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Abstract.

In this paper, we look at a linear system of ordinary differential equations as derived
from the two-dimensional Ginzburg-Landau equation. In two cases, it is known that this
system admits bounded solutions coming from the invariance of the Ginzburg-Landau
equation by translations and rotations. The specific contribution of our work is to prove
that in the other cases, the system does not admit any bounded solutions. We show that
this bounded solution problem is related to an eigenvalue problem.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type. 35P15: Estimation of
eigenvalues, upper and lower bound.

1 Introduction.

Let n and d be given integers, n ≥ 1, d ≥ 1. We define the following system{
a′′ + a′

r −
(n−d)2
r2

a− f2d b = −(1− 2f2d )a

b′′ + b′

r −
(n+d)2

r2
b− f2da = −(1− 2f2d )b

(1.1)

and the following equations

a′′ +
a′

r
− d2

r2
a = −(1− f2d )a (1.2)

and

a′′ +
a′

r
− d2

r2
a− 2af2d = −(1− f2d )a. (1.3)

with the variable r > 0, and for real valued functions r 7→ a(r) and r 7→ b(r).
Here fd is the only solution of the differential equation

f ′′d +
f ′d
r
− d2

r2
fd = −fd(1− f2d ) (1.4)

with the conditions fd(0) = 0 and lim+∞ fd = 1.
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Let us consider the Ginzburg-Landau equation on a bounded connected domain Ω,{
−∆u = 1

ε2
u(1− |u|2) in Ω

u = g in ∂Ω
(1.5)

where ε > 0 is a small parameter, u and g have complex values and degree (g, ∂Ω) ≥ 1.
Let us consider the following equation

−∆u = u(1− |u|2) in R2 (1.6)

where u is a complex valued map. The study of the energy-minimizing solutions of
equation (1.5) is in the book of Bethuel, Brezis Hélein, [3].
Let us explain how the system (1.1) and the equations (1.2) and (1.3) are derived from
the equations (1.5) and (1.6).

We denote Nε(u) = ∆u + 1
ε2
u(1 − |u|2). Let u0(x) = fd(

|x|
ε )eidθ. We have Nε(u0) = 0.

We will always denote

f(r) = fd(
r

ε
).

We differentiate Nε at u0.

dNε(u0)(ω) = ∆ω +
ω

ε2
(1− f2)− 2

ε2
f2eidθeidθ.ω,

where ω is any complex valued function and 2u.ω = uω + ωu. We will use the operator
e−idθdNε(u0)eidθ instead of dNε(u0). We consider the Fourier expansion

ω(x) =
∑
n≥1

(an(r)e−inθ + bn(r)einθ) + a0(r), an(r) ∈ C, bn(r) ∈ C.

Letting ωn(x) = an(r)e−inθ + bn(r)einθ, we have

2eidθ.eidθωn = ωn + ωn = (bn + an)einθ + (bn + an)e−inθ.

Moreover e−idθ∆(eidθω) = ∆ω − d2

r2
ω + i

2d

r2
∂ω

∂θ
.

Then

e−idθdNε(u0)eidθω =
∑
n≥1

e−inθ(a′′n +
a′n
r
− (n− d)2

r2
an +

an
ε2

(1− f2)− an
ε2
f2 − bn

ε2
f2)

+
∑
n≥1

einθ(b′′n +
b′n
r
− (n+ d)2

r2
bn +

bn
ε2

(1− f2)− bn
ε2
f2 − an

ε2
f2)

+a′′0 +
a′0
r
− d2

r2
a0 +

a0
ε2

(1− f2)− a0 + a0
ε2

f2.

Separating the Fourier components of e−idθdNε(u0)eidθω, we can consider the operators

for n ≥ 1, Ln(an, bn) =

{
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2)− bn
ε2
f2

b′′n + b′n
r −

(n+d)2

r2
bn + bn

ε2
(1− 2f2)− an

ε2
f2
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and, for n = 0, L0(a0) = a′′0 +
a′0
r
− d2

r2
a0 +

a0
ε2

(1− f2)− a0 + a0
ε2

f2.

When we have to solve the system (Ln(an, bn) = (αn, βn),L0(a0) = α0), for some given
(αn, βn) ∈ C × C and α0 ∈ C, we are led to consider separately the real part and the
imaginary part. So we consider the following operators, where an and bn are real valued
functions

for n ≥ 1 Ln,R : (an, bn) 7→

{
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2)− bn
ε2
f2

b′′n + b′n
r −

(n+d)2

r2
bn + bn

ε2
(1− 2f2)− an

ε2
f2

;

Ln,I : (an, bn) 7→

{
a′′n + a′n

r −
(n−d)2
r2

an + an
ε2

(1− 2f2) + bn
ε2
f2

b′′n + b′n
r −

(n+d)2

r2
bn + bn

ε2
(1− 2f2) + an

ε2
f2

and, for n = 0, L0,I : a0 7→ a′′0 +
a′0
r
− d2

r2
a0 +

a0
ε2

(1− f2) ;

L0,R : a0 7→ a′′0 +
a′0
r
− d2

r2
a0 +

a0
ε2

(1− f2)− 2a0
ε2
f2.

Considering (−an, bn), we see that, for n ≥ 1, only one of the operators Ln,R or Ln,I
is of interest. The eigenvalue problems Ln,R(an, bn) = −λ(ε)(an, bn), (an, bn)(1) = 0,
for all integers d ≥ 1 and n ≥ 1, as well as the problems L0,R(a0) = −λ(ε)a0 and
L0,I(a0) = −λ(ε)a0, a0(1) = 0, have been studied in several papers, including [6], [9],
[7], [8], [1]. In the third chapter of their book [10], Pacard and Rivière study the system
(1.1) and the equations (1.2) and (1.3) for d = 1. These authors’ aim is to construct
some solutions for (1.5).
Let us now bring together some of the results contained in the above studies.

Theorem 1.1 For d ≥ 1 and n ≥ 1, the existence of an eigenvalue λ(ε) → 0 as ε → 0
is equivalent to the existence of a bounded solution of (1.1). For the equations (1.2) and
(1.3) and for all d ≥ 1, the results of [10] are valid for all d ≥ 1, that is the real vector
space of the bounded solutions of (1.2) is one-dimensional, spanned by fd and there is
no bounded solution of (1.3). For n = 1, the vector space of the bounded solutions of
(1.1) is also a one dimensional vector space, spanned by (f ′d + d

rfd, f
′
d −

d
rfd). For d = 1

and n ≥ 2, there are no bounded solutions. For d ≥ 2 and for n ≥ 2d − 1, there are no
bounded solutions.

A bounded solution is any solution defined at r = 0 and which has a finite limit as
r → +∞. For all d ≥ 1, the known bounded solutions, for n = 0 and n = 1, come from
the invariance of the Ginzburg-Landau equation with respect to the translations and the
rotations.
The present paper’s aim is to prove the following

Theorem 1.2 For all real numbers d and n such that d ≥ 1 and n > 1, the system (1.1)
has no bounded solution.

We will consider n and d as real parameters, although the Ginzburg-Landau problem is
about integers n and d. So we have to consider the functions fd, for d ∈ R, d ≥ 1. But in
[5], where all the solutions of (1.4) are studied, the authors consider only the case d ∈ N?.
However, this hypothesis is not essential in their paper. Here are the properties of fd we
need.
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Theorem 1.3 Let d ∈ R+?. For all a > 0 there exists a unique solution of (1.4) such
that limr→0

1
af(r)r−d = 1. There exists a unique value Ad > 0 such that this solution is

defined in R+? and non decreasing. Denoting it by fd, we have the expansions

fd(r) = 1− d2

2r2
+O(

1

r4
) near +∞ (1.7)

and

fd(r) = Ad(r
d − 1

4(d+ 1)
rd+2) +O(rd+4) near 0. (1.8)

Moreover, if we denote g(d)(r) = r−dfd(r), then, for all α > 0, the map d 7→ g(d) is
continuous from ]0,+∞[ into L∞([0, α]).

For d ∈ R+?, γ1 ∈ R+ and γ2 ∈ R+, we define the following system{
a′′ + a′

r −
γ21
r2
a− f2d b− f2da = −(1− f2d )a

b′′ + b′

r −
γ22
r2
b− f2da− f2d b = −(1− f2d )b.

(1.9)

Letting x = a+ b and y = a− b, we are led to the system verified by (x, y), that is{
x′′ + x′

r −
γ2

r2
x+ ξ2

r2
y − 2f2dx = −(1− f2d )x

y′′ + y′

r −
γ2

r2
y + ξ2

r2
x = −(1− f2d )y

(1.10)

with

γ2 =
γ21 + γ22

2
and ξ2 =

γ22 − γ21
2

.

