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Abstract

Iridium thin  films are grown by direct-current plasma magnetron sputtering, on MgO single crystal
substrates with various surface orientation, i.e. (100), (111) and (110). The surface morphology, the
crystalline properties of the films, and the substrate - thin film interface, are investigated by atomic
force microscopy (AFM),  X-ray diffraction (XRD),  focused ion beam scanning electron microscopy
(FIB-SEM), and high-resolution transmission electron microscopy (HR-TEM), respectively. The results
reveal that hetero-epitaxial thin films with different crystallographic orientation and notable atomic
scale  smooth  surface  are  obtained.  From  the  XRD  analysis  the  following  epitaxial  relations  are
obtained: i)  (100)Ir || (100)MgO out-of-plane and [001]Ir || [001]MgO in-plane for Ir grown on MgO(100),
ii) (110)Ir || (110)MgO out-of-plane and [1-10]Ir || [1-10]MgO in-plane for Ir grown on MgO(110) and iii)
(111)Ir  || (111)MgO out-of-plane and two variants for in-plane orientation [1-10] Ir || [1-10]MgO and [1-
10]Ir || [10-1]MgO, respectively for Ir grown on MgO(111).  Because of the large misfit strain (9.7%),
the  thin films  are found to grow in a strain-relaxed state with the formation of geometrical misfit
dislocations with a ~2.8 nm spacing, whereas thermal strain is stored upon cooling down from the
growth temperature (600 °C). The best structural characteristics are obtained for the (111) oriented
films with a mosaicity of 0.3° and vanishingly small lattice distortions. The (100)- and (110)-oriented

films exhibit mosaicities of   ̴1.2° and lattice distortions of   ̴1% which can be explained by the larger
surface energy of these planes as compared to (111).

Keywords: iridium, thin film, epitaxy, texturation, interface, lattice distortion, mosaicity.

1. Introduction

The crystallographic orientation of a metal thin film affects its surface energy and

structure.  Surface  chemical  reactions  and  interface  engineering,  which  are  important  in

applications  including  optoelectronic  devices  and  catalysis,  as  well  as  understanding

crystalline growth,  are  therefore  of  paramount  importance  [1-5].  In  this  respect,  iridium

layers that  are crystallographically  oriented,  exhibit  low stress,  yet high density and low

surface roughness, find widespread use in various high-end technological applications, such
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as diffusion barrier material in ferroelectric random access memories, gate electrode in field

effect transistors,  template layer for diamond hetero-epitaxy,  active layers in gas sensors,

hydrogen separation membranes or materials for electro-catalyst  [6-9],  and even in ultra-

high  quality  grazing  incidence  configuration  mirror  elements  of  the  Advanced  X-ray

Astrophysics Facility – Imaging (AXAF–I), a space-based X-ray observatory of NASA [10, 11].

The lattice parameter of iridium is 0.38386 nm at 270 K [12, 13]. The surface morphology

and the crystallographic orientation of such thin films have a significant influence on their

electrical and optical properties, as well as the rate of chemical reactions at the film surface,

and hence on the foreseen applications. Growth of thin films with high-energy surface are

extremely important especially in catalysts, because such surfaces exhibit a high density of

active sites [14, 15]. Chemisorption can lead to not only the restructuring of adsorbates but

also a significant reconstruction of single crystal surfaces [16, 17]. In many cases, massive

reconstruction on clean surfaces can lead to a surface structure totally different from that

projected from bulk structure. This is the case for reconstructed Ir(100) or Ir(110) surfaces

[18, 19]. The dissociative chemisorption of O2 and the properties of chemisorbed oxygen

atoms on Ir(111) have also been studied in detail and are generally well understood [ 20].

These  effects  are  very  important  in  applications  such  as  thin  films  and  multi-layered

structures [21],  e.g. in metal-insulator-metal (MIM) capacitive applications [22]. The use of

iridium as bottom electrode in MIM-type devices was also found to influence the preferred

orientation and microstructure, as well as the surface morphology, of para-/ferro-electric

films grown on Ir [21-25]. 

Single crystal MgO with various crystallographic cuts is commonly used as a substrate

for the deposition of a wide range of thin film materials, in many different areas of research

such as superconductors, and other types of oxides, metal and nitride films, multilayers and

superlattices. In particular,  highly lattice-mismatched metals with a controlled orientation

can be developed, since the substrate lattice acts as a template for growth [1-3, 22, 26-28].

