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Abstract.
In this paper, we look at a linear system of ordinary differential equations as derived
from the two-dimensional Ginzburg-Landau equation. In two cases, it is known that this
system admits bounded solutions coming from the invariance of the Ginzburg-Landau
equation by translations and rotations. The specific contribution of our work is to prove
that in the other cases, the system does not admit any bounded solutions. We show that
this bounded solution problem is related to an eigenvalue problem.

AMS classification : 34B40: Ordinary Differential Equations, Boundary value prob-
lems on infinite intervals. 35J60: Nonlinear PDE of elliptic type. 35P15: Estimation of
eigenvalues, upper and lower bound.

1 Introduction.

Let n and d be given integers, n > 1, d > 1. We define the following system

a’ + % _ (n=d d —f3b =—-(1-2f9a (1)
b+ ”’ ("+d b—f2a = —(1—2f3)b

and the following equations

a d? 9

and

/ 2
. ;ia 2af? = —(1 - f2a. (1.3)

with the variable r > 0, and for real valued functions r — a(r) and r — b(r).
Here f; is the only solution of the differential equation

2
n &  Cda=—fa - ) (1.4)

with the conditions f3(0) = 0 and lim fq = 1.



Let us consider the Ginzburg-Landau equation on a bounded connected domain §2,

{ —Au = Lu(l— |u?) in Q (1.5)

u = g in OS2
where € > 0 is a small parameter, u and g have complex values and degree (g,0Q) > 1
Let us consider the following equation

—Au = u(1 — |ul?) in R? (1.6)

where u is a complex valued map. The study of the energy-minimizing solutions of
equation (1.5) is in the book of Bethuel, Brezis Hélein, [3].

Let us explain how the system (1.1) and the equations (1.2) and (1.3) are derived from
the equations (1.5) and (1.6).

We denote Nz (u) = Au+ Hu(l — [uf?). Let ug(z) = fd(%)eida. We have N (ug) = 0.
We will always denote

,
1) = a2
We differentiate N, at ug.

w 2
ANz () (W) = Aw + (1= /%) = 5 2@,

where w is any complex valued function and 2u.w = uw + wu. We will use the operator
e " 0N (up)e'® instead of dN(ug). We consider the Fourier expansion

w(@) =Y (an(r)e ™ + by (r)e™) + ag(r), an(r) €C, bu(r) € C.

n>1

Letting wy(z) = an(r)e™™% + b, (r)e™ | we have

Qeide.eidewn =wp +wp = (bn + dn)eme + (Bn + an)efma.
; ; d? 2d O
Moreover e N Pw) = Aw — oy + Zﬁ%

Then

el % —in In (n — d>2 Qnp Qan Bn
PAN(wo)e e = 3 e (ar + *_Tan+§(1—f2)—§f2—§f2)

n>1

m n (n+d)2 bn bn a’ﬂ
+> e b”+——Tbn+5—2(1—f2)—5—2f2—E—QfZ)

n>1

ay d2 ago —I— agp

oy + 20 = San+ (1 - ) - L

Separating the Fourier components of e*“wd./\/'€ (uo)eidgw, we can consider the operators

ax‘i‘ I;L_(n d)? an_+_an( _2f2)_%f2
b%+b7n (n+d) b + ( —2f2)_%f2

forn>1, Ly(ap,by) = {



/

&? a a +a
and, for n = 0, ‘CO(GO) = ao + %o 772610 + ;(2)(1 _ f2) 0 0

f2

When we have to solve the system (En(an, bn) = (an, Bn), Lo(ag) = ao), for some given
(an, Br) € C x C and ag € C, we are led to consider separately the real part and the
imaginary part. So we consider the following operators, where a, and b, are real valued
functions

a{r; + % (n;d)Q an Gn( 2f2) bn f2
bg-i—b*"—( )b-i- (1 2f2)_52f2

I

forn>1 L,xr:(anby)— {

"o an _ (n—d)? an _9f2 by £2
L1 (an,by) — az N v (n:-d) an + A1 2f2 ) +a€2 f2
bn—|—7"— b‘|‘€2( _2f)+ﬁf
/ d2
and, for n = 0, £07I:a0»—>a0+f—*ao+ (1—f2) ;

