ) we have∣∣∣∣ ∫
X
θkVθ ∧ θ

n−k
u −

∫
X
θkVθ ∧ θ

n−k
v

∣∣∣∣ ≤ CdS([u], [v]).

Proof. If [ψ] ≤ [φ] then [DDL2, Theorem 1.1] implies that
∫
X θ

k
Vθ
∧ θn−kψ ≤

∫
X θ

k
Vθ
∧ θn−kφ , k ∈

{0, . . . , n}. As a result of this and (14) we can write that

1

n+ 1

∣∣∣∣ ∫
X
θkVθ ∧ θ

n−k
ψ −

∫
X
θkVθ ∧ θ

n−k
φ

∣∣∣∣ ≤ ∣∣IS [ψ]− IS [φ]
∣∣ = dS([ψ], [φ]).

For general [u], [v] ∈ S(X, θ), using this last inequality and Proposition 3.5 we can conclude:∣∣∣∣ ∫
X
θkVθ ∧ θ

n−k
u −

∫
X
θkVθ ∧ θ

n−k
v

∣∣∣∣
≤
∣∣∣∣ ∫

X
θkVθ ∧ θ

n−k
u −

∫
X
θkVθ ∧ θ

n−k
max(u,v)

∣∣∣∣+

∣∣∣∣ ∫
X
θkVθ ∧ θ

n−k
max(u,v) −

∫
X
θkVθ ∧ θ

n−k
v

∣∣∣∣
≤ (n+ 1)dS([u], [max(u, v)]) + (n+ 1)dS([max(u, v)], [v])

≤ (n+ 1)CdS([u], [v]).

4 Discussion of completeness

In this section we prove the completeness of the spaces (Sδ(X, θ), dS), for δ > 0. Recall from the
introduction that Sδ(X, θ) = {[u] ∈ S(X, θ) s.t.

∫
X θ

n
u ≥ δ}. On the other hand, we will also show

that (S(X, θ), dS) is not complete.
First we show that “increasing” sequences always have a dS-limit inside S(X, θ):

Lemma 4.1. Let uj ∈ PSH(X, θ) such that {uj}j is increasing and uj ≤ 0. Then dS([uj ], [u])→ 0,
where uj ↗ u a.e. on X.

Proof. From [DDL2, Theorem 1.2, Remark 2.5], it follows that
∫
X θ

k
Vθ
∧ θn−kuj →

∫
X θ

k
Vθ
∧ θn−ku .

Since [uj ] ≤ [u], the proof is finished after an application of Lemma 3.6.

Proposition 4.2. Suppose that [uj ] ∈ S(X, θ) is a dS-Cauchy sequence with uj ≤ 0. Then there
exists a decreasing sequence {[vj ]}j ⊂ S(X, θ) that is equivalent with {[uj ]}j, i.e. dS([uj ], [vj ])→ 0
as j →∞.
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Proof. We can assume that dS([uj ], [uj+1]) ≤ C−2j , where C is the constant of Proposition 3.5. Let

vj := usc
(

sup
k≥j

uk

)
∈ PSH(X, θ). (17)

Lemma 4.1 implies that liml dS([vlj ], [vj ]) = 0, where vlj = supk∈{j,...,j+l} uk. To finish the argument,

we show that liml dS([uj ], [v
l
j ]) = dS([uj ], [vj ]) → 0 as j → ∞. Using the triangle inequality and

Proposition 3.5 we get

dS([uj ], [v
l
j ]) = dS([uj ], [max(uj , v

l−1
j+1)]) ≤ CdS([uj ], [v

l−1
j+1])

≤ C(dS([uj ], [uj+1]) + dS([uj+1], [v
l−1
j+1)]).

After iterating the above inequality l times and observing that dS([uj+l], [v
0
j+l]) = 0, we conclude

that

dS([uj ], [v
l
j ]) ≤

∑
k∈{j,...,j+l−1}

Ck+1−jdS([uk], [uk+1]) =
∑

k∈{j,...,j+l−1}

Ck+1−j 1

C2k

≤
∑
k≥j

Ck+1−j 1

C2k
=
∑
k≥j

1

Ck+j−1
≤ 1

Cj−1
C

C − 1
. (18)

4.1 Completeness of Sδ(X, θ)

Under the assumption of non-collapsing mass, we will show below that decreasing dS-Cauchy se-
quences do indeed converge, implying completeness of Sδ(X, θ), via Proposition 4.2. For this we
will need the following important lemma:

Lemma 4.3. Assume that u, v ∈ PSH(X, θ), u ≤ v,
∫
X θ

n
u > 0 and b > 1 is such that

bn
∫
X
θnu > (bn − 1)

∫
X
θnv . (19)

Then P (bu+ (1− b)v) ∈ PSH(X, θ).

Proof. If P (bu + (1 − b)C(v)) ∈ PSH(X, θ) then so does P (bu + (1 − b)v) since v ≤ C(v) and
(1 − b) < 0. Therefore, after possible replacing v with C(v), we can assume that v = C(v). Since∫
X θ

n
v ≥

∫
X θ

n
u > 0, we have that P [v] = C(v) ([DDL2, Remark 2.5, Theorem 3.12]).

For j ∈ N we set uj := max(u, v−j) and ϕj := P (buj+(1−b)v). Observe that ϕj is a decreasing
sequence of θ-psh functions, whose singularity type is equal to [v]. The proof is finished if we can
show that limj ϕj 6≡ −∞ is a θ-psh function. Assume by contradiction that supX ϕj → −∞. It
follows from Lemma 4.4 below that

θnϕj ≤ b
n
1{ϕj=buj+(1−b)v}θ

n
uj . (20)

Fix j > k > 0. We note that uj = u on {u > v − k} and, since uj has singularity type equal to [v],
we have by [WN19, Theorem 1.2] and the plurifine locality,∫

{u≤v−k}
θnuj =

∫
X
θnuj −

∫
{u>v−k}

θnuj =

∫
X
θnv −

∫
{u>v−k}

θnu .
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Since {uj ≤ v − k} = {u ≤ v − k}, from the above and (20) we obtain

θnϕj (ϕj ≤ v − bk) ≤ bn1{ϕj=buj+(1−b)v}θ
n
uj (ϕj ≤ v − bk) ≤ bnθnuj (buj + (1− b)v ≤ v − bk)

= bnθnuj (uj ≤ v − k) ≤ bnθnuj (u ≤ v − k) ≤ bn
(∫

X
θnv −

∫
{u>v−k}

θnu

)
. (21)

Since v = P [v] we have supX(ϕj − v) = supX ϕj → −∞ by Lemma 2.7. From this we see that
{ϕj ≤ v − bk} = X for j large enough, k being fixed. Thus, letting j → +∞ in (21), and then
k → +∞ gives ∫

X
θnv ≤ bn

(∫
X
θnv −

∫
X
θnu

)
,

contradicting (19). Consequently, ϕj decreases to a θ-psh function, finishing the proof.