In all the paper, when there is no other indication, we will suppose that d ≥ 1 and
γ21+γ

2
2

2 − d2 ≥ 1. We will denote

n =

√
γ21 + γ22

2
− d2. (1.11)

But Theorem 1.4, Theorem 1.5 and Theorem 1.6 will be valid for d > 0 and
γ21+γ

2
2

2 −d2 > 0.
Let us cite a supposedly well-known principle : for any real number R > 0 and for any
given Cauchy data (a(R), a′(R), b(R), b′(R)), the system (1.9) has a unique solution, de-
fined in R+?. This solution is continuous wrt the real positive parameters d, γ1 and
γ2, because the coefficients of the system depend continuously on them. Moreover,
when the Cauchy data depends continuously on the parameters, so does the solution
(a(r), a′(r), b(r), b′(r)), which, consequently, is bounded independently of r and of the
parameters, when r and the parameters stay in a given compact set. This principle
comes from the Cauchy-Lipschitz Theorem, whose proof rests on an application of the
Banach Fixed Point Theorem to a suitable integral equation. However, we don’t know
whether a given solution keeps the same behavior at 0 or at +∞ for all the values of the
parameters, even when this solution is continuous wrt the parameters. So we begin with
the definition of some continuous solutions wrt to the parameters in a certain range, and
whose behaviors remain inchanged, either at 0 or at +∞.
To begin with, let us give the following definition
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Definition 1.1 We say that

1. a =O(f) at 0 if there exists R > 0 and C > 0 such that

∀r ∈]0, R], |a(r)| ≤ C|f(r)|.

2. a has the behavior f at 0, and we denote a ∼0 f , if there exists a map g, such that

lim
0
g = 0, |a− f | = O(fg).

3. a = o(f) at 0 if there exists a map g, such that

lim
0
g = 0, a = fg.

We will use the same convention at +∞.

We will consider that (d, γ1, γ2) belongs to the set

D = {(d, γ1, γ2) ∈ (R+)3; d ≥ 1; γ2 > 1; 0 ≤ γ1 ≤ γ2 < γ1 + 2d+ 2}.

Let us remark that (d, |n− d|, n+ d) ∈ D, whenever d ≥ 1 and n ≥ 1, d ∈ R, n ∈ R.
We will need the following subsets of D

D1 = {(d, γ1, γ2) ∈ D; γ1 > 0}

and

D2 = {(d, γ1, γ2) ∈ D; 0 ≤ γ1 <
1

4
;−γ1 − γ2 + 2d+ 2 > 0;−γ2 + 2d+ 1 > 0}. (1.12)

Whenever d ≥ 1 and n ≥ 1, n ∈ R, d ∈ R, we remark that (d, |n− d|, n+ d) ∈ D1 when
n 6= d and that (d, |n− d|, n+ d) ∈ D2 when |n− d| < 1

4 .
The following theorem is about a base of solutions defined near 0.

Theorem 1.4 For all (d, γ1, γ2) ∈ D, there exist four independent solutions (a, b) of
(1.9) verifying the following conditions

1. (a1(r), b1(r)) ∼0 (O(rγ2+2d+2), rγ2) and (a′1(r), b
′
1(r)) ∼0 (O(rγ2+2d+1), γ2r

γ2−1).

2. (a2(r), b2(r)) ∼0

{
(O(r2θ(r)), r−γ2) if (d, γ1, γ2) ∈ D1

(O(r−γ2+2d+2), r−γ2) if (d, γ1, γ2) ∈ D2

(a′2(r), b
′
2(r)) ∼0

{
(O(rθ(r)),−γ2r−γ2−1) if (d, γ1, γ2) ∈ D1

(O(r−γ2+2d+1),−γ2r−γ2−1) if (d, γ1, γ2) ∈ D2

where θ(r) =

{
−rγ1−2+r−γ2+2d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0

−rγ1−2 log r if γ1 + γ2 − 2d− 2 = 0.

3. (a3(r), b3(r)) ∼0 (rγ1 , O(rγ1+2d+2)) and, if γ1 6= 0 (a′3(r), b
′
3(r)) ∼0 (γ1r

γ1−1, O(rγ1+2d+1))
while, if γ1 = 0, (a′3(r), b

′
3(r)) = (O(r), O(r2d+1)).
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4. (a4(r), b4(r)) ∼0

{
(r−γ1 , O(r2θ̃(r)) if (d, γ1, γ2) ∈ D1

(τ(r), O(τ(r)r2d+2)) if (d, γ1, γ2) ∈ D2

and (a′4(r), b
′
4(r)) ∼0

{
(r−γ1−1, O(rθ̃(r)) if (d, γ1, γ2) ∈ D1

(τ ′(r), O(τ ′(r)r2d+2)) if (d, γ1, γ2) ∈ D2

where

θ̃(r) =

{
−rγ2−2+r−γ1+2d

γ1+γ2−2d−2 if γ1 + γ2 − 2d− 2 6= 0

−rγ2−2 log r if γ1 + γ2 − 2d− 2 = 0
; τ(r) =

{
r−γ1−rγ1

2γ1
if γ1 6= 0

− log r if γ1 = 0.

5. For j = 1 and for j = 3, for all r > 0, the maps
(d, γ1, γ2) 7→ (aj(r), a

′
j(r), bj(r), b

′
j(r)) are continuous in D.

6. For j = 1 and for j = 3, and for all r > 0, (aj(r), a
′
j(r), bj(r), b

′
j(r)) is differentiable

wrt to γ1 and wrt γ2, whenever (d, γ1, γ2) ∈ D, and γ2 > γ1.
Moreover the map (d, γ1, γ2) 7→ ∂

∂γi
(aj(r), a

′
j(r), bj(r), b

′
j(r)) is continous, for i = 1

and i = 2. And we have

(
∂a1
∂γi

,
∂a′1
∂γi

,
∂b1
∂γi

,
∂b′1
∂γi

)(r) ∼0 log r(O(rγ2+2d+2), O(rγ2+2d+1), rγ2 , γ2r
γ2−1) (1.13)

and, if γ1 6= 0

(
∂a3
∂γi

,
∂a′3
∂γi

,
∂b3
∂γi

,
∂b′3
∂γi

)(r) (1.14)

∼0 log r(rγ1 , γ1r
γ1−1 +O(rγ1+1), O(rγ1+2d+2), O(rγ1+2d+1))

7. For j = 2 or for j = 4, the same notation (aj , bj) is used for two solutions,
one of them being defined for (d, γ1, γ2) ∈ D1, the other one being defined for
(d, γ1, γ2) ∈ D2.
Moreover, for each domain Di, i = 1, 2 and for all r > 0 the maps (d, γ1, γ2) 7→
(aj(r), a

′
j(r), bj(r), b

′
j(r)) are continuous in Di. For each r > 0, the partial differen-

tiability of (aj(r), a
′
j(r), bj(r), b

′
j(r)) wrt γ1 or wrt γ2 is also true separatly in each

domain Di, i = 1, 2.

The second theorem is about a base of solutions defined near +∞.

Theorem 1.5 1. We have a base of four solutions (a, b) of (1.9), with given behav-
iors at +∞. In order to distinguish these solutions from the solutions defined in
Theorem 1.4, we use the notation (ui, vi), i = 1, . . . , 4, for these solutions. We have

(u1(r), v1(r)) ∼r→+∞ (e
√
2r/
√
r, e
√
2r/
√
r)(1 +O(r−2));

(u2(r), v2(r)) ∼r→+∞ (e−
√
2r/
√
r, e−

√
2r/
√
r)(1 +O(r−2));

and
(u3(r), v3(r)) ∼r→+∞ (r−n,−r−n)(1 +O(r−2));

(u4(r), v4(r)) ∼r→+∞ (rn,−rn)(1 +O(r−2)).
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2. Except for j = 2, the construction of (uj , vj) is done separatly for each compact
subset K of D. For each of the four solutions and for all r > 0 the map (d, γ1, γ2) 7→
(uj(r), u

′
j(r), vj(r)), v

′
j(r)) is continuous on K. There partial derivatives wrt γ1 and

wrt γ2 exist whenever γ1 < γ2 and are continuous. We have

(∂u1∂γi
,
∂u′1
∂γi

, ∂v1∂γi
,
∂v′1
∂γi

)(r) ∼r→+∞
e
√
2r
√
r

log r(O(r−2), O(r−3), O(r−2), O(r−3));

(∂u2∂γi
,
∂u′2
∂γi

, ∂v2∂γi
,
∂v′2
∂γi

)(r) ∼r→+∞
e−
√
2r

√
r

log r(O(r−2), O(r−3), O(r−2), O(r−3));

(∂u3∂γi
,
∂u′3
∂γi

, ∂v3∂γi
,
∂v′3
∂γi

)(r) ∼r→+∞ log r(rn, O(rn−1),−rn, O(rn−1))(1 +O(r−2));

(∂u4∂γi
,
∂u′4
∂γi

, ∂v4∂γi
,
∂v′4
∂γi

)(r) ∼r→+∞ log r(r−n, O(r−n−1),−r−n, O(r−n−1))(1 +O(r−2)).