/ 2

Lor : aof—>a6’+af*dfo+ (lff) 2a0f2

Considering (—ay,by,), we see that, for n > 1, only one of the operators £, g or L, 1
is of interest. The eigenvalue problems L, g (an,bn) = —A(€)(an,byn), (an,bn)(1) = 0,
for all integers d > 1 and n > 1, as well as the problems Ly r(ag) = —A(¢)ag and
Loz(ag) = —A(e)ap, ap(l) = 0, have been studied in several papers, including [6], [9],
[7], [8], [1]. In the third chapter of their book [10], Pacard and Riviere study the system
(1.1) and the equations (1.2) and (1.3) for d = 1. These authors’ aim is to construct
some solutions for (1.5).

Let us now bring together some of the results contained in the above studies.

Theorem 1.1 Ford > 1 and n > 1, the existence of an eigenvalue A(e) — 0 as e — 0
is equivalent to the existence of a bounded solution of (1.1). For the equations (1.2) and
(1.3) and for all d > 1, the results of [10] are valid for all d > 1, that is the real vector
space of the bounded solutions of (1.2) is one-dimensional, spanned by fq and there is
no bounded solution of (1.3). For n = 1, the vector space of the bounded solutions of
(1.1) is also a one dimensional vector space, spanned by (f} + gfd, fh— %fd). Ford=1
and n > 2, there are no bounded solutions. For d > 2 and for n > 2d — 1, there are no
bounded solutions.

A bounded solution is any solution defined at r = 0 and which has a finite limit as
r — +oo. For all d > 1, the known bounded solutions, for n = 0 and n = 1, come from
the invariance of the Ginzburg-Landau equation with respect to the translations and the
rotations.

The present paper’s aim is to prove the following

Theorem 1.2 For all real numbers d and n such thatd > 1 and n > 1, the system (1.1)
has no bounded solution.

We will consider n and d as real parameters, although the Ginzburg-Landau problem is
about integers n and d. So we have to consider the functions fy4, for d € R, d > 1. But in
[5], where all the solutions of (1.4) are studied, the authors consider only the case d € N*.
However, this hypothesis is not essential in their paper. Here are the properties of f; we
need.



Theorem 1.3 Let d € R™. For all a > 0 there ewists a unique solution of (1.4) such
that lim,_,q éf(r)'r_d = 1. There exists a unique value Ag > 0 such that this solution is
defined in R™ and non decreasing. Denoting it by fy, we have the expansions

falr)y=1- d—2 + O(i) near 400 (1.7)
A 272 ré :
and

fa(r) = Ad(?“d — mrd+2) + O(rd+4) near 0. (1.8)

Moreover, if we denote g\¥(r) = r=fy(r), then, for all o > 0, the map d — ¢V is
continuous from 10, +oo[ into L>°([0, o).

For d € R™, v; € RT and 72 € RT, we define the following system

n,d N 2 2 _ 2
a’ + & — rgza—fdb—fda =—(1-f7a (1.9)
W+ B - Bb— fla—f3b =—(1-fb.

Letting x = a+ b and y = a — b, we are led to the system verified by (x,y), that is

’ 2 2
fdgefiam ccaede
V' + L - Ly+ e =—(1=fy
with 2 A2 2 _ 2
72:71‘;‘72 and 52272;%-

In all the paper, when there is no other indication, we will suppose that d > 1 and

'@77% —d? > 1. We will denote
24 2
n— % — 2. (1.11)

But Theorem 1.4, Theorem 1.5 and Theorem 1.6 will be valid for d > 0 and @—CF > 0.
Let us cite a supposedly well-known principle : for any real number R > 0 and for any
given Cauchy data (a(R),d'(R),b(R),b (R)), the system (1.9) has a unique solution, de-
fined in R™. This solution is continuous wrt the real positive parameters d, v, and
2, because the coefficients of the system depend continuously on them. Moreover,
when the Cauchy data depends continuously on the parameters, so does the solution
(a(r),d (r),b(r),t'(r)), which, consequently, is bounded independently of r and of the
parameters, when r and the parameters stay in a given compact set. This principle
comes from the Cauchy-Lipschitz Theorem, whose proof rests on an application of the
Banach Fixed Point Theorem to a suitable integral equation. However, we don’t know
whether a given solution keeps the same behavior at 0 or at +oo for all the values of the
parameters, even when this solution is continuous wrt the parameters. So we begin with
the definition of some continuous solutions wrt to the parameters in a certain range, and
whose behaviors remain inchanged, either at 0 or at +oo.