Growth of hetero-epitaxial (100) iridium thin films on (100) MgO single crystal [28] or on

MgO-buffered Si(100) [29] substrate has been reported by pulsed laser deposition (PLD) and

radiofrequency  (RF)-powered plasma magnetron sputtering,  while  (111)  oriented iridium

films have been obtained by electron-beam evaporation (EBE) on yttria-stabilized zirconia-

buffered silicon substrate [30] or by direct-current (DC) magnetron sputtering technique on

TiO2 buffered silicon substrate [31].
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In this study, we present and discuss results on the growth of hetero-epitaxial iridium

thin films with (100), (111), and (110) crystallographic orientations, respectively, grown on

single  crystal  MgO  substrates  with  the  corresponding  crystallographic  orientation.  A

comparison of the crystalline properties and the morphology of the films is performed. For

all  three orientations, the level of residual strain, the interface structures and the overall

structural quality are discussed with regard to growth mechanism and the surface energies

of the corresponding orientations.

2. Experimental

The  Ir  thin  films  have  been fabricated  by  DC-magnetron  sputtering  using  a  pure

(99.9%) iridium target in a Gamma 1000C sputtering system with a base pressure of ~3 x 10-5

Pa.  The chosen substrates,  i.e. single side polished MgO (100),  (110) and (111)  oriented

single crystals (flux melt crystal growth, 10 x 10 mm square samples, 500 µm in thickness,

one side polished, Rq  <1.0 nm), have been heat-treated at 1050 °C for 5 hours in air and at

atmospheric pressure. This procedure has proven effective in obtaining clean MgO surfaces

with regular atomic step-and-terrace structures. The thin films have been deposited at 600

°C substrate temperature and 0.66 Pa, in argon atmosphere. The applied density power on

the iridium target was 1 W/cm², corresponding to a deposition rate of ~0.5 nm/min. Various

thin film thicknesses have been obtained. Further details on the deposition procedure are

presented elsewhere [31].  The epitaxial relationships and the microstructural properties of

the films (thickness, roughness, lattice distortions and lattice strain) have been investigated

using  X-ray  diffraction  (XRD).  All  measurements  have  been  performed  on  a  Bruker  D8

Discover diffractometer,  equipped with Cu target  (λ  = 1.5406 Å),  and a parabolic  mirror

associated with a two-reflection Ge monochromator. Diffracted X-rays are collected using a

1D (LynxEye) detector covering a 2° 2θ range with an angular resolution of 0.01°. The film

lattice parameters and residual strains have been determined by the analysis of reciprocal

space maps (RSMs) of reflections with hkl indices containing both in-plane and out-of-plane

components (i.e. asymmetrical RSMs). The surface morphology and roughness of the films

have  been  investigated  by  atomic  force  microscopy  (AFM),  by  using  a  MFP  3D  SA

microscope.  Scanning  electron  microscopy  (SEM)  surface  investigations,  cross-section

thickness measurements, and further sample processing,  have been performed on a ZEISS

Crossbeam 550 focused ion beam scanning electron microscope (FIB-SEM) equipped with a
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nanomanipulator for 3D analytics and sample preparation. This device was used in preparing

transmission electron microscopy (TEM) samples, by using the low voltage capabilities of the

FIB  ion-sculptor  to  get  ultra-thin  samples  while  keeping  amorphization  damage  at  a

minimum. Finally, the high-resolution (HR) TEM investigations of the iridium films and MgO

substrates / thin films interfacial properties have been assessed on a Jeol JEM-2100F, 200 kV

FE (field emission) analytical electron microscope.

3. Results and discussion

The growth of (100) or (110)-oriented iridium thin films is challenging because the

{111} close packed planes have the lowest surface free energy of 2.59 J/m², followed by the

{100} planes with 2.95 J/m², and by the {110} planes with 3.19 J/m² [32]. For this reason, the

(111) crystalline orientation is preferred when the growth is governed by the low surface

energy of the film. For instance,  in the case of  iridium films grown on silicon substrates

under various deposition conditions, a preferential (111)-orientation has been systematically

observed [31]. However, changing the nature and the structure of the substrate might yield

to favourable interface energies, allowing the epitaxial growth of different orientations, as it

is observed in the present work. 