Lemma 4.4. Assume that b ≥ 1, and u, v, Pθ(bu + (1 − b)v) ∈ PSH(X, θ). Then the measure
θnPθ(bu+(1−b)v) is supported on the contact set {Pθ(bu+ (1− b)v) = bu+ (1− b)v}, and

θnPθ(bu+(1−b)v) ≤ b
nθnu . (22)

Proof. Up to rescaling, we can assume that θ ≤ ω, and hence PSH(X, θ) ⊂ PSH(X,ω). Let
uj ∈ C∞(X) ∩ PSH(X,ω) be such that uj ↘ u. This is possible thanks to [BK07], [Dem92]. Set
ψj := Pθ(buj + (1− b)v) and ψ := Pθ(bu+ (1− b)v) and note that ψj ↘ ψ. Also, buj + (1− b)v is
lower semicontinuous hence the set {ψj < buj +(1−b)v} is open. By a classical balayage argument,
for each j ∈ N the measure θnψj vanishes on the set {ψj < buj + (1− b)v}. Since ψj ≤ buj + (1− b)v
we have ∫

X
min(buj + (1− b)v − ψj , 1)θnψj = 0.

In the integrand we take minimum with 1 (one can simply take any positive constant) so that the
functions min(buj +(1−b)v−ψj , 1) are uniformly bounded, with values in the interval [0, 1]. These
functions are additionally quasi-continuous, and (since uj and ψj are ω-psh functions decreasing
to u and ψ respectively) they converge in capacity to min(bu + (1 − b)v − ψ, 1), which is quasi-
continuous and bounded on X. It follows from Theorem 2.2 that after letting j → +∞ in the above
equality we obtain∫

X
min(bu+ (1− b)v − ψ, 1)θnψ ≤ lim inf

j

∫
X

min(buj + (1− b)v − ψj , 1)θnψj = 0.

This implies that θnψ vanishes in the set {ψ < bu+ (1− b)v}.
Now we prove (22). Let ϕ := 1

bPθ(bu+ (1− b)v) +
(
1− 1

b

)
v. Note that ϕ ≤ u. By Lemma 4.5

below we then have
1{ϕ=u}θ

n
ϕ ≤ 1{ϕ=u}θ

n
u ≤ θnu .

Moreover, by the above we know that θnPθ(bu+(1−b)v) is supported on {ϕ = u}, hence

1

bn
θnPθ(bu+(1−b)v) =

1

bn
1{ϕ=u}θ

n
Pθ(bu+(1−b)v) ≤ 1{ϕ=u}θ

n
ϕ ≤ θnu .

Lemma 4.5. Let ϕ,ψ ∈ PSH(X, θ). Then

θnmax(ϕ,ψ) ≥ 1{ψ≤ϕ}θ
n
ϕ + 1{ϕ<ψ}θ

n
ψ. (23)

In particular, if ϕ ≤ ψ then 1{ϕ=ψ}θ
n
ϕ ≤ 1{ϕ=ψ}θ

n
ψ.
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Proof. Let ψk := max(ψ, Vθ − k) and ϕk := max(ϕ, Vθ − k). It follows from a result of Demailly
(see [Bl1, Theorem 2.2.10]) that

θnmax(ϕk,ψk)
≥ 1{ψk≤ϕk}θ

n
ϕk

+ 1{ϕk<ψk}θ
n
ψk

holds in the ample locus of {θ} where all the functions above are locally bounded. As the non-
pluripolar products are extended trivially over X, we see that the above inequality holds over X in
the sense of measures. Multiplying with 1{ϕ>Vθ−k}∩{ψ>Vθ−k}, and using plurifine locality (Lemma
2.1) we arrive at

1{ϕ>Vθ−k}∩{ψ>Vθ−k}θ
n
max(ϕ,ψ) ≥ 1{ϕ>Vθ−k}∩{ψ>Vθ−k}∩{ψ≤ϕ}θ

n
ϕ + 1{ϕ>Vθ−k}∩{ψ>Vθ−k}∩{ϕ<ψ}θ

n
ψ.

Letting k →∞, (23) follows.

Next we prove that along a decreasing sequence of fixed points of C the total masses converge.

Proposition 4.6. Let uj , u ∈ PSH(X, θ) be such that supX uj = supX u = 0, and uj converges in
capacity to u. Then

lim sup
j→+∞

∫
{uj=0}

θnuj ≤
∫
{u=0}

θnu .

If additionally uj = C(uj) then limj→+∞
∫
X θ

n
uj = limj→+∞

∫
{uj=0} θ

n
uj =

∫
{u=0} θ

n
u =

∫
X θ

n
u .

Proof. For each C > 0 and each v ∈ PSH(X, θ) we set vC := max(v, Vθ − C). Since uj ≤ Vθ, we
have that {uj = 0} ⊂ {Vθ = 0}. For each β > 0, using plurifine locality (Lemma 2.1) we can write

lim sup
j→+∞

∫
{uj=0}

θnuj = lim sup
j→+∞

∫
{uj=0}

θn
uCj
≤ lim sup

j→+∞

∫
{Vθ=0}

eβujθn
uCj
≤
∫
{Vθ=0}

eβuθnuC ,

where the last inequality follows from [GZ17, Theorem 4.26]. Indeed, since eβuj is a sequence of
bounded quasi-continuous functions converging in capacity to eβu and uCj converges in capacity

to uC all having minimal singularities Vθ − C ≤ uCj ≤ 0, by [GZ17, Theorem 4.26] we have that

eβujθn
uCj

converges weakly to eβuθn
uC

in Ω, the ample locus of {θ}. Since {Vθ = 0} is a compact

subset of Ω, the last inequality follows.
Letting β → +∞ and noting that eβu decreases to 1{u=0} we arrive at

lim sup
j→+∞

∫
{uj=0}

θnuj ≤
∫
{u=0}

θnuC =

∫
{u=0}

θnu ,

where we used again Lemma 2.1. This finishes the proof of the first part.
Assume now that uj = C(uj). In case