To begin with, let us give the following definition



Definition 1.1 We say that

1. a=0(f) at 0 if there exists R > 0 and C > 0 such that

vr €]0,R], |a(r)| < C|f(r)].

2. a has the behavior f at 0, and we denote a ~q f, if there exists a map g, such that

limg =0, |a—f|=0(fg).

3. a=o(f) at 0 if there exists a map g, such that

liéng:(), a= fg.

We will use the same convention at +00.

We will consider that (d,~1,72) belongs to the set
D={(d,72) € R)*}d>172>1 0<y <9 <m+2d+2}.

Let us remark that (d,|n —d|,n 4+ d) € D, whenever d > 1 andn>1,d € R, n € R.
We will need the following subsets of D

Dy = {(d,71,72) € D;71 > 0}

and

1
Dy = {(d,71,72) € D;0 <71 < 7 —y1—72+2d+2>0;,—y+2d+1>0} (1.12)
Whenever d > 1 and n > 1, n € R, d € R, we remark that (d,|n — d|,n + d) € D; when
n # d and that (d, |n — d|,n+ d) € Dy when |n —d| < 1.
The following theorem is about a base of solutions defined near 0.

Theorem 1.4 For all (d,v1,72) € D, there exist four independent solutions (a,b) of
(1.9) verifying the following conditions

1 (a1(r), ba(r)) ~o (O(2F2542),192) and (a} (1), By (1)) ~o (O(72+2441) ppr21),

(O@?0(r),r=2) if (d,y1,72) € D1
2 atrnnte) o { g ity oy 7 (TS O,
/ / (O(T@(T)), _727'_"/2_1) Zf (da 71, 72) € Dl
(CL2(7“)a 52(7“)) 0 { (O(T772+2d+1)7 _727477271) if (d7’71,’72) € Dy
B P
where 0(r) = % if mte—2d-2#0
M 2logr  if v +y2—2d—2=0.

3. (as(r),b3(r)) ~o (171, O(r1+2442)) and, if 41 # 0 (ah(r), by(r)) ~o (yur71 L, O(rn+2dtly)
while, if y1 = 0, (a5(r),bs(r)) = (O(r), O(r2d+1)).



e [ OG0 i () €Dy
R R R AR e IR FetegicS
and (' (r). . (r (rn=L0(0(r)  if  (d,yi,72) € Dy
hd“( ) Balr) ~ {<'<> O(F(r)r®™2)) " if * (d ) € Dy
Gy = | Tt m et =2d-220 0 [ ISR i £0
=2 2logr ify1+92—2d—2=0 ' —logr if y1 = 0.

5. For j =1 and for j =3, for allr > 0, the maps
(d,71,72) = (aj(r), a(r), bj(r),b(r)) are continuous in D.

6. For j =1 and for j =3, and for allr > 0, (a;(r),a}(r),b;(r),b(r)) is differentiable
wrt to y1 and wrt 2, whenever (d,v1,7v2) € D, and v2 > 71.
Moreover the map (d,v1,72) — a%i(aj(r), as(r),bj(r),b;(r)) is continous, for i =1

and i = 2. And we have

u ;o o
Ovi’ Oy Ovi Ovi

)(r) ~o logr(O(r72F2842) O (p12 241 Y) 492 qpp22 1) - (1.13)

(

and, if y1 70
8a3 8@% abg abg

~0 10g r(r’}’l , 717:7171 + 0(7“'71+1)7 O(Tv1+2d+2), O(T'y1+2d+1>)

7. For j = 2 or for j = 4, the same notation (aj,b;) is used for two solutions,
one of them being defined for (d,v1,7v2) € Di, the other one being defined for

(dv '71”72) € DQ-
Moreover, for each domain D;, i = 1,2 and for all v > 0 the maps (d,v1,7v2) —

a;i(r),di(r),b;(r),b(r)) are continuous in D;. For each r > 0, the partial differen-
J 7 J 7

tiability of (a;(r),a;(r),b;(r),bi(r)) wrt y1 or wrt 72 is also true separatly in each
domain D;, i = 1,2.