By our construction, the solution (uj , vj) depends on the given compact set K, except for
j = 2. For j = 1, this difficulty disappears after the proof of Theorem 1.6. For the other
solutions, named (u3, v3) and (u4, v4), we will have to make sure that the parameter
(d, γ1, γ2) stays in a compact set, as soon as we want and use the continuity and the
differentiability of these solutions wrt the parameters.
In [1] we already gave the behaviors of a base of solutions at 0 and at +∞. But, in the
present paper, the continuity wrt to (d, γ1, γ2), especially of the five solutions (a3, b3)
and (a1, b1) (defined at 0) and (u2, v2), (u3, v3), (u4, v4) (defined at +∞) and there
differentiability wrt γ1 and γ2, are essential.
The following theorem connects the least behavior at 0 to the exponentially blowing up
behavior at +∞ and the least behavior at +∞ to the greater blowing up behavior at 0.

Theorem 1.6 Suppose that d > 0 and that γ2 ≥ γ1 ≥ 0, (γ22 + γ21)/2 > d2. Let (a1, b1)
be the solution of (1.1) defined by (a1, b1) ∼0 (O(rγ2+2d+2), rγ2). Then (a1, b1) blows
up exponentially at +∞. Let (u2, v2) be the solution of (1.1) defined by (u2, v2) ∼+∞

( e
−
√

2r
√
r
, e
−
√
2r

√
r

). Then (u2, v2) ∼0 C(o(r−γ2), r−γ2), for some C 6= 0.

Now, let us relate the problem (1.9) to an eigenvalue problem, which is a little bit different
from the one considered in the previous works on the subject, but, for our proof, we find
it more suitable.
Let 0 ≤ γ1 < γ2, µ ∈ R and ε > 0 be given and let us consider the following system{

a′′ + a′

r −
γ21
r2
a− 1

ε2
f2a− 1

ε2
f2b = − 1

ε2
µ(1− f2)a

b′′ + b′

r −
γ22
r2
b− 1

ε2
f2b− 1

ε2
f2a = − 1

ε2
µ(1− f2)b

(1.15)

for r ∈]0, 1], with the condition a(1) = b(1) = 0. Let us explain in which sense this can
be considered as an eigenvalue problem.
Let γ1 ≥ 0 be given. We define

Hγ1 = {r 7→ (a(r), b(r)) ∈ R2; (aeiγ1θ, beiθ) ∈ H1
0 (B(0, 1),C)×H1

0 (B(0, 1),C)},

where (r, θ) are the polar coordinates in R2. The dependence on γ1 is needed to distin-
guish γ1 = 0 and γ1 6= 0. We endow Hγ1 with the scalar product

< (a, b)|(u, v) >=

∫ 1

0
(ra′u′ + rb′v′ +

γ21
r
au+

1

r
bv)dr
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and then Hγ1 is a Hibert space. Let H′γ1 be the topological dual space of Hγ1 .
We consider the Tγ1,γ2 : Hγ1 → H′γ1 defined by

< Tγ1,γ2(a, b), (u, v) >H′,H=

∫ 1

0
(ra′u′ + rb′v′ +

γ21
r
au+

γ22
r
bv +

r

ε2
f2(a+ b)(u+ v))dr.

We remark that
((a, b), (u, v)) 7→< Tγ1,γ2(a, b), (u, v) >H′γ1 ,Hγ1

is a scalar product on Hγ1 . So, Tγ1,γ2 is an isomorphism, by the Riesz Theorem.
Last, let us define the embedding

I : Hγ1 → H′γ1
(a, b) 7→ ((u, v) 7→

∫ 1
0 r(au+ bv)dr)

Since the embedding H1
0 (B(0, 1))×H1

0 (B(0, 1)) ⊂ L2(B(0, 1))×L2(B(0, 1)) is compact,
then I is compact.
Let us define C = 1

ε2
(1−f2)I. Since C is a compact operator and thanks to the continuity

of T −1γ1,γ2 , then T −1γ1,γ2C is a compact operator from Hγ1 into itself. By the standard
theory of self adjoint compact operators, there exists a Hilbertian base of H formed of
eigenvectors of T −1γ1,γ2C.
Now let us define mγ1,γ2(ε) as the first eigenvalue for the above eigenvalue problem in
Hγ1 , that is

mγ1,γ2(ε) = inf
(a,b)∈H2

γ1
/{(0,0)}

∫ 1
0 (ra′2 + rb′2 +

γ21
r a

2 +
γ22
r b

2 + r
ε2
f2d ( rε)(a+ b)2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))(a2 + b2)dr

(1.16)

and let us define

m0(ε) = inf
a∈Hd/{0}

∫ 1
0 (ra′2 + d2

r a
2)dr

1
ε2

∫ 1
0 r(1− f

2
d ( rε))a2dr

(1.17)

It is a classical result that these infimum are attained. Considering the rescaling (ã, b̃)(r) =
(a(εr), b(εr)) and an extension by 0 outside [0, 1/ε], we see that ε 7→ mγ1,γ2(ε) decreases
when ε decreases. Then limε→0mγ1,γ2(ε) exists.
Moreover, mγ1,γ2(ε) is a simple eigenvalue and there exists an eigenvector (a, b) verifying

a(r) ≥ −b(r) ≥ 0 for all r > 0.

Also, m0(ε) is realized by some function a(r) ≥ 0.
In the previous works on the subject, the eigenvalue problem was LnRω = −λ(ε)ω. We
have

(∃λ < 0)⇔ (∃µ < 1).

By examining the proof of Theorems 1.4, the possible behaviors at 0 of the solutions of
the system {

a′′ + a′

r −
γ21
r2
a− f2da− f2d b = −µ(ε)(1− f2d )a

b′′ + b′

r −
γ22
r2
b− f2d b− f2da = −µ(ε)(1− f2d )b.

(1.18)
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and those of the solutions of (1.1) are the same. More precisely, if µ(ε) is a bounded
eigenvalue, it behaves as an additional bounded parameter and we construct two solutions
denoted by (α1, β1) and (α3, β3), depending on ε and verifying, for r ∈ [0, R],

|α1(r)|+ |β1(r)− rγ2 | ≤ Crγ2+2d+1, |α′1(r)|+ |β′1(r)− γ2rγ2−1| ≤ Crγ2+2d

and

|α3(r)− rγ1 |+ |β3(r)| ≤ Crγ1+2, |α′3(r)− γ1rγ1−1|+ |β′3(r)| ≤ Crγ1+1,

where R and C are independent of ε, as in the proof of Theorem 1.4.
We can suppose that µ(ε)→ µ, as ε→ 0. Let ωε = (aε, bε) be an eigenvector associated
to µ(ε). We define ω̃ε(r) = ωε(εr), for r ∈ [0, 1ε ]. For some constants Aε and Bε,

(ãε, b̃ε) = Aε(α1, β1) + Bε(α2, β2). We may suppose that max{|Aε|, |Bε|} = 1. Thus,
(ãε, ã′ε, b̃ε, b̃′ε)(R) is bounded independently of ε. Considering it as a Cauchy data, in
the range r ≥ R, we deduce that (ãε, ã′ε, b̃ε, b̃′ε) is bounded independently of ε, in every
interval [R,α], α > 0. Finally, we deduce the existence of some ω0 such that

ω̃ε → ω0, as ε→ 0,

uniformly on each compact subset of [0,+∞], where ω0 = (a0, b0) verifies{
a′′0 +

a′0
r −

γ21
r2
a0 − f2da0 − f2d b0 = −µ(1− f2d )a0

b′′0 +
b′0
r −

γ22
r2
b0 − f2d b0 − f2da0 = −µ(1− f2d )b0

(1.19)

Examining the proof of Theorem 1.5, the possible behaviors at +∞ of the solutions of

(1.19) are those given in Theorem 1.5, when we suppose that
γ21+γ

2
2

2 − µd2 > 0 and when

we replace n by

√
γ21+γ

2
2

2 − µd2.
Let us remark that the function fd and the eigenvalue problem used here are not exatly
the same as in the previous works [9], [7] and [8] and [1]. However, the proofs of the
three following Theorems can be deduced from these works.

Theorem 1.7 For all d ≥ 1,
(i) there exist C > 0 and ε0 > 0 such that, for all ε < ε0, m0(ε)−1

ε2
≥ C; m0(ε) → 1

and there exists an associated eigenvector aε such that ãε → fd, uniformly in each [0, R],
R > 0.
(ii) md−1,d+1(ε) > 1 and

md−1,d+1(ε)−1
ε2

→ 0.
(iii) for d > 1 and n ≥ 2d − 1, there exist C > 0 and ε0 > 0 such that, for all ε < ε0,
m|d−n|,d+n(ε)−1

ε2
≥ C.

(iv) There exists an eigenvector ωε associated to the eigenvalue md−1,d+1(ε) such that

‖(1 − f2d )
1
2 (ω̃ε − Fd)‖L2(B(0, 1

ε
)) → 0, as ε → 0, where Fd = (f ′d + d

rfd, f
′
d −

d
rfd) appears

in Theorem 1.1.

The interested reader can find a direct proof of Theorem 1.7 in the appendix of [2].
The following theorem is very important for our proof.
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Theorem 1.8 Let d ∈ R, d > 1 be given. For all n ∈]1, d + 1[, there exists Cn > 0
independent of ε such that

m|d−n|,d+n(ε) ≤ 1− Cn.

For the sake of completeness, we give a proof of this theorem in Part VI of the present
paper, following the proof of [9], given for n = d = 2.
The following theorem connects the eigenvalue problem to the existence of the bounded
solutions.