∫
X θ

n
uj > 0 then we have C(uj) = P [uj ], and by [DDL2,

Theorem 3.8] we know that θnuj is supported on the contact set {uj = 0}. In case
∫
X θ

n
uj = 0 this

same fact is trivially true.
Observe that the inequality lim infj

∫
X θ

n
uj ≥

∫
X θ

n
u follows from [DDL2, Theorem 2.3]. From

this and the previous step we obtain∫
X
θnu ≤ lim inf

j

∫
X
θnuj ≤ lim sup

j

∫
X
θnuj = lim sup

j

∫
{uj=0}

θnuj ≤
∫
{u=0}

θnu ≤
∫
X
θnu . (24)

The conclusion follows.
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Corollary 4.7. Assume that uj ∈ PSH(X, θ) and uj = C(uj). If uj ↘ u, then u = C(u). If uj
converges in capacity to u and

∫
X θ

n
u > 0 then u = C(u).

Proof. If uj ↘ u then u ≤ C(u) ≤ C(uj) = uj , hence u = C(u). Assume now that uj converges in
capacity to u and

∫
X θ

n
u > 0. It follows from (24) that

∫
{u=0} θ

n
u =

∫
X θ

n
u . Hence θnu is supported

on {u = 0} = {u = P [u] = 0}, where we used that u ≤ P [u] ≤ 0. In particular, u ≥ P [u] a.e. with
respect to θnu . Since

∫
X θ

n
P [u] =

∫
X θ

n
u > 0 we can use the domination principle, [DDL2, Proposition

3.11], and Proposition 2.6(i) to conclude that u = P [u] = C(u).

In the presence of non-vanishing mass, we can also show the convergence of the mixed masses
of decreasing model potentials:

Proposition 4.8. Let δ > 0, uj , u ∈ PSH(X, θ) such that C(uj) = uj and uj ↘ u. If
∫
X θ

n
uj ≥ δ

then

lim
j→+∞

∫
X
θmuj ∧ θ

n−m
Vθ

=

∫
X
θmu ∧ θn−mVθ

, m ∈ {0, ..., n}.

Proof. Let {bj}j , bj > 1, be an increasing sequence with bj → +∞ such that bnj
∫
X θ

n
u ≥ (bnj −

1)
∫
X θ

n
uj . Such a sequence exists due to the fact that

∫
X θ

n
uj →

∫
X θ

n
u ≥ δ (Proposition 4.6).

Lemma 4.3 gives that vj := P (bju + (1 − bj)uj) ∈ PSH(X, θ). Since 1
bj
vj +

(
1 − 1

bj

)
uj ≤ u using

[DDL2, Theorem 1.1] we obtain that∫
X
θmuj ∧ θ

n−m
Vθ

≥
∫
X
θmu ∧ θn−mVθ

≥
(

1− 1

bj

)m ∫
X
θmuj ∧ θ

n−m
Vθ

.

Letting j → +∞ the result follows.

Finally, we summarize the above findings in our main theorem:

Theorem 4.9. Fix δ > 0. The pseudo metric space (Sδ(X, θ), dS) is complete.

Proof. Let [uj ] ∈ Sδ(X, θ) be a dS-Cauchy sequence. By [DDL2, Theorem 1.1], the decreasing dS-
Cauchy sequence [vj ] that is equivalent to [uj ] (constructed in Proposition 4.2) also satisfies vj ≥ uj
and

∫
X θ

n
vj ≥ δ, hence [vj ] ∈ Sδ(X, θ). Since dS([vj ], [C(vj)]) = 0, we can assume that vj = C(vj).

Set v = limj C(vj). Proposition 4.8 together with Lemma 3.6 imply that dS([vj ], [v]) → 0. By
Proposition 4.6, [v] ∈ Sδ(X, θ), finishing the proof.

4.2 Incompleteness of S(X, θ)

In this short section we show that (S(X,ω), dS) is in general not complete. In particular, com-
pleteness fails even in the Kähler case. We start with the following general lemma:

Lemma 4.10. Let h ∈ PSH(X,ω) with h = C(h). If for t > 1 we have that Pω(th) ∈ PSH(X,ω)
then Pω(th) = C(Pω(th)).

Proof. Fix 1 < s < t and assume that P (th) ∈ PSH(X,ω). Let v ≤ 0 be a ω-psh function more
singular than P (sh). Then s−1v is more singular than h. Since s−1v is ω-psh and h = C(h) = P [h],
it follows that s−1v ≤ h, hence v ≤ sh. Now, since v is ω-psh it follows that v ≤ P (sh). Hence
P [P (sh)] = P (sh). Since s

tP (th) ≤ P (sh) and s ∈ (1, t), the mass of P (sh) is positive. It follows
that P (sh) is a model potential (Proposition 2.6).

Lastly, P (th) is the decreasing limit of the model potentials P (su), s ∈ (1, t). It then follows
from Corollary 4.7 that P (th) is also a model potential, i.e. C(P (th)) = P (th).
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For the rest of this subsection assume that X is equal to the complex surface described in
[DPS94, Example 1.7]: X := P(E) where E is a rank 2 vector bundle over an elliptic curve
Γ = C/Z + τZ, Im τ > 0. By [DPS94] the line bundle N := OE(1) is nef and the only positive
current in c1(N) is the current of integration along a curve C, i.e. c1(N) = {[C]}.

Naturally we have a projection map π : P(E) → Γ. Since the elliptic curve E is projective, so
is X = P(E) [Har77, Section II.7], allowing to find an ample line bundle L→ X.

Since L is ample there exists a Hermitian metric on L whose curvature form η is Kähler. We
also fix a Hermitian metric on N whose curvature form is denoted by θ. By possibly replacing L
with a high tensor power, we can assume that η + θ and ω := 2η + θ are Kähler forms on X.

Due to existence of sections for high powers of L, up to replacing L with a high tensor power,
there exists u ∈ PSH(X, η), supX u = 0, such that ηu := η + i∂∂̄u = [D] for some smooth curve
D ⊂ X. In particular,

∫
X ηu∧α = 0 for any Kähler form α, since we are working with non-pluripolar

products throughout.
Set φ := Cω(u) ∈ PSH(X,ω) ≤ 0. Since ηu∧ (η+θ) = η2u = 0, using multilinearity we can write,

(ω + i∂∂̄u)2 = (η + θ + ηu)2 = (η + θ)2.