The second theorem is about a base of solutions defined near +oo.

Theorem 1.5 1. We have a base of four solutions (a,b) of (1.9), with given behav-
jors at +00. In order to distinguish these solutions from the solutions defined in
Theorem 1.4, we use the notation (u;,v;), i = 1,...,4, for these solutions. We have

(w1 (1), 01(r)) ~rospoo (V27 /N/F eV JV/F) (L4 O(72));
(u2(r), 0a2(r)) ~rospoo (€72 VT, eV ) \F) (14 O(r2));

and

(u3(r), v3(r)) ~ropoo (17", =17 (14 O(r7?));
(ua(r), va(r)) ~rospoo (1, =) (1 + O(r™2)).



2. Except for j = 2, the construction of (uj,v;) is done separatly for each compact
subset KC of D. For each of the four solutions and for all r > 0 the map (d,~v1,7v2) —
(uj(r), uj(r),v;(r)), vi(r)) is continuous on K. There partial derivatives wrt v1 and
wrt yo exist whenever v1 < 2 and are continuous. We have

o’ ' V2r _ _ — —
(350 5k it GD0) e 77 10 (O02), 00, 0(72), 06~
b 1o} B 0 e—V2r _ _ _ _
(a:f: a:faazfaazf)( ) ~r—oo r logr(O(r=2),0(r=?),0(r?), 0(r—%));
(G2, G 52 B (1) ~ops oo Togr(r™, (1), =1, O 1) (14 O(2));
(5 )(r)

? O 0 O O
e 0877, O~ 1), —r, 0= 1)(1 4 062,

r

4 Oul) v, OvY
i o 07 077 0

r

By our construction, the solution (u;,v;) depends on the given compact set K, except for
j = 2. For j =1, this difficulty disappears after the proof of Theorem 1.6. For the other
solutions, named (us3,vs) and (u4,v4), we will have to make sure that the parameter
(d,~v1,72) stays in a compact set, as soon as we want and use the continuity and the
differentiability of these solutions wrt the parameters.

In [1] we already gave the behaviors of a base of solutions at 0 and at +oo. But, in the
present paper, the continuity wrt to (d,v1,72), especially of the five solutions (as, b3)
and (a1,b1) (defined at 0) and (u2,v2), (us,v3), (u4,vs4) (defined at +oo) and there
differentiability wrt 1 and 7o, are essential.

The following theorem connects the least behavior at 0 to the exponentially blowing up
behavior at 400 and the least behavior at +o0o to the greater blowing up behavior at 0.

Theorem 1.6 Suppose that d > 0 and that v > 1 >0, (v3 +~2)/2 > d?. Let (a1,b1)
be the solution of (1.1) defined by (a1,by) ~o (O(r72+29+2) 122) Then (a1,by) blows
up exponentially at +o0o. Let (ua,v2) be the solution of (1.1) defined by (u2,v2) ~4oco

—V2r —V2r _ _

(e\/; ,e\/; ). Then (ug,v2) ~o C(o(r=72),r=72), for some C' # 0.

Now, let us relate the problem (1.9) to an eigenvalue problem, which is a little bit different
from the one considered in the previous works on the subject, but, for our proof, we find
it more suitable.

Let 0 <1 <72, u € R and € > 0 be given and let us consider the following system

{ a//+¢17/_ r2a_ 52f2a’_ 1f2 = _E%'u(l_fg)a (115)
VY- Bb— - L = Ll - )

for r €]0, 1], with the condition a(1) = b(1) = 0. Let us explain in which sense this can
be considered as an eigenvalue problem.
Let v1 > 0 be given. We define

Hy, = {r = (a(r),b(r)) € R (aewle,bew) € H&(B(O, 1),C) x H&(B(O, 1),C)},

where (r,6) are the polar coordinates in R2. The dependence on +; is needed to distin-
guish 1 = 0 and 71 # 0. We endow H,, with the scalar product

1
< (a,b)|(u,v) >= / (ra'u’ + rb'v' + 71 —au + bv)d
0



and then H., is a Hibert space. Let 7—['71 be the topological dual space of H.,.
We consider the Ty, -, : ", — H, defined by