Theorem 1.9 (i) Let d > 0 and γ2 > γ1 ≥ 0 be given. With the notation above, if

µ(ε) → µ, if ω̃ε → ω0, if
γ22+γ

2
1

2 − µd2 > 0 and if ω0 blows up at +∞, then µ(ε)−1
ε2

≥ C,
where C is a given positive number, independent of ε.
(ii) If there exists some bounded solution (a, b) of (1.9), then there exists an eigenvalue
µ(ε) verifying µ(ε)− 1→ 0.

To make the paper as self contained as possible, we give the proof of Theorem 1.9 (i)
in Part VI, following the proof of [8], given for µ = 1 and for the eigenvalue λ(ε). The
interested reader can find a direct proof of Theorem 1.9 (ii) in [2].
The following theorems are new.

Theorem 1.10 When
γ21+γ

2
2

ε2
− d2 > 0, if there exists some bounded solution ω = (a, b)

of (1.9), then we have limε→0mγ1,γ2(ε) ≥ 1.

Combining Theorem 1.10 and Theorem 1.9 (ii), we get the following

Corollary 1.1 If there exists some bounded solution ω = (a, b) of (1.9), then we have
limε→0mγ1,γ2(ε) = 1 and if ωε is some eigenvector associated to mγ1,γ2(ε), then ω̃ε tends
to ω, uniformly in all [0, R], R > 0.

The following theorem can be deduced at once from Theorem 1.10 and Theorem 1.8.

Theorem 1.11 Let n and d be real numbers and γ1 = |n− d|, γ2 = n+ d. There is no
bounded solution of (1.9), when d ≥ 1 and 1 < n < d+ 1.

Using Theorems 1.1, 1.6 and 1.11, we will prove the following theorem.

Theorem 1.12 There is no bounded solution of (1.9), whenever d ≥ 1 and n ≥ d+ 1.

Then Theorem 1.2 is proved. With Theorem 1.9 (i), we get

Theorem 1.13 For d ≥ 1, n > 1, γ1 = |n − d| and γ2 = n + d, there is no eigenvalue

µ(ε), with eigenvector in H|n−d|, such that µ(ε)−1
ε2
→ 0, as ε→ 0.

The paper is organised as follows. In Part II, we give a sketch of the proofs of Theorem
1.3, Theorem 1.4 and Theorem 1.5. Complete proofs of Theorem 1.4 and Theorem 1.5
are altogether long, technical and classical. The interested reader can consult Part II and
Part III of [2], which is a long preliminary version of the present paper. In Part III, we
prove Theorem 1.6. In Part IV, we prove Theorem 1.10. In Part V, we prove Theorem
1.12. In Part VI, we give the proof of Theorem 1.9 (i) and of Theorem 1.8, which is
needed in the proof of Theorem 1.11. Theorem 1.9 (i) is needed to prove Theorem 1.10
and to deduce Theorem 1.13.
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2 Proof of Theorem 1.3, proof of Theorem 1.4, proof of
Theorem 1.5.

2.1 Proof of Theorem 1.3.

The existence of fd, its expansion near 0 and +∞ and its property of uniqueness are
proved in [5]. However, these authors suppose that d ∈ N? and this is used only in the
first step of their proof. Let us give an alternative proof for this first step, valid for all
d > 0. We have to prove that for all a > 0 there exists some solution of (1.4) verifying
f ∼0 ar

d and that f is defined in an interval [0, R], with R > 0. We rewrite the equation
(1.4) as

(r2d−1(r−df)′)′ = −r2d−1f(1− f2).

For all R > 0 and all a > 0, f solves (1.4) in [0, R], and f ∼0 ar
d if and only if the map

g : r 7→ r−df(r) is a fixed point in C([0, R]) of the function Φ defined by

Φ(g)(r) = a+

∫ r

0
t−2d+1

∫ t

0
−s3d−1g(s)(1− s2dg2(s))ds. (2.20)

Let us denote ϕ(s, g) = −g(1−s2dg2). As in the proof of the Cauchy-Lipschitz Theorem,
we remark first that for all α > 0 and all β > 0 exist M and C such that(

s ∈]0, α], ‖g − a‖L∞([0,α]) < β
)
⇒
(
‖ϕ(s, g)‖L∞([0,α]) ≤M

)
and (

s ∈]0, α], ‖g1 − a‖L∞([0,α]) < β, ‖g2 − a‖L∞([0,α]) < β
)

⇒ (|ϕ(s, g1)− ϕ(s, g2)|(s) ≤ C|g1 − g2|(s)) .

Moreover, M and C remain inchanged if α is replaced by a smallest positive number.
Now, we estimate, for r ∈ [0, α]

|Φ(g)− a|(r) ≤M rd+2

3d(d+ 2)
and |Φ(g1)− Φ(g2)|(r) ≤ C

rd+2

3d(d+ 2)
‖g1 − g2‖L∞([0,α]).

Now, we choose some R such that

0 < R < min{1, α, 3d(d+ 2)β

M
,
3d(d+ 2)

C
}

and we denote B(a, β) = {g ∈ C[0, R]); ‖g − a‖L∞([0,R]) ≤ β}, in order Φ to be a con-

tractant function from the closed subset B(a,R) of the Banach space C([0, R]) into itself.
Thus, by the Banach fixed Point Theorem, Φ has a unique fixed point g in B(a,R). Then
r 7→ rdg(r), defined in [0, R], is the desired solution of (1.4).
The proof of [5] can be used to conclude to the existence of Ad.
Now, let us prove the continuity of d 7→ g(d), where g(d)(r) = r−dfd(r). First, let us prove
that the map d 7→ Ad, defined in R+?, increases.
As a first step, for δ 6= d, we combine the equations of fd and fδ to obtain, for every
(r1, r2), 0 < r1 < r2,

[r(f ′dfδ − f ′δfd)]r2r1 =

∫ r2

r1

fdfδ(f
2
d − f2δ )dt.
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We derive two properties. The first one is that fd − fδ cannot keep the same sign
in [0,+∞[, otherwise, when r1 = 0 and r2 → +∞, the lrs would be 0 and the rhs
would be non zero. The second one is that fd and fδ can be equal only for one value
r > 0. Indeed, if r1 < r2 are such that fd(ri) = fδ(ri), for i = 1, 2, we get that
r2fd(r2)(fd− fδ)′(r2)− r1fd(r1)(fd− fδ)′(r1) has the same sign as f2d − f2δ in [r1, r2], and
this is a contradiction.
Now, let 0 < δ < d be given. Near +∞ we have the expansion fd(r)−fδ(r) = δ2−d2

2r2
+0( 1

r4
)

and consequently, there exists R > 0 such that fd(r) < fδ(r), for all r ∈ [R,+∞[. But we
have also rd < rδ for 0 < r < 1. Since the sign of fd − fδ has to change once in [0,+∞[,
and in view of the expansions near 0, we deduce that Ad > Aδ.
Now, we denote limd→δ,d>δ Ad = B. But fd is defined in [0,+∞[. We have, for all r > 0,
g(d) = Φ(g(d)), where Φ is defined in (2.20), but with Ad instead of a. Using in addition
0 ≤ fd(1− f2d ) ≤ 1, we get that for all α > 0, there exists β > 0 independent of d in an
interval containing δ, such that |g(d)|(r) ≤ β and |(g(d))′|(r) ≤ β, for all r ∈ [0, α]. So, for
all r > 0, g(d)(r) has a limit, denoted by g, as d→ δ, uniformly in every [0, α], α > 0 and
we have Φ(g)(r) = g(r), for all r > 0, where Φ is defined in (2.20), but with B instead
of a and δ instead of d. Consequently, if we denote f(r) = rdg(r), then f ∼0 Br

δ, f is
a solution of (1.4) (with δ in place of d), f is non decreasing in [0,+∞[. In view of the
uniqueness of such a solution of (1.4) ([5]), we deduce that B = Aδ and that f = fδ. The
same result remains true when d→ δ, d < δ. We have proved that d 7→ g(d) is continuous
from [1,+∞[ into L∞([0, α]), for all α > 0.