It then follows from [DDL4, Theorem 3.3] that u− φ is bounded.
We now set φt := Pω(tφ), for t ∈ [1, 2]. Clearly, 2u + Vθ is ω-psh and it is smaller than 2φ,

hence φt ∈ PSH(X,ω) and it is a model potential thanks to Lemma 4.10.
We estimate the mixed mass of φt for each t ∈ [1, 2). Recall that {θ} is nef, hence {(2− t)η+θ}

is Kähler if t ∈ [1, 2). Let ϕt be a smooth negative ((2 − t)η + θ)-psh function. Then φt is less
singular than tu+ ϕt ∈ PSH(X,ω), hence∫

X
(ω + i∂∂̄φt) ∧ ω ≥

∫
X

(2η + θ + i∂∂̄(tu+ ϕt)) ∧ ω

≥
∫
X

((2− t)η + θ) ∧ (η + (η + θ)) ≥ {θ}.{η} =

∫
C
η > 0,

where in the third inequality above we used the fact that {η + θ} is a Kähler class.
Also, φ2 = Pω(2φ) is more singular than 2u. The potential Pω(2φ)− 2u is then bounded from

above and it satisfies:

θ + i∂∂̄(Pω(2φ)− 2u) = θ + 2η + i∂∂̄Pω(2φ) ≥ 0 on X \D,

since η + i∂∂̄u = 0 in X \ D. Therefore φ2 − 2u extends over X as a θ-psh function. Thus
φ2 − 2u = Vθ + C1, for some constant C1. Since θ + i∂∂Vθ = [C] is a current of integration, the
following holds for the mixed mass of φ2:∫

X
(ω + i∂∂̄φ2) ∧ ω =

∫
X

(2ηu + θVθ) ∧ (2η + θ) = 0.

Hence φs ↘ φ2 but due to Lemma 3.6 we have that dS([φs], [φ2]) 6→ 0 as s→ 2.
Due to Lemma 3.4, we have that {[φs]}s∈[1,2) does form a dS-Cauchy sequence. By Theorem 2.14

there exists {rt}t ∈ R(X, θ) such that dc1({r[φs]t}t, {rt}t) → 0. The construction of the geodesic
ray {rt} is explicit: for each t > 0, rt is the limit in (E1, d1) of r[φs]t as s → 2. In this case since
{r[φs]t}t is s-decreasing we have that r[φs]t decreases to rt as s→ 2. If S(X, θ) is indeed complete,
then rt = r[ψ]t for some [ψ] ∈ S(X, θ). But then we must have that r[φs]t ≥ rt = r[ψ]t, t ≥ 0.
Letting t → ∞, since C(φs) = φs (Lemma 4.10), Proposition 3.2(i) implies that φs ≥ C(ψ) ≥ ψ
for any s ∈ [1, 2). In particular φs ≥ φ2 ≥ C(ψ) ≥ ψ. As a result, Lemma 3.4 gives that
dS([φs], [φ2]) ≤ dS([φs], [ψ]) → 0 as s → 2, a contradiction with our above findings, hence S(X, θ)
is incomplete.
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5 The volume diamond inequality

Lemma 5.1. Assume that u, v, w ∈ PSH(X, θ) are such that
∫
X θ

n
u+
∫
X θ

n
v >

∫
X θ

n
w and max(u, v) ≤

w. Then P (u, v) ∈ PSH(X, θ).

Proof. We can assume without loss of generality that u, v, w ≤ 0. Replacing w with P [εVθ+(1−ε)w]
for small enough ε > 0 we can also assume that

∫
X θ

n
w > 0 and w = C(w).

For j ≥ 0 we set uj := max(u,w − j), vj := max(v, w − j), hj := P (uj , vj). Observe that
uj , vj , hj have the same singularity type as w. We fix s > 0 big enough, such that for all j > s, we
have ∫

{u>w−s}
θnuj +

∫
{v>w−s}

θnvj =

∫
{u>w−s}

θnu +

∫
{v>w−s}

θnv >

∫
X
θnw,

where in the equality above we used Lemma 2.1.
It follows from [DDL2, Lemma 3.7] and the above estimate that for j > s,∫
{hj≤w−s}

θnhj ≤
∫
{uj≤w−s}

θnuj +

∫
{vj≤w−s}

θnvj = 2

∫
X
θnw −

∫
{u>w−s}

θnu −
∫
{v>w−s}

θnv <

∫
X
θnw,

where in the identity above we used the fact that {uj ≤ w − s} = {u ≤ w − s}. Since uj , vj
decrease to u, v respectively, it follows that hj ↘ P (u, v). We now rule out the possibility that
P (u, v) ≡ −∞. Indeed, suppose supX hj decreases to −∞. From Lemma 2.7 we obtain that
supX hj = supX(hj −w)↘ −∞. But then, for j large enough the set {hj ≤ w− s} coincides with
X, contradicting our last integral estimate, since each hj has the same singularity type as w.

Plainly speaking, by the next lemma, the fixed point set of the map ψ → P [ψ] is stable under
the operation (ψ, φ)→ P (ψ, φ).

Lemma 5.2. Suppose u0, u1 ∈ PSH(X, θ) are such that P (u0, u1) ∈ PSH(X, θ), and P [u0] = u0
and P [u1] = u1. Then P [P (u0, u1)] = P (u0, u1).

Proof. As P (u0, u1) ≤ min(u0, u1) ≤ 0 and P [P (u0, u1)] ≤ min(P [u0], P [u1]), it follows that

P (u0, u1) ≤ P [P (u0, u1)] ≤ P (P [u0], P [u1]) = P (u0, u1).

This shows that all the inequalities above are in fact equalities.

Proposition 5.3. Let φ, ψ ∈ PSH(X, θ) be such that φ = P [φ], ψ = P [ψ], and P (φ, ψ) ∈
PSH(X, θ). If u ∈ E(X, θ, φ), v ∈ E(X, θ, ψ) and

∫
X θ

n
P (φ,ψ) > 0 then P (u, v) ∈ E(X, θ, P (φ, ψ)).

Proof. We can assume that u ≤ φ and v ≤ ψ.
Step 1. We first prove that P (u, ψ) ∈ E(X, θ, P (φ, ψ)). By assumption we have∫

X
θnu +

∫
X
θnP (φ,ψ) >

∫
X
θnφ,

and Lemma 5.1 gives P (u, ψ) = P (u, P (φ, ψ)) ∈ PSH(X, θ). Fixing b > 1, it follows from Lemma
4.3 that ub := Pθ(bu− (b− 1)φ) ∈ PSH(X, θ). For 1 < b < t we have

φ ≥ ub ≥ bt−1ut + (1− bt−1)φ.