As  previously  stated,  at  room temperature  iridium has  a  face  centred  cubic  (fcc)

structure with a unit cell edge length of 0.38386 nm. MgO substrate has a fcc-type lattice of

Mg ions with O ions occupying all the octahedral sites (and vice versa) with a unit cell edge

length of 0.4211 nm. The possible hetero-epitaxial relations between iridium films and MgO

(001),  (111) and (110) substrates are schematically shown in  Figure 1.  The substrate-film

misfit strain is defined as: 

e=
as−af
af

,

where a(s/f) represent the lattice constants of the substrate and the film. Since the film and

the substrate exhibit the same orientations regardless of the substrates cut, the misfit strain

is  constant  for  all  films and equals  9.7% (tensile).  In  the case  of  large lattice mismatch,

hetero-epitaxial growth is possible via rotation domains hetero-epitaxy or domain matching

hetero-epitaxy, and the associated formation of “geometrical” misfit dislocations  [1-3, 33,

34]. The adjective “geometrical” is here used to indicate that these dislocations are directly

formed at the interface during growth and do not require the glide of dislocations from the
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surface, as it is usually the case for lower lattice mismatch [35]. Interestingly, this potentially

leads  to  high  quality  films  to  due  to  the  lack  of  threading  dislocation  segments. The

dislocation spacing is given by b/e (with “b” being the magnitude of the Burgers vector of the

dislocations) which, with the above strain value, gives an average of 2.8 nm. This value has

been obtained assuming the Burgers vector b = ½<110>, which, in the case of  fcc metals,

corresponds  to  perfect  dislocations  with  the  lowest  energy.  The  XRD  characterizations

corresponding to iridium films grown onto MgO(100), MgO(110) and MgO(111) substrates

are given in  Figure 2,  Figure 3 and  Figure 4,  respectively.  Let us first discuss the case of

MgO(100) in detail.

In  Figure 2a,  only the  h00 reflections of iridium are visible, together with the  h00

reflections of  MgO,  which indicates  the (100) planes  of  iridium are parallel  to  the (100)

planes of MgO. In this data, as well as in the following θ-2θ scans, additional peaks, labelled

“*”, are visible. Those peaks actually correspond to a residual of Kβ radiation. Although a

two-reflection  monochromator  is  used,  a  fraction  of  this  radiation  escapes  the

monochromator.  Such  radiations  are  usually  cut  out  using  a  slit  at  the  output  of  the

monochromator,  which  was  not  the  case  for  these  experiments.  However,  this  has  no

consequences  on  the  results  presented  below.  The  in-plane  orientation  has  been

determined  by φ-scan  measurement  using  the  (420)  reflection  plane  of  both  MgO and

iridium, as presented in Figure 2b. The reflections occur at the same azimuthal angle which

demonstrates that the [010] direction of iridium is parallel to the [010] of MgO. The four

symmetric peaks of the φ-scan indicate that the iridium film is grown cube-on-cube, with

epitaxial relationship to MgO(100), exhibiting the (100) Ir || (100)MgO out-of-plane orientation

and [001]Ir || [001]MgO in-plane orientation. The inset in  Figure 2a shows the simulation of

the 200 reflection of iridium with a thin film scattering model from which were calculated

the film thickness t, the roughness r (root-mean-squared (RMS) thickness fluctuations, <(t -

<t>)2>½),  and the lattice distortions  ε (RMS lattice plane distortions,  <d- <d>)2>½ / d).  The

obtained values are t = 23.2 nm, r = 0.7 nm, and ε = 0.012, respectively. Details regarding the

scattering model can be found in reference [36], equation (5). Further information regarding

thin  film  quality  can  be  obtained  from  the  rocking  curves  recorded  through  the  h00

reflections of iridium, presented in Figure 2c. The rocking curves have been simulated with a

Pearson VII function; the full-width at half-maximum (FWHM) gives the mosaicity, which is

1.26 and 1.22° for the 200 and 400, respectively. Finally, the state of strain of the film was
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obtained from the analysis of 311 RSMs. Such a RSM is shown in  Figure 2d. Knowing the

films orientation and the elastic constants of iridium, it is possible to compute the state of

strain,  e//,  as  well  as  the bulk  (strain-free)  lattice parameter,  a(bulk),  of  the film from the

coordinates of the reflections of iridium and MgO. For this purpose, we follow the approach

detailed in reference [37], where a(bulk) and e// can be deduced from the in-plane, d// = 2π/Q//,

and out-of-plane, d= 2π/Q, lattice spacing determined from the RSM:

In the case of the (100) orientation and the 311 reflection,  Q// =  Q[011],  Q= Q [100], Φ is the

angle between the (100) and the (311) planes and d//
(bulk) = a(bulk) / 21/2. For a (100) oriented

film, the bi-axial Poisson ratio, υ2, is given in Table 1. The peak coordinates (Q//  and Q) have

been obtained by fitting the RSM with 2-dimensional Gaussian functions using the DxTools

program [38].  The in-plane strain, e// = [d// - d//(bulk)]/d//(bulk), is found to be compressive,

with e// = -0.353(9)%. Although the theoretical misfit strain is tensile (9.7%), this apparent

discrepancy can be explained by the fact that such a high misfit strain cannot be sustained by

the film which therefore grows in a strain-relaxed state (with,  as mentioned earlier,  the

formation of geometrical misfit dislocations with a spacing of  2.8 nm ̴  in the present case).

Strain is subsequently stored upon cooling down from the growth temperature. Since the

coefficient of thermal expansion (CTE) of magnesium oxide, i.e.  12.6 x 10 ̴ -6 K-1 in the RT-700

°C range [39], is higher that the CTE of iridium, i.e.  7.29 x 10 ̴ -6 K-1 in the RT-700 °C range [13],

this gives rise to a theoretical compressive strain of e = (αf – αs)(Tgrowth – RT) = -0.31%. This

value is  in good agreement with the value of  e// determined above.  As shown below, a

similar  value  is  found for  all  films.  Finally,  it  is  worth  considering  the  strain-free  lattice

parameter. Surprisingly, a(bulk) is not equal to the theoretical value of iridium, but it exhibits a

-3.58% shrinkage,  i.e. 3.8254 Å instead of  3.8392 Å.  This  might indicate the presence of

iridium vacancies introduced during growth. A similar value is found for the (111) oriented

films which seems to indicate that this is a process-dependent phenomenon. A reliable value

could not be determined for  the (110) orientation because of  the mosaic  nature of  this

particular MgO substrate (see discussion below).

The  same  procedure  has  been  used  in  the  case  of  iridium  grown  on  MgO(111)

substrate. All numerical results are also presented in  Table 1.  From the θ-2θ and φ-scans

shown in  Figure 3a and  Figure 3b, the following epitaxial relations are obtained:  i) out-of-
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plane:  (111)Ir ||  (111)MgO,  ii)  in-plane variant  1:  [1-10]Ir ||  [1-10]MgO (180 and ± 60°)  and

variant 2: [1-10]Ir || [10-1]MgO (0 and ± 120°). The existence of two epitaxial variants comes

from the fact that there are two possibilities (related by a 180° rotation) to position the

iridium  unit-cell  on  the  MgO  unit-cell:  the  iridium  triangle  points  either  “upwards”,  or

“downwards”, as one may conclude from the schematic in Figure 1b. From a structural point

of view, variant 1 preserves the fcc ABC|ABC stacking across the interface (the interface

being represented with the “|”), whereas variant 2 corresponds to: ABC|BCA, i.e. a stacking

fault  is  formed  at  the  interface.  The  energetic  cost  associated  with  the  stacking  fault

probably explains why variant 2 is less likely to occur ( 100× weaker intensity in the φ-scan). ̴

Hetero-epitaxial iridium thin films have also been achieved on MgO(110) substrates,

although it was more difficult to determine the state of strain and the unit-cell shrinkage do

to the poor  quality  of  the MgO crystals.  It  should be noted that  this  is  a  fairly  general

characteristic of MgO single crystals which are often “multi-crystalline” (or twinned) instead

of purely single-crystalline. Indeed, more than 70% of the MgO substrates from six different

vendors that have been tested for “single crystal” characteristics by Schroeder  et al were

demonstrated to be of less than the claimed single crystal quality [40]. Here, in the case of

the (100)- and (111)- oriented ones, it was experimentally possible to select regions of the

MgO  crystals  where  the  amounts  of  twins  were  low  enough  to  perform  a  reliable

characterization. Unfortunately, regions of sufficiently high quality could not be found for

the (110)-oriented crystals.  Nonetheless,  from the θ-2θ scan,  only (220) reflection peaks

appear for both iridium and MgO, which corresponds to the (110) Ir || (110)MgO out-of-plane

orientation. Φ-scans results on the (400) reflections of iridium reveal that the film had a [1-

10]Ir || [1-10]MgO in-plane crystalline orientation with a twofold symmetry indicated by the

peak separation of 180o, as presented in Figure 4.  