1
< T (@,B), (1, 0) >0 3= /O (ra'u + rb'v + ’Vl Mg+ 72 bo + 2f2( - b)(u + v))dr

We remark that
((av b)? (u’ U)) =< 7-71,72 (a7 b)’ (uv U) >Hi,1 yHAq

is a scalar product on H.,. So, 7T, , is an isomorphism, by the Riesz Theorem.
Last, let us define the embedding

I: Hy —>H’
(a, b) ((u v) — fo r(au + bv)dr)

Since the embedding H}(B(0,1)) x H(B(0,1)) c L*(B(0,1)) x L?(B(0,1)) is compact,
then 1 is compact.

Let us define C = (1 — f?)I. Since C is a compact operator and thanks to the continuity
of 7‘7: ~p» then 7‘71 WC is a compact operator from #H,, into itself. By the standard
theory of self adjoint compact operators, there exists a Hilbertian base of H formed of
eigenvectors of T, %C

Now let us define m., -, (€) as the first eigenvalue for the above eigenvalue problem in

H,,, that is

fol(ra’2+rb’2 a2+ 202 4 5 f3(Z)(a + b)2)dr

T

My, 0 (€) = inf (1.16)

(a.b)eH2, /{(0,0)} L Jr(1— £2(2))(a? + 0?)dr

and let us define 1 d2
12 2
d
mo(e) = inf Jo (ra” + Jdr (1.17)
a€Mq/{0} L fo (1-— fd ))a2dr

It is a classical result that these infimum are attained. Considering the rescaling (@, b)(r) =
(a(er),b(er)) and an extension by 0 outside [0, 1/¢], we see that € — m., ,,(g) decreases
when ¢ decreases. Then lim._,o m., ,(¢) exists.

Moreover, m., ~,(¢) is a simple eigenvalue and there exists an eigenvector (a, b) verifying

a(r) > —b(r) > 0 for all » > 0.

Also, mg(e) is realized by some function a(r) > 0.
In the previous works on the subject, the eigenvalue problem was L,grw = —A(¢)w. We

have
(FA<0) < (Fu<).

By examining the proof of Theorems 1.4, the possible behaviors at 0 of the solutions of
the system

{ '+ % o r2a fia—f3b = —p(e)(1— fHa (1.18)
by + L 72b—fdb—fda = —M(g)(l_fc%)b'



and those of the solutions of (1.1) are the same. More precisely, if u(e) is a bounded
eigenvalue, it behaves as an additional bounded parameter and we construct two solutions
denoted by (a1, 1) and (as, 83), depending on ¢ and verifying, for r € [0, R],

lat(r)] + |Br(r) — 2] < Cr2 P2l 0 (r)] + |81 (1) — yor?2 7Y < Ot
and
las(r) — 77| + |B3(r)| < Cr 20 o (r) — Y + |85 (r)| < Crt

where R and C are independent of €, as in the proof of Theorem 1.4.

We can suppose that u(e) — u, as € — 0. Let w. = (ag, b:) be an eigenvector associated
to p(e). We define we(r) = we(er), for r € [0, 1]. For some constants A. and B,
(aa,b ) = A-(a1,p1) + Be(az, f2). We may suppose that max{|A.|,|B:|} = 1. Thus,
(e, a’e,be,b'2)(R) is bounded independently of e. Considering it as a Cauchy data, in
the range r > R, we deduce that (a., a s I;g, % <) is bounded independently of ¢, in every

interval [R, a], a > 0. Finally, we deduce the existence of some wg such that
We — wg, ase — 0,

uniformly on each compact subset of [0, +00], where wy = (ag, by) verifies

ag‘f‘%(j_??ao fiao = fgbo = —p(1 = f3)ag (1.19)
b6'+70_72b = fibo — fiao = —p(1— f3)bo

Examining the proof of Theorem 1.5, the possible behaviors at +oo of the solutions of

(1.19) are those given in Theorem 1.5, when we suppose that ghaati +72 — pud? > 0 and when

we replace n by
Let us remark that the function f; and the eigenvalue problem used here are not exatly
the same as in the previous works [9], [7] and [8] and [1]. However, the proofs of the
three following Theorems can be deduced from these works.

,/71‘5'72 _'ud2.