Comparing the total mass via [WN19] and letting t → +∞ we see that ub ∈ E(X, θ, φ). The
previous argument then gives P (ub, ψ) ∈ PSH(X, θ). On the other hand we also have

u ≥ b−1ub + (1− b−1)φ,
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therefore P (u, ψ) ≥ b−1P (ub, ψ) + (1 − b−1)P (φ, ψ). Comparing the total mass via [WN19] and
letting b→ +∞ we arrive at

∫
X θ

n
P (u,ψ) ≥

∫
X θ

n
P (φ,ψ), hence the conclusion.

Step 2. We prove that P (u, v) ∈ PSH(X, θ). It follows from [WN19], the assumption
v ∈ E(X, θ, ψ), and the first step that∫

X
θnP (u,ψ) +

∫
X
θnv =

∫
X
θnP (φ,ψ) +

∫
X
θnψ >

∫
X
θnψ.

Since max(P (u, ψ), v) ≤ ψ, Lemma 5.1 can be applied giving P (u, v) = P (P (u, ψ), v) ∈ PSH(X, θ).
Step 3. We conclude the proof. Fixing b > 1, it follows from Lemma 4.3 that vb := Pθ(bv −

(b− 1)ψ) ∈ PSH(X, θ). For 1 < b < t we have

ψ ≥ vb ≥ bt−1vt + (1− bt−1)ψ.

Comparing the total mass via [WN19] and letting t → +∞ we see that vb ∈ E(X, θ, ψ). By the
second step we have that P (u, vb) ∈ PSH(X, θ). On the other hand we also have

v ≥ b−1vb + (1− b−1)ψ,

therefore P (u, v) ≥ b−1P (u, vb) + (1 − b−1)P (u, ψ). Comparing the total mass via [WN19] and
letting b → +∞ we arrive at

∫
X θ

n
P (u,v) ≥

∫
X θ

n
P (u,ψ). Combining this and the first step we arrive

at the conclusion.

Finally, we prove the main result of this section:

Theorem 5.4. Let u, v ∈ PSH(X, θ) and assume that P (u, v) ∈ PSH(X, θ). Then∫
X
θnu +

∫
X
θnv ≤

∫
X
θnmax(u,v) +

∫
X
θnP (u,v). (25)

Proof. It is enough to check (25) only in the case when u = P [φ] and v = P [ψ] for some φ, ψ ∈
PSH(X, θ). Indeed, we first note that, for each t > 0, max(P (u + t, 0), P (v + t, 0)) and max(u, v)
have the same singularity type. Since max(P (u+t, 0), P (v+t, 0)) increases a.e. to max(P [u], P [v]),
a direct application of [DDL2, Theorem 2.3, Remark 2.5] gives that

∫
X θ

n
u =

∫
X θ

n
P [u],

∫
X θ

n
v =∫

X θ
n
P [v] and

∫
X θ

n
max(u,v) =

∫
X θ

n
max(P [u],P [v]). If θnP (P [u],P [v]) > 0 then Proposition 5.3 above ensures

that
∫
X θ

n
P (u,v) =

∫
X θ

n
P (P [u],P [v]), while in the zero mass case, the equality follows from [WN19].

For the rest of the argument we assume that u = P [φ] and v = P [ψ], and for convenience we
introduce w := max(u, v) ≤ 0. For t > 0 we set ut := max(u,w − t) and vt := max(v, w − t).
Observe that, by [DDL2, Theorem 3.8], θnu is supported on {u = 0} = {ut = 0} which is contained
in {u > w − t}, for t > 0. From this and plurifine locality, Lemma 2.1 we have

θnut = 1{u>w−t}θ
n
u + 1{u≤w−t}θ

n
ut = 1{ut=0}θ

n
u + 1{u≤w−t}θ

n
ut = θnu + 1{u≤w−t}θ

n
ut . (26)

By the same argument applied for vt we have

θnvt = 1{v>w−t}θ
n
v + 1{v≤w−t}θ

n
vt = 1{vt=0}θ

n
v + 1{v≤w−t}θ

n
vt = θnv + 1{v≤w−t}θ

n
vt . (27)

Integrating over X and noting that, by [WN19],
∫
X θ

n
ut =

∫
X θ

n
vt =

∫
X θ

n
w, we obtain∫

X
θnw −

∫
X
θnu =

∫
{u≤w−t}

θnut ,

∫
X
θnw −

∫
X
θnv =

∫
{v≤w−t}

θnvt , t > 0. (28)
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Building on (26), (27), an application of [DDL2, Lemma 3.7] gives

θnP (ut,vt)
≤ 1{P (ut,vt)=ut}θ

n
ut + 1{P (ut,vt)=vt}θ

n
vt

≤
(
1{P (ut,vt)=ut=0}θ

n
u + 1{P (ut,vt)=vt=0}θ

n
v

)
+ 1{u≤w−t}θ

n
ut + 1{v≤w−t}θ

n
vt . (29)

In particular, θnP (ut,vt)
is supported on the union of the disjoint sets At := {u ≤ w− t}∪{v ≤ w− t}

and {P (ut, vt) = 0}. From here, since P (ut, vt) has the same singularity type as w, an integration
allows to conclude that:∫

{P (ut,vt)=0}
θnP (ut,vt)

=

∫
X
θnw −

∫
At

θnP (ut,vt)
≥
∫
X
θnw −

∫
{u≤w−t}

θnut −
∫
{v≤w−t}

θnvt .

where in the inequality we have used (29). Now, using the above inequality, (28), and Proposition
4.6 we let t→ +∞ to get∫

X
θnP (u,v) ≥

∫
{P (u,v)=0}

θnP (u,v) ≥ −
∫
X
θnw +

∫
X
θnu +

∫
X
θnv ,

finishing the proof.

Remark 5.5. If dim X = 1 then we have actually equality in (25). Indeed, since max(u,v)+P (u,v)
2 ≤

u+v
2 , an application of the main result of [WN19], yields the equality in (25). On the other hand,

equality can not hold in general. Consider X = CP2 with ω := ωFS the Fubini Study metric and
we view (z1, z2) ∈ C2 as a chart of CP2. Let ρ be the local potential of ωFS . Set

u(z1, z2) := log(|z1|2 + |z2|2)− ρ ; v(z1, z2) := log(|z1|2 + |z2 − 1|2)− ρ, w(z1, z2) := log |z1|2 − ρ.