2.2 Sketch of the proof of Theorem 1.4.

The pattern of proof is the same for the four solutions. Let us give an idea of the proof.
1. We construct some solution (a1, b1) such that for all compact subset K of D, there

exist some R > 0, depending only on K and some C > 0, also depending only on K, such
that for all r ∈]0, R] and all (d, γ1, γ2) ∈ K, we have

|a1(r)|+ |b1(r)− rγ2 | ≤ Crγ2+2d+1 and |a′1(r)|+ |b′1(r)− γ2rγ2−1| ≤ Crγ2+2d.

and such that, for all r ∈]0, R], (d, γ1, γ2) 7→ (a1(r), a
′
1(r), b1(r), b

′
1(r)) is continuous on

K, and differentiable wrt γ1 and wrt γ2. First, the construction is done for r ∈]0, R].
Then the definition of this solution in [0,+∞[ and the continuity wrt (d, γ1, γ2) ∈ K, for
all r > 0, follows from the Cauchy-Lipschitz Theorem. Let us remark the importance for
the constants C and R to be independent of the parameters.
We use a constructive method, similar to the proof of the Banach fixed point Theorem.
We define a fixed point problem of the form (a, b) = Φ(a, b), that is{

a = rγ1 + rγ1
∫ r
0 t
−2γ1−1

∫ t
0 s

γ1+1(f2d b− (1− 2f2d )a)dsdt

b = rγ2
∫ r
0 t
−2γ2−1

∫ t
0 s

γ2+1(f2da− (1− 2f2d )b)dsdt.
(2.21)

whose solutions verify the differential system that we have to solve.
2. We construct some solution (a3, b3), such that, for any compact subset K ∈ D,

exist some real numbers R and C verifying, for all 0 < r < R,

|a3(r)−rγ1 | ≤ Crγ1+2, |b3(r)| ≤ Crγ1+2d+2, |a′3(r)−γ1rγ1−1| ≤ Crγ1+1, |b′3(r)| ≤ Crγ1+2d+1.
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For this purpose, we consider the fixed point problem{
a = rγ1

∫ r
0 t
−2γ1−1

∫ t
0 s

γ1+1(f2d b− (1− 2f2d )a)dsdt

b = rγ2 + rγ2
∫ r
0 t
−2γ2−1

∫ t
0 s

γ2+1(f2da− (1− 2f2d )b)dsdt.
(2.22)

3. For the construction of (a2, b2), in the case when (d, γ1, γ2) ∈ D1, we consider the
fixed point problem{

a = r−γ1
∫ r
0 t

2γ1−1
∫ t
1 s
−γ1+1(f2d b− (1− 2f2d )a)dsdt

b = r−γ2 + r−γ2
∫ r
0 t

2γ2−1
∫ t
1 s
−γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.23)

while, when (d, γ1, γ2) ∈ D2, we consider the fixed point problem{
a = rγ1

∫ r
0 t
−2γ1−1

∫ t
0 s

γ1+1(f2d b− (1− 2f2d )a)dsdt

b = r−γ2 + r−γ2
∫ r
0 t

2γ2−1
∫ t
1 s
−γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.24)

4. In order to construct a solution (a4, b4), when (d, γ1, γ2) ∈ D1, we solve the
following fixed point problem{

a = r−γ1 + r−γ1
∫ r
0 t

2γ1−1
∫ t
1 s
−γ1+1(f2d b− (1− 2f2d )a)dsdt

b = r−γ2
∫ r
0 t

2γ2−1
∫ t
1 s
−γ2+1(f2da− (1− 2f2d )b)dsdt.

(2.25)

and, when (d, γ1, γ2) ∈ D2, we solve the following fixed point problem{
a = τ(r) + τ(r)

∫ r
0

1
t τ
−2(t)

∫ t
0 sτ(s)(f2d b− (1− 2f2d )a)dsdt

b = r−γ2
∫ r
0 t

2γ2−1
∫ t
0 s
−γ2+1(f2da− (1− 2f2d )b)dsdt

(2.26)

2.3 Sketch of the proof of Theorem 1.5.

We use the system (1.10) and we construct a base of four solutions, (xj , yj), j = 1, . . . , 4,
characterized by their behaviors at +∞. The solutions (uj , vj) announced in Theorem

1.5 are obtained by uj =
xj+yj

2 and vj =
xj−yj

2 .
We denote

J+ =
e
√
2r

√
r
, J− =

e−
√
2r

√
r
, γ2 =

γ21 + γ22
2

, n =
√
γ2 − d2, ξ2 =

γ22 − γ21
2

.

We can replace the first equation of (1.10) by

(e2
√
2r(xe−

√
2r)′)′ = e

√
2rq(r)x− ξ2

r2
y or (e−2

√
2r(xe

√
2r)′)′ = e−

√
2rq(r)x− ξ2

r2
y,

where

q(r) =
−γ2 − 3d2

r2
+ 3(1− f2d +

d2

r2
).

The second equation of the system (1.10) can be written as

(r2n+1(r−ny)′)′ = rn+1(
ξ2

r2
x− (1− f2d −

d2

r2
)y)
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or

(r−2n+1(rny)′)′ = r−n+1(
ξ2

r2
x− (1− f2d −

d2

r2
)y).

Finally, the system (1.10) can be written as{
(e±2

√
2r(r

1
2 e∓

√
2rx)′)′ = r

1
2 e±

√
2rq(r)x− ξ2

r2
y

(r±2n+1(r∓ny)′)′ = r±n+1( ξ
2

r2
x− (1− f2d −

d2

r2
)y)

(2.27)

In order to construct four solutions of (2.27), we give R0 > 0 and we define fixed points
problems of the form (x, y) = Φ(x, y), for (x, y) defined in [R0,+∞[, and whose solutions
are solutions of (2.27). The function Φ will depend on R0, except for one solution denoted
by (x2, y2) (vanishing exponentially at +∞). The present construction does not allow us
to construct the solutions (xj , yj), j 6= 2 without taking into account a given compact
subset

K ⊂ {(d, γ1, γ2); 0 ≤ γ1 < γ2; ξ
2 − d2 > 0}. (2.28)

Indeed, R0 depends on K. Let us list the different fixed point problems we need.
1. The exponential blowing up behavior at +∞ : the solution (x1, y1). For R0 > 0{

x = J+ + J+
∫ r
+∞(J+)−2 1t

∫ t
R0
sJ+( ξ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = rn
∫ r
R0
t−2n−1

∫ t
R0
sn+1( ξ

2

s2
x− (1− f2d −

d2

s2
)y)dsdt.

2. The intermediate blowing up behavior at +∞ : the solution (x3, y3). For R0 > 0{
x = J+

∫ r
+∞(J+)−2 1t

∫ t
R0
sJ+( ξ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = rn + rn
∫ r
+∞ t

−2n−1 ∫ t
R0
sn+1( ξ

2

s2
x− (1− f2d −

d2

s2
)y)dsdt

3. The least behavior at +∞ : the solution (x2, y2). We consider{
x = J− + J−

∫ r
+∞(J−)−2 1t

∫ t
+∞ sJ−( ξ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = r−n
∫ r
+∞ t

2n−1 ∫ t
+∞ s

−n+1( ξ
2

s2
x− 3(1− f2d −

d2

s2
)y)dsdt

4. The intermediate vanishing behavior at +∞ : the solution (x4, y4). For R0 > 0{
x = J−

∫ r
R0

(J−)−2 1t
∫ t
+∞ sJ−( ξ

2

s2
y − 3(1− f2d −

d2

s2
)x)dsdt

y = r−n + r−n
∫ r
+∞ t

2n−1 ∫ t
+∞ s

−n+1( ξ
2

s2
x− 3(1− f2d −

d2

s2
)y)dsdt

We need the following estimate, which is not difficult to prove, by an integration by part.
Let α ∈ R and β > 0 be given. Then∫ +∞

t
sαe−βsds ≤ 2

β
tαe−βt for all t ≥ 2α

β
(2.29)

and ∫ t

R
sαeβsds ≤ 2

β
tαeβt for all t ≥ R ≥ −2α

β
(2.30)
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3 The smallest behavior at zero is connected with the great-
est behavior at infinity.

Proof of Theorem 1.6.
Let (d, γ1, γ2) ∈ D. Let us prove first that (a1, b1) blows up exponentially at +∞.
Let us define x = a1 + b1 and y = a1− b1. We have x(r) ∼0 r

γ2 and y(r) ∼0 −rγ2 . Thus,
we have x(r) > 0 and y(r) < 0 near r = 0. Let us suppose that x(r) > 0 and y(r) < 0 in
]0, R[. Combining the first equation of the system (1.10) and the equation (1.4), we get,
for all r ≥ 0

[rx′fd − rf ′dx]r0 +

∫ r

0

−γ2 + d2

s
xfdds+ µ2

∫ r

0

y

s
fdds− 2

∫ r

0
sf3dxds = 0.

For 0 < r ≤ R, we deduce that

rf2d (
x

fd
)′(r) ≥ 2

∫ r

0
sf3dxds. (3.31)

This proves that x
fd

increases in ]0, R] and therefore x(R) > 0.
Moreover, combining the second equation of the system (1.10) and (1.4), we get

[ry′fd − rf ′dy]r0 +

∫ r

0

−γ2 + d2

s
yfdds+ ξ2

∫ r

0

x

s
fdds = 0.

For 0 < r ≤ R, we deduce that

rf2d (
−y
fd

)′(r) ≥
∫ r

0

−γ2 + d2

s
yfdds. (3.32)

This proves that −yfd increases in ]0, R] and therefore −y(R) > 0. Finally, we have proved
that x(r) > 0 and y(r) < 0 for all r > 0. Now (3.31) and (3.32) are valid for all r > 0
and we know that fd ∼+∞ 1. Thus, the behavior of x at +∞ cannot be a polynomial
increasing behavior. We return to Theorem 1.5 that gives all the possible behaviors at
+∞ and we deduce that x and y have an exponentially increasing behavior at +∞. So
a and b have an exponentially increasing behavior at +∞, too.
Let us prove now that (u2, v2) ∼0 D(o(rγ1), r−γ2), for some D 6= 0. Multiplying (1.9)
and integrating by parts, we get easily, for all r1 > 0 and r > 0

[s(a′1u2 − u′2a1 + v2b
′
1 − v′2b1)(s)]r1r = 0.