Theorem 1.7 For alld > 1,

(i) there exist C > 0 and €9 > 0 such that, for all e < &y, % > C; mo(e) — 1
and there exists an associated eigenvector a. such that a. — fg, uniformly in each [0, R],
R > 0.

(i) ma_1a41(e) > 1 and a=tistEO7L g

(iii) for d > 1 and n > 2d — 1, there exist C > 0 and g9 > 0 such that, for all ¢ < g,
m|d—n\,z;-n(€)*1 > C.

(iv) There exists an eigenvector w. associated to the eigenvalue mg_1 44+1(¢) such that

II(1— fg) (@e = Fa)ll L2 (po, 1y) = 0, as e — 0, where Fy = (f}+ 2 fa, f4 — 2 £4) appears
in Theorem 1.1.

The interested reader can find a direct proof of Theorem 1.7 in the appendix of [2].
The following theorem is very important for our proof.



Theorem 1.8 Let d € R, d > 1 be given. For all n €]1,d + 1], there exists C, > 0
independent of € such that
MYd—n|din(€) <1 —Chp.

For the sake of completeness, we give a proof of this theorem in Part VI of the present
paper, following the proof of [9], given for n = d = 2.

The following theorem connects the eigenvalue problem to the existence of the bounded
solutions.

Theorem 1.9 (i) Let d > 0 and v2 > v1 > 0 be given. With the notation above, if
w(e) — w, if 0 — wo, if W%Qﬂ — nd? > 0 and if wg blows up at +o0, then ”(27)2_1 > C,
where C is a given positive number, independent of €.

(i) If there exists some bounded solution (a,b) of (1.9), then there exists an eigenvalue
wu(e) verifying pu(e) — 1 — 0.

To make the paper as self contained as possible, we give the proof of Theorem 1.9 (i)
in Part VI, following the proof of [8], given for 1 = 1 and for the eigenvalue A(¢). The
interested reader can find a direct proof of Theorem 1.9 (ii) in [2].

The following theorems are new.

2 2
Theorem 1.10 When 718# —d? > 0, if there exists some bounded solution w = (a,b)
of (1.9), then we have lime_,0 M, ~,(c) > 1.

Combining Theorem 1.10 and Theorem 1.9 (ii), we get the following

Corollary 1.1 If there exists some bounded solution w = (a,b) of (1.9), then we have
lime_,0 My, 4, (€) = 1 and if w. is some eigenvector associated to m., ,(€), then &, tends
to w, uniformly in all [0, R], R > 0.

The following theorem can be deduced at once from Theorem 1.10 and Theorem 1.8.

Theorem 1.11 Let n and d be real numbers and v1 = |n — d|, v2 = n+d. There is no
bounded solution of (1.9), whend>1 and 1 <n <d+ 1.

Using Theorems 1.1, 1.6 and 1.11, we will prove the following theorem.
Theorem 1.12 There is no bounded solution of (1.9), whenever d > 1 and n > d+ 1.
Then Theorem 1.2 is proved. With Theorem 1.9 (i), we get

Theorem 1.13 Ford > 1, n > 1, v = |[n —d| and v = n + d, there is no eigenvalue

wu(e), with eigenvector in Hin—q), such that % — 0, ase = 0.

The paper is organised as follows. In Part II, we give a sketch of the proofs of Theorem
1.3, Theorem 1.4 and Theorem 1.5. Complete proofs of Theorem 1.4 and Theorem 1.5
are altogether long, technical and classical. The interested reader can consult Part I and
Part IIT of [2], which is a long preliminary version of the present paper. In Part III, we
prove Theorem 1.6. In Part IV, we prove Theorem 1.10. In Part V, we prove Theorem
1.12. In Part VI, we give the proof of Theorem 1.9 (i) and of Theorem 1.8, which is
needed in the proof of Theorem 1.11. Theorem 1.9 (i) is needed to prove Theorem 1.10
and to deduce Theorem 1.13.
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2 Proof of Theorem 1.3, proof of Theorem 1.4, proof of
Theorem 1.5.