Then w ≤ P (u, v), hence P (u, v) is a ωFS-psh function and
∫
X ω

2
u =

∫
X ω

2
v =

∫
X ω

2
P (u,v) = 0. On

the other side, max(u, v) is bounded, hence
∫
X ω

2
max(u,v) =

∫
X ω

2 > 0.

As a consequence of (25) we show that every dS-convergent sequence in Sδ(X, θ) has a subse-
quence that can be sandwiched between an increasing and a decreasing dS-convergent sequence:

Theorem 5.6. Let δ > 0, and suppose that [uj ], [u] ∈ Sδ(X, θ) satisfies dS([uj ], [u])→ 0 and uj =
P [uj ], u = P [u]. Then there exist a subsequence ujk and decreasing/increasing sequences vjk , wjk ∈
PSH(X, θ) such that ujk ≤ vjk ↘ u, ujk ≥ wjk ↗ u, and dS([vjk ], [u])→ 0, dS([wjk ], [u])→ 0.

As we will see below, for the appropriate subsequence ujk , the potentials vjk and wjk can be
chosen as follows:

wjk := P (ujk , ujk+1
, . . .) and vjk := usc

(
sup
l≥k

ujl

)
. (30)

Proof. We will pass to subsequences multiple times during the proof. Thus we can assume without
loss of generality that dS([uj ], [uj+1]) ≤ 1

C2j , where C > 1 is the constant from Proposition 3.5. To
start, we introduce the following decreasing sequence:

vj := usc
(

sup
k≥j

uk

)
.

Trivially, uk ≤ vj for all k ≥ j, and it follows from Proposition 4.2 and its proof (see (18)) that
dS([u], [vj ])→ 0.
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Now we construct the sequence wj . After possibly taking another subsequence, we can assume
that dS([u], [uj ]) ≤ 1

(n+1)C2j
and dS([u], [vj ]) ≤ 1

(n+1)C2j
. Lemma 3.7 (applied for k = 0) then

implies ∣∣∣∣ ∫
X
θnuj −

∫
X
θnu

∣∣∣∣ ≤ 1

2j
and

∣∣∣∣ ∫
X
θnvj −

∫
X
θnu

∣∣∣∣ ≤ 1

2j
,

hence ∣∣∣∣ ∫
X
θnuj+k −

∫
X
θnvj+k−1

∣∣∣∣ ≤ 1

2j+k
+

1

2j+k−1
<

1

2j+k−2
. (31)

Fix j0 > 0 large enough so that 2−j0+3 < δ. We claim that, for all j > j0, k ≥ 0, we have
P (uj , ..., uj+k) ∈ PSH(X, θ), and∫

X
θnuj −

k∑
l=0

1

2j+l−2
≤
∫
X
θnP (uj ,...,uj+k)

≤
∫
X
θnuj . (32)

We argue inductively assuming the claim for k − 1, as the case k = 0 is obvious. From (31),(32)
we have ∫

X
θnP (uj ,uj+1,...,uj+k−1)

+

∫
X
θnuj+k >

∫
X
θnuj −

k−1∑
l=0

1

2j+l−2
+

∫
X
θnvj+k−1

− 1

2j+k−2
(33)

>

∫
X
θnuj − 2−j+3 +

∫
X
θnvj+k−1

>

∫
X
θnvj+k−1

,

where the last inequality follows from the choice of j0. Since P (uj , uj+1, . . . uj+k−1), uj+k ≤ vj+k−1,
it then follows from Lemma 5.1 that P (P (uj , ..., uj+k−1), uj+k) = P (uj , ..., uj+k) ∈ PSH(X, θ). We
next apply Theorem 5.4 to obtain∫

X
θnuj+k +

∫
X
θnP (uj ,uj+1,...,uj+k−1)

≤
∫
X
θnmax(P (uj ,...,uj+k−1),uj+k)

+

∫
X
θnP (uj ,uj+1,...,uj+k)

≤
∫
X
θnvj+k−1

+

∫
X
θnP (uj ,uj+1,...,uj+k)

,

where in the second inequality we used [DDL2, Theorem 1.1]. The claim follows from (33) and the
above inequality.

Set wkj := P (uj , . . . , uj+k). It follows from Lemma 5.2 that wkj = P [wkj ], hence supX w
k
j = 0.

Therefore, the decreasing limit limk w
k
j is a θ-psh function (it is not identically −∞). Proposition

4.6 now gives that
∫
X θ

n
wkj
→
∫
X θ

n
wj . Putting this together with (32) we obtain that

0 <

∫
X
θnuj −

1

2j−3
≤
∫
X
θnwj ≤

∫
X
θnuj , j > j0.

Moreover from Corollary 4.7 together with Proposition 2.6(i) we know that C(wj) = P [wj ] = wj .
Let w ∈ PSH(X, θ) be the increasing limit of {wj}j , and v be the decreasing limit of C(vj) = P [vj ].
It follows from Corollary 4.7 that w = C(w) and v = C(v). Since dS([vj ], [u])→ 0 and dS([vj ], [v])→
0 (where the last assertion follows from Proposition 4.8) we have that dS([u], [v]) = 0, hence u = v
since they are both model potentials (Theorem 3.3(iii)).

By monotonicity of {wj}j and {vj}j we see that wj ≤ w ≤ P [vj ], j ≥ 0. From here and the
above integral estimate we have that

∫
X θ

n
w =

∫
X θ

n
u and w ≤ u, hence u = w since they are both

model potentials.
Finally, according to Lemma 4.1, limj dS([wj ], [u]) = limj dS([wj ], [w]) = 0, finishing the proof.
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6 Semicontinuity of multiplier ideal sheaves

For [u] ∈ S(X, θ) we denote by J [u] the multiplier ideal sheaf associated to the singularity type
[u]. Recall that J [u] is the sheaf of germs of holomorphic functions f such that |f |2e−u is locally
integrable on X. We now give a version of a theorem of Guan and Zhou [GZh15, GZh16] adapted
to our context:

Theorem 6.1. Let [u], [uj ] ∈ S(X, θ) be such that dS([uj ], [u])→ 0. Then there exists j0 ≥ 0 such
that J [u] ⊆ J [uj ] for all j ≥ j0.