Using (a1, b1) ∼+∞ C( e
√

2r
√
r
, e
√
2r
√
r

), for some C 6= 0, and (u2, v2) ∼+∞ ( e
−
√
2r

√
r
, e
−
√
2r

√
r

), we
get

lim
r→+∞

r(a′1u2 − u′2a1 + v2b
′
1 − v′2b1)(r) = 4C

√
2.

Consequently
lim
r→0

r(a′1u2 − u′2a1 + v2b
′
1 − v′2b1)(r) = 4C

√
2.

We know that (a1, b1) ∼0 (o(rγ2), rγ2). According to Theorem 1.4, that gives all the
possible behaviors at 0, we conclude that the only fitting behavior at 0 for (u2, v2) is

(u2, v2) ∼0 D(o(rγ1), r−γ2), for D = 2C
√
2

γ2
.

This ended the proof of Theorem 1.6.
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4 The proof of Theorem 1.10 and of Corollary 1.1.

Let d > 1. We can rewrite the system (1.9) as

X ′ = MX with X = (a, ra′, b, rb′)t (4.33)

with

M =


0 1

r 0 0

−r(1− 2f2d ) +
γ21
r 0 rf2d 0

0 0 0 1
r

rf2d 0 −r(1− 2f2d ) +
γ22
r 0

 .

Lemma 4.1 Let us suppose that there exists a bounded solution of (1.9) and let us chose
a base of solutions, X1, X2, X3, X4, for (4.33), whose third vector is a bounded solution.
Let us name R(s) the resolvant matrix, whose columns are the vectors Xi, i = 1, . . . , 4.
Let us name C2 and C4 the second and the fourth column of R−1(s). We have

at 0 and when (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0

C2 =


O(sγ1)

O(sγ1+2γ2)
O(s−γ1)
O(sγ1)

 and C4 =


O(s−γ2)
O(sγ2)
O(sγ2)

O(s2γ1+γ2)


and

at 0 and when (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

C2 =


O(s−γ2+2d+2)
O(sγ2+2d+2)
O(s−γ1)
O(sγ1)

 and C4 =


O(s−γ2)
O(sγ2)

O(s−γ1+2d+2)
O(sγ1+2d+2)


and

at 0 and when (d, γ1, γ2) ∈ D2

C2 =


O(τ(s)s−γ2+γ1+2d+2)
O(τ(s)sγ1+γ2+2d+2)

O(τ(s))
O(sγ1)

 and C4 =


O(sγ1−γ2τ(s))
O(sγ1+γ2τ(s))
O(s2d+2τ(s))
O(sγ1+2d+2)


and in any case, at +∞

C2 ∼+∞
1

−16n
√
2


4nJ−
4nJ+
−4
√

2sn

−4
√

2s−n

 and C4 ∼+∞
1

−16n
√
2


4nJ−
4nJ+
4
√

2sn

4
√

2s−n


where −16n

√
2 is the determinant of R(s).

16



Proof R(s) is chosen as follows

R(s) ∼+∞


J+ J− s−n sn

s(J+)′ s(J−)′ −ns−n nsn

J+ J− −s−n −sn
s(J+)′ s(J−)′ ns−n −nsn


where, as usual, the notation J+ stands for e

√
2s
√
s

and the notation J− stands for e−
√
2s

√
s

.

To give the behaviors at 0, we return to Theorem 1.4. We have, for some ci 6= 0,
i = 1, . . . , 4

If (d, γ1, γ2) ∈ D1, R(s) ∼0


O(sγ2+2d+2) O(sγ̃1) c3s

γ1 c4s
−γ1

O(sγ2+2d+2) O(sγ̃1) c3γ1s
γ1 −c4γ1s−γ1

c1s
γ2 c2s

−γ2 O(sγ1+2d+2) O(sγ̃2)
c1γ2s

γ2 −c2γ2s−γ2 O(sγ1+2d+2) O(sγ̃2)


where we use the notation

γ̃1 = min{γ1,−γ2 + 2d+ 2} and γ̃2 = min{γ2,−γ1 + 2d+ 2} if γ1 + γ2 − 2d− 2 6= 0

(if γ1+γ2−2d−2 = 0, we have to replaceO(sγ̃1) byO(sγ1 log s) andO(sγ̃2) byO(sγ2 log s))
and

If (d, γ1, γ2) ∈ D2, R(s) ∼0


O(sγ2+2d+2) O(s−γ2+2d+2) c3s

γ1 c4τ(s)
O(sγ2+2d+2) O(s−γ2+2d+2) c3γ1s

γ1 −c4sτ ′(s)
c1s

γ2 c2s
−γ2 O(sγ1+2d+2) O(τ(s)s2d+2)

c1γ2s
γ2 −c2γ2s−γ2 O(sγ1+2d+2) O(τ(s)s2d+2)


where

τ(s) =

{
s−γ1−sγ1

2γ1
if γ1 6= 0

− log s if γ1 = 0

The determinant W of R(s) is independent of s, due to the fact that the matrix M
of the differential system has a null trace. Moreover, J+J− = 1

s . Using the behavior at
+∞ of R(s), given above, we deduce that W is the principal term, as s→ +∞ of

1

s

∣∣∣∣∣∣∣∣
1 1 1 1

s
√

2 −s
√

2 −n n
1 1 −1 −1

s
√

2 −s
√

2 n −n

∣∣∣∣∣∣∣∣
that is

W = −16n
√

2.

A direct calculation of the suitable determinants gives the estimate of C2 and C4.

The proof of Theorem 1.10 completed.
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Let m = limε→0mγ1,γ2(ε). We can define ωε ∈ Hγ1 an eigenvector associated to
mγ1,γ2(ε) and ω0 = (a0, b0) such that ω̃ε → ω0 on each compact subset of [0,+∞[. In

what follows, let us suppose that m < 1. Then
γ21+γ

2
2

2 −md2 > 0.
Since a0 ≥ −b0 ≥ 0, the possible behaviors at +∞ for (a0, b0) are (r−n0 ,−r−n0) and (rn0 ,−rn0)
where

n0 =

√
γ21 + γ22

2
−md2. (4.34)

Since m < 1, we have by Theorem 1.9 (i), that ω0 has a bounded behavior at +∞ and
consequently

(a0, b0) ∼+∞ (r−n0 ,−r−n0) and a0 + b0 = O(r−n0−2) at +∞.

At 0, in view of a0 ≥ −b0 ≥ 0, the only possible behavior is

(a0, b0) ∼0 (crγ1 , O(rγ1+2d+2)), for some c > 0.

Let us prove that the hypothesis m < 1 leads to a contradiction.

Since n =

√
γ21+γ

2
2

2 − d2, we have, by (4.34)

(m < 1)⇔ (n0 > n).

Let us denote X0 = (a0, ra
′
0, b0, rb

′
0)
t, the vector corresponding to ω0. We have

X ′0 = MX0 − (m− 1)(1− f2d )(0, ra0, 0, rb0)
t.

let us define X1, X2, X3 and X4 as in Lemma 4.1. We are going to prove that there exist
some constants Ci such that

X0 =
4∑
i=1

CiXi − (m− 1)
4∑
i=1

X̂i,

with
X̂i bounded at 0, i = 1, 2, 3, 4 (4.35)

and

at +∞
{
X̂1 = X1O(r−n0−3J−) ; X̂2 = X2O(r−n0−3J+)

X̂3 = X3O(1) ; X̂4 = X4O(1).
(4.36)

In order to prove (4.35) and (4.36), we write

X0 =
4∑
i=1

Ai(r)Xi (4.37)

with

i = 1, . . . , 4, Ai(r) = Ai − (m− 1)

∫ r

1
[R−1(s)s(1− f2d )


0
a0
0
b0

 ds]i (4.38)
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where the notation [ ]i means the ith line of the vector, and where Ai is a constant.
Let us examine the behavior of each term Ai(r)Xi at +∞ and at 0, using Lemma 4.1.
For the first term, we use the first terms of C2 and C4, given in Lemma 4.1, to obtain

[R−1(s)s(1− f2d )


0
a0
0
b0

]1 ∼+∞ O(
1

s
J−(a0 + b0))

and ∼0


s(O(sγ1a0 +O(s−γ2b0)) if (d, γ1, γ2) ∈ D1, γ1 + γ2 − 2d− 2 < 0

s(O(s−γ2+2d+2a0 +O(s−γ2b0)) if (d, γ1, γ2) ∈ D1, γ1 + γ2 − 2d− 2 > 0
s(O(τ(s)sγ1−γ2+2d+2a0 +O(τ(s)sγ1−γ2b0)) if (d, γ1, γ2) ∈ D2.