As mentioned earlier, it is noteworthy that, within experimental uncertainty, all films

exhibit the same level of strain, which can be solely explained by the CTE mismatch between

iridium and MgO. Interestingly, although the (111)-oriented iridium thin film has a thickness

3  times  larger  than  the  other  orientations,  this  does  not  seem  to  induce  any  strain

relaxation.  Therefore,  this  leads  us  to  conclude  that  the  differences  in  the  structural

characteristics between the different films cannot  be attributed to interfacial  strain,  but

solely  to  the  interface energy  of  the  different  orientations.  Being  the  lowest  energy

orientation, the (111)-oriented films exhibit the best structural quality with a mosaicity 4
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times lower than (100) and (110), and a vanishingly small level of lattice distortions. On the

other hand, the surface energies of the (100) and (110) orientation are similar which leads to

similar mosaicities and distortions, namely 1.26° and 0.012, and 1.3° and 0.011, respectively.

The AFM investigations, as presented in Figure 5, as well as the SEM analysis of the

iridium thin films (not  presented here),  show that not only the crystalline orientation of

iridium thin films depends on the crystalline orientation of MgO substrate but also their

surface  morphology.  Hetero-epitaxial  growth  and  morphology  of  iridium  thin  films  are

directly  influenced by  surface  step-terraces  periodicity,  corner  sites  and  other  substrate

surface defects which may act as nucleation sites.  The surface morphology of iridium thin

films  grown  on  MgO(001)  substrates  has  a  homogenous  microstructure  represented  by

rectangular grain shape arranged regularly and compactly with a RMS surface roughness of

approximately 5.8 Å, as presented in  Figure 5a. In case of the Ir(111) thin films grown on

MgO(111)  substrates,  the surface morphology shows formations of  triangular  pyramidal-

shaped grains. This reflects strong (111) orientation of  fcc iridium structure and a surface

roughness of approximately 8.5 Å, as presented in  Figure 5b.  Elongated rectangular grain

shapes oriented along the same direction with lateral dimensions close to the width of the

substrate terraces have been observed on Ir(110) grown on MgO(110), as shown by the AFM

image presented in Figure 5c. The Ir(110) film exhibits a roughness of approximately 7.4 Å. It

can be noted that,  although different,  these roughness  values are of  the same order of

magnitude as those derived by XRD, i.e. 6.8 Å, 3.8 Å and 10 Å. The differences are most likely

due to the fact that the AFM determination is local (with only a few µm² probed), whereas

XRD probes several mm².

In  order  to  assess  the  quality  and  structure  of  the  iridium  thin  films  and  the

corresponding MgO substrates, TEM sample slides ( 20   ̴ × 7 µm) are cut by FIB and then

soldered to the TEM holders with Pt,  as shown in  Supplementary Material.  Samples are

finally  refined  and  thinned  by  FIB  and  with  the  help  of  a  nanomanipulator  are  further

transported  and  investigated.  HR-TEM  investigations  of  the  iridium  thin  films  vs. MgO

substrates have been acquired at different magnifications and in several zones for all three

crystalline  orientations.  Selected  area  electron  diffraction  (SAED)  patterns  have  been

recorded on the iridium thin film, the substrate,  as well  as on the substrate  – thin film

interfacial region for all samples, as shown in Supplementary Material (electron beam with a

1  nm  diameter,  at  200  kV  acceleration  voltage).  Unsurprisingly,  these  measurements
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correspond to the epitaxial orientation determined by XRD. In Figure 6a, the HR-TEM image

of  Ir(001)  grown  on  MgO-(001)  is  presented.  One  may  observe  the  crystallographic

orientation and the neat  interfacial  continuity  between the substrate  and  the  thin  film.