Proof. We first assume that there exists δ > 0 such that uj , u ∈ Sδ(X, θ), for all j ≥ 0.
We note that we can assume that P [uj ] = uj and P [u] = u. Indeed, since P [uj ] is the increasing

limit of the potentials P (0, uj + c) and [P (0, uj + c)] = [uj ] for any c ∈ R, it follows from [GZh15,
GZh16] (see [Dem15, Theorem 0.8] for a survey) that J [uj ] = J [P [uj ]]. Similarly, J [u] = J [P [u]].

By contradiction let us assume that J [u] is not a subsheaf of J [uj ] for big enough j. Then
there exists a subsequence of [uj ], again denoted by [uj ], such that

J [u] 6⊆ J [uj ], j ≥ 0. (34)

After possibly taking another subsequence, via Theorem 5.6, we can further assume that there
exists {wj}j ⊂ PSH(X, θ) increasing such that wj ≤ uj and wj ↗ u. Using [Dem15, Theorem
0.8] again, it follows that J [u] = J [wj ] ⊆ J [uj ] for all j greater than some fixed j0. But this is a
contradiction with our assumption (34).

We now treat the general case. Using [Dem15, Theorem 0.8] we can find ε > 0 small enough
such that J [u] = J [u+ εVθ]. By Lemma 6.2 below, dS,(1+ε)θ([uj + εVθ], [u+ εVθ])→ 0. Thus, by
the first step we have that J [u] = J [u + εVθ] ⊂ J [uj + εVθ], for j ≥ j0, where j0 depends on ε.
But J [uj + εVθ] ⊂ J [uj ], hence the conclusion.

Lemma 6.2. For ε ∈ [0, 1] there exists C = C(n) > 1 such that for all u, v ∈ PSH(X, θ) we have

1

C
dS,θ([u], [v]) ≤ dS,(1+ε)θ([u+ εVθ], [v + εVθ]) ≤ CdS,θ([u], [v]).

Proof. Let us assume that u ≤ v. The general case reduces to this particular situation using
Proposition 3.5. Set uε := u+ εVθ, vε := v + εVθ. Then Lemma 3.4 gives the following:

dS([u], [v]) =
1

(n+ 1)

n∑
j=0

(∫
X
θjv ∧ θ

n−j
Vθ
−
∫
X
θju ∧ θ

n−j
Vθ

)
, (35)

dS,(1+ε)θ([uε], [vε]) =
1

n+ 1

n∑
j=0

(1 + ε)n−j
(∫

X
(θv + εθVθ)

j ∧ θn−jVθ
−
∫
X

(θu + εθVθ)
j ∧ θn−jVθ

)

=
1

n+ 1

n∑
j=0

(1 + cj)

(∫
X
θjv ∧ θ

n−j
Vθ
−
∫
X
θju ∧ θ

n−j
Vθ

)
(36)

where 0 ≤ cj = O(ε), j = 0, ..., n are positive constants depending only on n, ε. From (35), (36),

and the fact that
∫
X θ

j
u ∧ θn−jVθ

≤
∫
X θ

j
v ∧ θn−jVθ

(which follows from [DDL2, Theorem 2.4]) we obtain
the desired estimate.
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7 Stability of solutions to CMAE with prescribed singularity type

In this section we show that solutions to a family of complex Monge-Ampère equations with varying
singularity type converge as governed by the dS-topology:

Theorem 7.1. Given δ > 0 and p > 1 suppose that:
◦ [φj ], [φ] ∈ Sδ(X, θ), j ≥ 0 satisfy φj = P [φj ], φ = P [φ] and dS([φj ], [φ])→ 0.
◦ fj , f ≥ 0 are such that ‖f‖Lp , ‖fj‖Lp, p > 1, are uniformly bounded and fj →L1 f .
◦ ψj , ψ ∈ PSH(X, θ), j ≥ 0 satisfy supX ψj = 0, supX ψ = 0 and{

θnψj = fjω
n

[ψj ] = [φj ]
,

{
θnψ = fωn

[ψ] = [φ]
.

Then ψj converges to ψ in capacity, in particular ‖ψ − ψj‖L1 → 0.

Proof. First we claim that it is enough to show that any subsequence of ψj contains a subsequence
that converges in capacity to ψ. Indeed, suppose that ψj does not converge to ψ in capacity. Then
there exists ε > 0 such that lim supj Capω({|ψj − ψ| > ε}) > δ for some δ > 0. In particular, there
exists jk → ∞ such that Capω({|ψjk − ψ| > ε}) > δ for all jk. But then {ψjk}k would contain a
subsequence converging to ψ in capacity, giving a contradiction.

We take a subsequence of fj , again denoted by fj , such that ‖fj − fj+1‖L1 ≤ 1
2j+1 , j ≥ 0. By

an elementary argument g := f0 +
∑

j≥0 |fj+1 − fj | ∈ L1(ωn) and fj , f ≤ g for all j ≥ 0.
Now let us take a subsequence of φj , again denoted by φj , such that there exists wj , vj ∈

PSH(X, θ) increasing/decreasing sequences with wj ≤ φj ≤ vj such that dS([wj ], [φ]) → 0 and
dS([vj ], [φ])→ 0. This is possible due to Theorem 5.6. Moreover we recall that vj = usc

(
supk≥j φk

)
,

and wj arises as the decreasing limit wj := limk w
k
j , where wkj := P (φj , φj+1, . . . , φj+k) (see (30)).

We consider γj := usc
(

supk≥j ψk
)
≥ ψj . Observe that supX γj = 0, j ≥ 0. For this sequence

[DDL2, Lemma 4.27] gives that θnγj ≥
(

infk≥j fk
)
ωn.

Since [φj ], [φ] ∈ Sδ(X, θ), [DDL4, Theorem 4.7] gives existence of C > 0 such that

φ− C ≤ ψ ≤ φ and φj − C ≤ ψj ≤ φj , j ≥ 0. (37)

In particular, we have that wj−C ≤ γj ≤ vj for all j ≥ 0. Hence the monotonicity of the sequences
wj and vj implies that

wj − C ≤ γ := lim
k
γk ≤ vj , j ≥ 0.

Letting j →∞, we obtain that∫
X
θnφ = lim

j→∞

∫
X
θnwj ≤

∫
X
θnγ ≤ lim

j→∞

∫
X
θnvj =

∫
X
θnφ.