Let us define

B1 = −(m−1)

∫ +∞

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]1ds and X̂1 = X1

∫ r

+∞
[R−1(s)s(1−f2d )


0
a0
0
b0

]1ds

We can write
A1(r)X1 = (A1 +B1)X1 − (m− 1)X̂1

We see that X̂1 = X1O(1) at 0. Using (2.29), we get X̂1 = X1O(r−n0−3J−) at +∞.
For the second term, we obtain

[R−1(s)s(1− f2d )


0
a0
0
b0

]2 ∼+∞ O(
1

s
J+(a0 + b0))

and ∼0


s(O(sγ1+2γ2a0) +O(sγ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0
s(O(sγ2+2d+2a0) +O(sγ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

sτ(s)(O(sγ1+γ2+2d+2)a0 +O(sγ1+γ2)b0) if (d, γ1, γ2) ∈ D2

Denoting

B2 = −(m−1)

∫ 0

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]2ds and X̂2 = X2

∫ r

0
[R−1(s)s(1−f2d )


0
a0
0
b0

]2ds

we get
A2(r)X2 = (A2 +B2)X2 − (m− 1)X̂2

with, by (2.30)
X̂2 = X2O(r−n0−3J+) at +∞ .

Moreover, X̂2 is bounded at 0.
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For the third term, we obtain

[R−1(s)s(1− f2d )


0
a0
0
b0

]3 ∼+∞
−1

16n
√

2

4
√

2d2

s
sn(−a0 + b0). (4.39)

Since −a0 + b0 ∼+∞ −2r−n0 , then this term is integrable at +∞. At 0, it is

∼0


s(O(s−γ1a0) +O(sγ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0

s(O(s−γ1a0) +O(s−γ1+2d+2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0
s(O(τ(s)a0) +O(τ(s)s2d+2b0)) if (d, γ1, γ2) ∈ D2

and this is bounded at 0.
Letting

B3 = −(m−1)

∫ 0

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]3ds and X̂3 = X3

∫ r

0
[R−1(s)s(1−f2d )


0
a0
0
b0

]3ds,

we find
A3(r)X3 = (A3 +B3)X3 − (m− 1)X̂3

with
X̂3 = X3O(1) at +∞

and X̂3 is bounded at 0.
For the fourth term,

[R−1(s)s(1− f2d )


0
a0
0
b0

]4 ∼+∞
−1

16n
√

2

4d2
√

2

s
s−n(−a0 + b0)

and

∼0


s(O(sγ1a0) +O(s2γ1+γ2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 < 0
s(O(sγ1a0) +O(sγ1+2d+2b0)) if (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 > 0

sτ(s)(O(sγ1)a0 +O(sγ1+2d+2)b0) if (d, γ1, γ2) ∈ D2

Letting

B4 = −(m−1)

∫ 0

1
[R−1(s)s(1−f2d )


0
a0
0
b0

]4ds and X̂4 = X4

∫ r

0
[R−1(s)s(1−f2d )


0
a0
0
b0

]4ds

we find
A4(r)X4 = (A4 +B4)X4 − (m− 1)X̂4.
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Then X̂4 = X4O(1) at +∞ and X̂4 is bounded at 0.
Now, summing the four terms, and letting Ci = Ai +Bi, we find (4.35) and (4.36).
Since X0 is bounded at 0, we have C2 = C4 = 0.
But X0 is bounded at +∞ and X̂i is bounded at +∞, i = 1, 2, 3. Since we have also
a1 >> â4 at +∞, we infer that C1 = 0 and that X̂4 must be bounded at +∞. Returning
to the definition of X̂4, we must have

∫ +∞

0
[R−1(s)s(1− f2d )


0
a0
0
b0

]4ds = 0,

therefore

X̂4 = X4

∫ r

+∞
[R−1(s)s(1− f2d )


0
a0
0
b0

]4ds,

that gives

X̂4 = X4

∫ r

+∞
s(1− f2d )[a0C2 + b0C4]4 ∼+∞ X4

∫ r

+∞

−8
√

2

−16n
√

2
s−n0−nd

2

s
ds.

Thus,

at +∞ â4 = a4
−1

16n
√

2

8d2
√

2

n+ n0
r−na0 + o(r−n0). (4.40)

Since we have now

X0 = C3X3 − (m− 1)
4∑
i=1

X̂i

and since â1 = O(r−n0−4) and â2 = O(r−n0−4), then â1 = o(a0) and â2 = o(a0) at +∞.
Consequently

a0 + (m− 1)â4 ∼+∞ C3a3 − (m− 1)â3 (4.41)

Recalling (4.40) and recalling n < n0, this implies that

C3 − (m− 1)

∫ +∞

0
[R−1(s)s(1− f2d )


0
a0
0
b0

]3ds = 0

and then

C3a3 − (m− 1)â3 = −(m− 1)a3

∫ r

+∞
[R−1(s)s(1− f2d )


0
a0
0
b0

]3ds.

Using (4.39), we get

at +∞ C3a3 − (m− 1)â3 = −(m− 1)a3
−1

16
√

2

−8d2
√

2

n(n− n0)
rn−n0 + o(r−n0). (4.42)
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Finally, we sum (4.40) and (4.42) to get, by (4.41)

a0(1 + (m− 1)
−8d2

16n

1

n+ n0
) ∼+∞ −(m− 1)

8d2

16n
(

1

n− n0
)r−n0

and thus

(m− 1)
8d2

16n
(
−1

n− n0
+

1

n+ n0
) = 1.

But we have by (4.34)
n20 − n2 = (−m+ 1)d2.

After simplification by m− 1, we get n0 = n, that gives m = 1, that is in contradiction
with the hypothesis m < 1. So we deduce that m = 1.
The proof of (4.35) and (4.36) for (d, γ1, γ2) ∈ D1 and γ1 + γ2 − 2d− 2 = 0 is left to the
reader.
Proof of Corollary 1.1.
By Theorem 1.9 (ii), if there exists a bounded solution ω, then there exists some eigen-
value tending to 1. So m = 1. It remains to prove that ω0 = cω, for some c 6= 0. But
ω cannot have the least behavior at 0, otherwise it would blow up exponentially at +∞.
So, there exists c 6= 0 such that ω ∼0 cω0. If ω 6= cω0, then ω−cω0 has the least behavior
at 0, and consequently blows up exponentially at +∞. This cannot be true, because ω
is bounded at +∞ and, since a0 ≥ b0 ≥ 0, the possible blowing up behavior at +∞ for
ω0 can only be polynomial. We can conclude that ω = cω0.

5 The case n ≥ d + 1 : the proof of Theorem 1.12.

Let ω1 = (a1, b1) be the solution defined in Theorem 1.4 and η2 = (u2, v2) be the solution
defined in Theorem 1.5. According to Theorem 1.6, ω1 ∼+∞ (J+, J+) and η2 has the
greater blowing up behavior at 0. Let η3 and η4 be defined in Theorem 1.5 and having
the intermediate behaviors at +∞. Let ω3 = (a3, b3) be defined in Theorem 1.4. With
these definitions, we can write

ω3 = C1(n, d)ω1 + C2(n, d)η2 + C3(n, d)η3 + C4(n, d)η4.

Let us remark that ω1 and ω3−C1(n, d)ω1 form a base of the bounded solutions at 0, and
that ω3 − C1(n, d)ω1 = o(ω1) at +∞. So the problem of the existence of some bounded
solution is reduced to the problem C3(n, d) = 0.
Supposing that there exists a bounded solution for (n0, d0), d0 > 1, n0 ≥ d0 +1, we have,
by Theorem 1.1, n0 ≤ 2d0 − 1. From now on, (n, d) is such that 1 ≤ d ≤ d0 + 1 and
d ≤ n ≤ 2d. Clearly, (d, |n− d|, n+ d) stays in a compact subset of D. This is sufficient
for the solutions η3 and η4 to be defined without ambiguity. The real numbers Ci(n, d)
defined above can be computed by means of determinants involving the four components
(a, a′, b, b′)(r) of the five solutions present, for a given r > 0. Thus, Ci is continuous wrt
(d, γ1, γ2) and consequently is continuous wrt (d, n). Ci is also differentiable wrt γ1 and
wrt γ2 and therefore wrt n, since n ≥ d.
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Lemma 5.2 With the notation above, if there exists (n0, d0), d0 ≥ 1, n0 ≥ d0 + 1 such
that C3(n0, d0) = 0, then there exists a continuous map d 7→ n(d), defined for d < d0,
closed to d0 and verifying C3(n(d), d) = 0.