Although some dislocations can be observed at the film/substrate interface, it is important

to  note  that  the  film  is  almost  defect  free,  in  particular  no  threading  segments  of

dislocations are to be observed.  This  observation is  in  good agreement with the above-

mentioned domain-matching growth mechanism. In order to enhance the contrast of the

interface misfit, a digital dark-field image of the interface has been generated by selecting

the 002 and 00-2 reflections in the Fourier transformed image. The corresponding filtered

image is displayed in  Figure 6b.  It  can be noted that  the in-plane lattice spacing can be

computed from the plane period (far from the distorted region at the interface), which yields

d200 = 1.915 Å,  i.e. a = 2×d200 = 3.83 Å (in very good agreement with the strain-free lattice

parameter obtained by XRD, 3.8254 Å). In this image, the geometrical misfit dislocations are

now clearly observed (red circles),  from which the dislocation spacing can be computed.

Before proceeding, it should be emphasized that, since the Burger vector of the dislocation is

of ½<110> type, with the (001) film orientation, two sets of dislocations are actually formed

at the interface with Burgers vector ½[011] and ½[011],  and dislocations lines extending

along [011] and [011], respectively. Since the TEM image has been taken along the [010]

zone axis, the apparent dislocation spacing is increased by a factor of 2½.  However, since

both sets of dislocations contribute to the image, the overall dislocation density is actually

overestimated by a factor of 2½. With 18 visible dislocations, the average spacing, corrected

for the above-mentioned 2½ factor, is 2.94 nm, in relatively good agreement with the value

expected from the domain-matching interface model (2.8 nm). Figure 7a and Figure 7b show

the  same  images  for  the  (111)  orientation.  Unfortunately,  the  quality  of  the  sample

preparation here is not sufficient to get a highly resolved image, so that even the Fourier

filtered image is  difficult  to  interpret.  Nonetheless,  by compressing the image along the

selected  {00l}  planes  (Figure  7c)  it  is  possible  to  resolve  some  misfit  dislocations.  Six

dislocations can be distinguished with a computed spacing of 2.91 nm. Finally,  the (110)

orientation is depicted in Figure 8. The most striking feature is the peculiar morphology of

the MgO surface which exhibits trenches perpendicular to the zone axis. Although the origin

of those trenches is not yet determined, it might be due to a roughening transition occurring

during the heat treatment to which the MgO substrates are submitted before deposition.
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Despite these substrate surface features, one may observe that the iridium thin film surface

roughness was improved compared with substrate surface roughness. This phenomenon of

smoothing was also observed by de Assis et al. [41], i.e. the surface roughness reduction of

deposited thin films depends on initial substrate surface roughness, on the growth method

and the used material and is strongly correlated with the mobility of the sputtered adatoms.

Another distinctive feature of this observation is the presence of defects (stacking faults) in

the bulk of the Ir film. As a final point, repeating the same procedure as for the other films,

14 dislocations can be observed, which yields an average 2.68 nm of dislocation spacing. It

should be mentioned that in this calculation the right hand side of the TEM image has been

disregarded.  Indeed,  since  the  interface  is  poorly  defined,  the  resulting  FFT  cannot  be

reliably analysed.

To  conclude,  the  HR-TEM  observations  corroborate  the  film  growth  mechanism

deduced from the XRD analysis of the residual strain: the film grows in a strain-relaxed state

with the formation of geometrical misfit dislocations with an average spacing in the 10.5 –

10.9 range, in excellent agreement with the value derived by assuming a complete strain

relaxation during growth (10.3 unit-cells). Thermal strain is subsequently stored within the

film upon cooling down from the growth temperature,  as  a  result  of  the film/substrate

thermal expansion mismatch.

4. Conclusion

We report on the epitaxial growth of atomically smooth iridium films grown on single

crystal substrates, i.e. MgO(001), (111), and (110), respectively, by DC-magnetron sputtering.

Despite the fact that the growth of thin films with fcc-type structure generally is governed by

the minimization of  the surface energy,  and thus  the (111)  crystalline  direction is  often

preferred,  hetero-epitaxial  iridium thin  films  with  (100),  (111)  and (110)  crystallographic

orientations  is  successfully  achieved.  The hetero-epitaxial  relations  between iridium thin

films  and  MgO  substrates  can  be  attributed  to  the  fact  that  the  substrate  acts  as  a

crystallographic template for the growth of oriented Ir. It should be noted though that the

surface  energy  still  plays  an  important  role,  in  particular  by  determining  the  overall

crystalline quality of the films. In all cases, however, the iridium films exhibit flat topography

with sub-nanometric surface roughness, making them a potential candidate for the template

growth functional thin films.
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Tables & Figures (with captions)

hkl
Thicknes

s

(nm)