Consequently, the conditions of [DDL2, Theorem 2.3] hold for the decreasing sequence {γj}j , yield-
ing the estimate θnγ ≥ fωn. By comparing total masses again, we conclude that in fact θnγ = fωn. By
uniqueness of solutions in E(X, θ, φ) ([DDL2, Theorem 4.29]), and noting that supX γ = supX ψ = 0,
we obtain that γ = ψ.

This also shows that ψj converges in L1 (and a.e.) to ψ. Indeed since supX ψj = 0 we can
assume that, up to extracting, ψj converges to some ψ∞ in L1 and a.e.. Then (by construction) γj
also does converge to ψ∞. But the limit of γj is γ = ψ.

We fix r ∈ (1, p). By our assumptions on the fj , f , and the Hölder inequality we obtain that
fj → f in Lr. Let s > 1 be the conjugate exponent of r, i.e. 1/s + 1/r = 1. Take ε > 0 so small
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that e−εψj → e−εψ in Ls(X,ωn) and consequently supj ‖e−εψj‖Ls(X,ωn) < +∞. This is possible as
we explain below. For x = −εψj , y = −εψ we have that x, y ≥ 0 and an elementary argument gives

|ex − ey|s ≤ es(x+y)|x− y|s.

Thus, after applying Hölder’s inequality twice, we obtain∫
X
|e−εψj − e−εψ|sωn ≤ εs

∫
X
e−sε(ψj+ψ)|ψj − ψ|s ≤ εs

(∫
X
e−2sε(ψj+ψ)ωn

) 1
2
(∫

X
|ψj − ψ|2sωn

) 1
2

≤ εs
(∫

X
e−4sεψjωn

)1/4(∫
X
e−4sεψωn

)1/4(∫
X
|ψj − ψ|2sωn

)1/2

.

The convergence statement for e−εψj then follows because ψj converges to ψ in any Lt, t > 1, while,
since supX ψj = supX ψ = 0, Skoda’s uniform integrability theorem ([Zer01],[GZ17, Theorem 2.50])
ensures that both e−4sεψj and e−4sεψ are uniformly bounded in L1 for ε > 0 small enough.

Now set hj := e−εψjfj , h := e−εψf . We have∫
X
|hj − h|ωn ≤

∫
X
e−εψj |fj − f |ωn +

∫
X
|e−εψj − e−εψ|fωn.

Applying Hölder’s inequality with exponents r and s we conclude that ‖hj − h‖L1 → 0. Up to
extracting again we can assume that hj , h ≤ g̃ where g̃ ∈ L1(X,ωn) is constructed exactly as the
function g at the beginning of the proof.

From (37) we have

wkj − C ≤ χkj := P (ψj , ψj+1, . . . , ψj+k) ≤ wkj ,

giving that χkj is a θ-psh function. Observe then that the Monge-Ampère equation for ψj rewrites

as θnψj = eεψjhjω
n. Thus, Lemma 7.2 below gives

θn
χkj
≤ eεχ

k
j
(

sup
l≥j

hl
)
ωn.

From the first statement of [DDL2, Theorem 2.3] we have

θnχj ≤ lim inf
k

θn
χkj
≤ eεχj

(
sup
l≥j

hl
)
ωn,

where χj := limk ↘ χkj . Also wj − C ≤ χj ≤ wj . Now we argue that the increasing limit
χ := limj χj = ψ. Indeed, we can apply [DDL2, Theorem 2.3] and the dominated convergence
theorem to conclude that

θnχ ≤ eεχhωn = eε(χ−ψ)fωn. (38)

On the other hand, [DDL2, Theorem 1.1 and Theorem 2.3] together with Lemma 3.7 give that∫
X
θnχ = lim

j

∫
X
θnχj = lim

j

∫
X
θnwj =

∫
X
θnφ =

∫
X
fωn,

hence χ ∈ E(X, θ, φ). Recall that we also have ψ ∈ E(X, θ, φ). By the comparison principle, [DDL2,
Corollary 3.16], and (38), we have∫

{χ<ψ}
θnψ ≤

∫
{χ<ψ}

θnχ ≤
∫
{χ<ψ}

eε(χ−ψ)fωn =

∫
{χ<ψ}

eε(χ−ψ)θnψ ≤
∫
{χ<ψ}

θnψ.
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It then follows that all the above inequalities become equalities, and θnψ(χ < ψ) = 0. Therefore, all
terms in the above are zero. In particular θnχ(χ < ψ) = 0, and by the domination principle, [DDL2,
Proposition 3.11], we have that χ ≥ ψ.

On the other side, by construction of χj and γj we have that χj ≤ γj , and so χ ≤ γ = ψ finally
giving χ = ψ.

To summarize, we proved existence of two monotone sequences χj , γj such that χj ≤ ψj ≤ γj
with γj decreasing to ψ and χj increasing to ψ. In particular χj and γj converge in capacity to ψ
([GZ17, Proposition 4.25]). This implies that ψj converges to ψ in capacity, finishing the proof.

Lemma 7.2. Assume that u, v, P (u, v) ∈ PSH(X, θ), and µ is a positive non pluripolar measure,
ε > 0, 0 ≤ f, g ∈ L1(µ). If θnu ≤ eεufµ, θnv ≤ eεvgµ, then

θnP (u,v) ≤ e
εP (u,v) max(f, g)µ.

Proof. By replacing µ with 1X\Pµ, where P := {u = v = −∞}, we can assume that µ(P ) = 0.
Since µ(X) < +∞, the function r → µ({u ≤ v + r}) is monotone increasing. Such functions
have at most a countable number of discontinuities, hence for almost every r ≥ 0 we have that
µ({u = v+ r}) = 0. For such r we set ϕr := Pθ(u, v+ r), and note that ϕr ↘ Pθ(u, v) as r → 0. It
then follows from [DDL2, Lemma 3.7] that we can write

θnϕr ≤ 1{ϕr=u}θ
n
u + 1{ϕr=v+r}θ

n
v ≤ 1{ϕr=u}e

εufµ+ 1{ϕr=v+r}e
εvgµ

≤ 1{ϕr=u}e
εϕr max(f, g)µ+ 1{ϕr=v+r}e

εϕr max(f, g)µ ≤ eεϕr max(f, g)µ,

where in the last inequality we used the fact that µ({u = v + r}) = 0. Letting r ↘ 0, we use
[DDL2, Theorem 2.3] to arrive at the conclusion.
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