Proof Let us prove that ∂C3
∂n (n0, d0) 6= 0. If ∂C3

∂n (n0, d0) = 0, then ∂
∂n(ω3−C1(n, d)ω1)(n0, d0)

is bounded at +∞. Let us denote (a, b) = ω3−C1(n, d)ω1. Then (a, b) verifies the system
(1.1), with (n0, d0) in place of (n, d), and ( ∂a∂n ,

∂b
∂n)(n0, d0) verifies also a system, obtained

by differentiation wrt n, at (n0, d0), that is{
∂a
∂n

′′
+ 1

r
∂a
∂n

′ − (n−d)2
r2

∂a
∂n − 2 (n−d)

r2
a− f2d

∂b
∂n = −(1− 2f2d ) ∂a∂n

∂b
∂n

′′
+ 1

r
∂b
∂n

′ − (n+d)2

r2
∂b
∂n − 2 (n+d)

r2
b− f2d

∂a
∂n = −(1− 2f2d ) ∂b∂n

(5.43)

By combining the systems (1.1) and (5.43), for (n0, d0), an integration by parts gives∫ +∞

0
−2

n0 − d0
r

a2 − 2
n0 + d0

r
b2dr = 0

and we conclude that a = b = 0, that is false.
So, we have proved that ∂C3

∂n (n0, d0) 6= 0. The Implicit Functions Theorem gives a
continuous map d 7→ n(d) such that C3(n(d), d) = 0, and defined in a neighborhood of
d0, with values in a neighborhood of n0.
The proof of Theorem 1.12 completed.
With the definitions given above, let us define the set

E = {d ≥ 1; d ≤ d0 + 1; ∃n ≥ d+
1

2
, C3(n, d) = 0}.

If d ∈ E , then n ≤ 2d− 1, by Theorem 1.1. Thus, E is a closed subset of [1,+∞[, thanks
to the continuity of C3 wrt (n, d). Since d0 ∈ E , E 6= ∅ and we let d1 = inf E . Given
that d1 ∈ E , there exists n1 ≥ d1 + 1

2 such that C3(n1, d1) = 0. According to Theorem
1.11, n1 ≥ d1 + 1. If d1 > 1, we deduce from Lemma 5.2 that there exists d < d1,
sufficiently closed to d1 in order to have n(d) > d1 + 1

2 . Therefore n(d) ≥ d + 1
2 , which

is in contradiction with d1 = inf E . This proves that d1 = 1. But 1 6∈ E , by Theorem
1.1. This contradiction proves the non existence of (n0, d0) such that n0 ≥ d0 + 1 and
C3(n0, d0) = 0.
The proof of Theorem 1.12 is complete.

6 The proof of Theorem 1.9 (i) and of Theorem 1.8.

Proof of Theorem 1.9 (i). Let us define n0 =

√
γ22+γ

2
1

2 − µd2.
Let ωε = (aε, bε) ∈ Hγ1 be an eigenvector associated to µ(ε). Using (1.15), we write

µ(ε)

ε2

∫ 1

0
r(1− f2)(a2ε + b2ε)dr =

∫ 1

0
(ra′2ε + rb′2ε +

γ21
r
a2ε +

γ22
r
b2ε +

r

ε2
f2(aε + bε)

2)dr.

We use the definition (1.17) of m0(ε) to get

µ(ε)

ε2

∫ 1

0
r(1− f2)(a2ε + b2ε)dr
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≥ m0(ε)

ε2

∫ 1

0
r(1− f2)(a2ε + b2ε)dr +

∫ 1

0
(
γ21 − d2

r
a2ε +

γ22 − d2

r
b2ε +

r

ε2
f2(aε + bε)

2)dr.

Now, we use the trick of TC Lin (see [7]). Letting b̃ε = τ ãε, we consider the map

H : τ 7→ γ21 − d2

r
+
γ22 − d2

r
τ2 + rfd

2(1 + τ)2 (6.44)

and we minimize this map. The minimum is attained for τ0 verifying

τ0(
γ22 − d2

r
+ rf2d ) + rf2d = 0 and 1 + τ0 =

γ22 − d2

r
/(
γ22 − d2

r
+ rf2d )

and consequently

H(τ0) =
γ21 − d2

r
+ (

rf2d
γ22−d2
r + rf2d

)2(
γ22 − d2

r
) + rf2d (

γ22−d2
r

γ22−d2
r + rf2d

)2.

We have

H(τ0) ∼r→+∞ (γ21 + γ22 − 2d2)/r. Moreover, for all τ > 0, H(τ) ≥ H(τ0).

Since
γ21+γ

2
2

2 − d2 > 0, there exists some constants C1 > 0 and R0 > 0, independent of τ ,
such that for all τ > 0

H(τ) ≥ C1

r
for all r > R0.

Then, for all R > R0 and all ε < 1
R , we write∫ 1

ε

0
H(r)ã2ε(r)dr ≥

∫ R0

0
H(r)ã2ε(r)dr +

∫ R

R0

H(r)ã2ε(r)dr.

Now a0 blows up exponentially at +∞, or as rn0 . We can choose R0 large enough and a
constant C2 > 0 to have also

a20(r) ≥ C2(
e
√
2r

√
r

)2 or C2r
2n0 for all r > R0.

Since ãε → a0 as ε→ 0, uniformly in [0, R0], we can chose ε0 such that for all ε < ε0∫ R0

0
H(r)ã2ε(r)dr ≥

1

2

∫ R0

0
H(r)a20(r)dr.

Moreover, for all R > R0, ãε → a0 as ε → 0, uniformly in [R0, R]. Then, there exists
ε(R) such that for all ε < ε(R) we have∫ R

R0

H(r)ã2ε(r)dr ≥
C2

2

∫ R

R0

1

r
r2n0dr or

∫ R

R0

H(r)ã2ε(r)dr ≥
C2

2

∫ R

R0

1

r
(
e
√
2r

√
r

)2dr.

And finally, for ε < ε(R), we have

(
µ(ε)−m0(ε)

ε2
)

∫ 1

0
r(1− f2)(a2ε + b2ε)dr ≥

1

2

∫ R0

0
H(r)a20(r)dr+
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+

{
C1C2

2

∫ R
R0

1
r r

2n0 , if (a0, b0) ∼+∞ (rn0 ,−rn0)
C1C2

2

∫ R
R0

1
r ( e

√
2r
√
r

)2dr, if (a0, b0) ∼+∞ (J+, J+)

where C1 and C2, given above, are independent of R and ε. But we can choose R such
that the lhs is positive.
We deduce that µ(ε)−m0(ε) > 0. Then we use Theorem 1.7 (i), that gives m0(ε)−1

ε2
≥ C

and consequently µ(ε)−1
ε2
≥ C. The lemma is proved.

The proof of Theorem 1.8. The proof for n = 2 and d = 2 is originally in [9].

For real numbers d ≥ 1 and n ≥ 1, let x =
f ′d
rn−1 and y = d fdrn . A calculation gives{

−(rx′)′ + γ2

r x−
ξ2

r y − r(1− 3f2d )x = −2 n−1
rn−1 fd(1− f2d )

−(ry′)′ + γ2

r y −
ξ2

r x− r(1− f
2
d )y = 0

(6.45)

For a = x+y
2 and b = x−y

2 , we deduce that{
−(ra′)′ +

γ21
r a+ f2d b− r(1− 2f2d )a = − n−1

rn−1 fd(1− f2d )

−(rb′)′ +
γ22
r b+ f2da− r(1− 2f2d )b = − n−1

rn−1 fd(1− f2d )
(6.46)

where, as usual, γ1 = |n− d|, γ2 = n+ d, γ2 =
γ21+γ

2
2

2 and ξ2 =
γ22−γ21

2 .
We verify that

x ∼0 y ∼0 dr
d−n +O(rd−n+2) and, at +∞, x = O(r−n), y = O(r−n),

and consequently that

a ∼0 2drd−n +O(rd−n+2) and b ∼0 O(rd−n+2).

let us suppose that d ≥ 1 and that 1 < n < d + 1. We can multiply the system (6.46)
and integrate by parts. We obtain that∫ +∞

0
(ra′2 + rb′2 +

γ21
r
a2 +

γ22
r
b2 + rf2d (a+ b)2 − r(1− f2d )(a2 + b2))dr

=

∫ +∞

0

−(n− 1)

rn−1
fd(1− f2d )(a+ b)dr

This gives ∫ +∞
0 (ra′2 + rb′2 +

γ21
r a

2 +
γ22
r b

2 + rf2d (a+ b)2)dr∫ +∞
0 r(1− f2d )(a2 + b2)dr

= 1− Cn

with

Cn =

∫ +∞
0

(n−1)
rn−1 fd(1− f2d )(a+ b)dr∫ +∞

0 r(1− f2d )(a2 + b2)dr
> 0.

Now we use an approximation argument, valid as soon as n > 0. For example for a given
constant 0 < N < 1 we define
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(aε, bε)(r) =

{
(a, b)( rε) in [0, N ]

= (a(r) (1−r)2
(1−N)2

, b(r) (1−r)2
(1−N)2

) in [N, 1]
. We have that (aε, bε) ∈ H|n−d| and

that ∫ 1
0 (ra′2ε + rb′2ε +

γ21
r a

2
ε +

γ22
r b

2
ε + r 1

ε2
f2(aε + bε)

2)dr
1
ε2

∫ 1
0 r(1− f2)(a2ε + b2ε)dr

=

∫ N
ε

0 (ra′2 + rb′2 +
γ21
r a

2 +
γ22
r b

2 + rf2d (a+ b)2)dr +O(ε2n)∫ N
ε

0 r(1− f2d )(a2 + b2)dr +O(ε2n)
→ 1− Cn, as ε tends to 0.

We deduce that, if 1 < n < d + 1, md−n,d+n(ε) < 1 − Cn
2 , for ε small enough and the

proof of Theorem 1.8 is complete.
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