Roughnes

s (Å)

Distortion

s
Mosaicit

y (o)

In-plane

strain

 (%)

Cell

shrinkag

e (%)

Bi-axial Poisson

ratio

(100

)
23 6.8 0.012 1.26 -0.353(9) -3.586(5)

2 C12/C11

(0.8441)

(111

)
65 3.8 0 0.30 -0.36(1) -3.10(2)

(2C11 + 4C12 - 4C44) /

(C11 + 2C12 + 4C44)

(0.5281)

(110

)
20 10 0.011 1.30 -0.30(6) -6

(C11 + 3C12 - 2C44) /

(C11 + C12 + 2C44)

(0.5965)

Table 1. Structural parameters obtained from the XRD analysis
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a)

b)



17

c)

Figure 1. Schematic of the possible hetero-epitaxial relations between (a) Ir(001) on 
MgO(001), (b) Ir(111) on MgO(111), and (c) Ir(110) on MgO(110) planes

a)   b)
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c)  d)

Figure 2. X-ray θ-2θ diffraction scan patterns of (100) oriented iridium films deposited on 
(100)MgO substrate (a). Phi (Φ) scan plots of the (420) reflections of iridium and MgO(100 
(b). Rocking curves recorded through the 200 and 400 reflection of Ir(100)/MgO(100) Circles:
experimental data; red line: simulation. (c). Reciprocal space map of the 311 reflections of Ir 
and MgO (d)
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a)  b)

c)  d)

Figure 3. X-ray θ-2θ diffraction scan patterns of (111) oriented iridium films deposited on 
(111)MgO substrate (a). Phi (Φ) scan plots of the (311) reflections of iridium and MgO (b). 
Rocking curves recorded through the 111 and 222 reflection of Ir. Circles: experimental data;
red line: simulation. (c). Reciprocal space map of the 311 reflections of Ir and MgO (d)
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a)  b)

c)  d)

Figure 4. X-ray θ-2θ diffraction scan patterns of (110) oriented iridium films deposited on 
(111)MgO substrate (a). Phi (Φ) scan plots of the (400) reflections of iridium and MgO (b). 
Rocking curves recorded through the 220 reflection of iridium. Circles: experimental data; 
red line: simulation. (c). Reciprocal space map of the 400 reflections of iridium and MgO (d)
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a) 

b) 

c) 
Figure 5. AFM images of (a) Ir(001), (b) Ir(111) and (c) Ir(110) grown on MgO-(001), (111) and
(110), respectively. Inset images presents AFM images (1 µm x 1 µm) of substrates surface 
before film deposition
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Figure 6. HR-TEM image of Ir(001) grown on MgO-(001) (a), and the corresponding filtered 
image (b)



23

Figure 7. HR-TEM image of Ir(111) grown on MgO-(111) (a), and the corresponding filtered 
image (b); compressing the image along the selected {00l} planes allows one to resolve some
misfit dislocations (c)
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Figure 8. HR-TEM image of Ir(110) grown on MgO-(110) (a), and the corresponding filtered 
image (b), in which only those dislocations located at the interface have been taken into 
account; moreover, the right part of the figure without marked dislocations have been 
voluntarily disregarded since the interface is not clearly defined which leads to a very 
perturbed FFT filtered image
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Supplementary Material

In order to assess the quality and structure of the iridium thin films and the corresponding

MgO substrates, TEM sample slides (~20  × 7 µm) are cut by FIB and then soldered to the

TEM holders with Pt,  as shown in  Figure 1 of  this  Supplementary Material.  Samples are

finally  refined  and  thinned  by  FIB  and  with  the  help  of  a  nanomanipulator  are  further

transported  and  investigated.  HR-TEM  investigations  of  the  iridium  thin  films  vs. MgO

substrates have been acquired at different magnifications and in several zones for all three

crystalline orientations.

Selected area electron diffraction (SAED) patterns have been recorded from the film, the

substrate as well  as from the interfacial  region for all  films, as shown in  Figure 2 of this

Supplementary Material (electron beam: 1 nm in diameter).

2
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a) 

b) 

Figure 1. SEM images of a FIB cut slide soldered to the TEM holder: top (a) and side view (b)
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Figure 2. SAED diffraction patterns on the corresponding Ir/MgO samples with various 
crystallographic orientations, i.e. (100), (111), (110); images have identical scale bar (5 nm).