2.1 Proof of Theorem 1.3.

The existence of fy, its expansion near 0 and +oo and its property of uniqueness are
proved in [5]. However, these authors suppose that d € N* and this is used only in the
first step of their proof. Let us give an alternative proof for this first step, valid for all
d > 0. We have to prove that for all @ > 0 there exists some solution of (1.4) verifying
f ~o ar® and that f is defined in an interval [0, R], with R > 0. We rewrite the equation
(1.4) as
(T,2d71(r7df)l)/ — _r2d71f(1 _ f2)

For all R > 0 and all a > 0, f solves (1.4) in [0, R], and f ~q ar? if and only if the map
g:rr9f(r) is a fixed point in C([0, R]) of the function ® defined by

D(g)(r)=a+ /7‘ g2+l /t —s3d_1g(s)(1 - sngQ(s))ds. (2.20)

0 0

Let us denote ¢(s, g) = —g(1 —s2%g?). As in the proof of the Cauchy-Lipschitz Theorem,

we remark first that for all & > 0 and all 8 > 0 exist M and C such that

(8 G]0,0é], Hg - aHLOO([O,a]) < ﬁ) = (”90(579)HL°°([0,0¢]) < M)

and
(s €10,a], g1 —allz=(o,ap) < B, g2 — alle(o,a)) < B)

= (lo(s,91) — ©(s,92)(s) < Clg1 — g2/(s)) -

Moreover, M and C remain inchanged if « is replaced by a smallest positive number.
Now, we estimate, for r € [0, a]

T‘d+2 o Td+2
®(g) — <M-————and | - <(Coe—r — o .
Now, we choose some R such that

3d(d+2)5 3d(d+ 2)
M ’ C !

and we denote B(a, ) = {g € C[0,R]); |lg — allps(o,r) < B}, in order ® to be a con-

tractant function from the closed subset B(a, R) of the Banach space C([0, R]) into itself.

Thus, by the Banach fixed Point Theorem, ® has a unique fixed point ¢ in B(a, R). Then

r + rlg(r), defined in [0, R], is the desired solution of (1.4).

The proof of [5] can be used to conclude to the existence of A,.

Now, let us prove the continuity of d — g(d), where g(d)(r) = fa(r). First, let us prove

that the map d — Ay, defined in R™, increases.

As a first step, for & # d, we combine the equations of f; and fs to obtain, for every

(ri,7m2), 0 < r1 < 1o,

0 < R < min{l, a,

r(ffs — Fifa)l = / P rfs (2 = )

11



We derive two properties. The first one is that f; — fs5 cannot keep the same sign
in [0,4+o00[, otherwise, when r1 = 0 and ry — +o0, the Irs would be 0 and the rhs
would be non zero. The second one is that f; and fs5 can be equal only for one value
r > 0. Indeed, if r; < 7y are such that fq(r;) = fs5(ri), for i = 1,2, we get that
rafa(r2)(fa — f5)' (r2) = r1fa(r1)(fa — f5)'(r1) has the same sign as f7 — f3 in [r1, 2], and
this is a contradiction.

Now, let 0 < ¢ < d be given. Near 400 we have the expansion fq(r)— fs(r) = 522;26[2 +O(ri4)
and consequently, there exists R > 0 such that fy(r) < fs(r), for all r € [R, +00[. But we
have also 7% < 7% for 0 < r < 1. Since the sign of f; — f5 has to change once in [0, +o0],
and in view of the expansions near 0, we deduce that A5 > As.

Now, we denote limg_,54~5 A¢g = B. But f; is defined in [0, +00[. We have, for all > 0,
gD = &(g(D), where ® is defined in (2.20), but with Ay instead of a. Using in addition
0 < fa(1 — f2) <1, we get that for all a > 0, there exists 3 > 0 independent of d in an
interval containing d, such that |¢\®|(r) < 8 and |(¢(?)|(r) < 3, for all r € [0, a]. So, for
all r > 0, g(d) (r) has a limit, denoted by g, as d — J, uniformly in every [0, ], « > 0 and
we have ®(g)(r) = g(r), for all r > 0, where ® is defined in (2.20), but with B instead
of a and § instead of d. Consequently, if we denote f(r) = r%g(r), then f ~q Brd, f is
a solution of (1.4) (with ¢ in place of d), f is non decreasing in [0, +oo]. In view of the
uniqueness of such a solution of (1.4) ([5]), we deduce that B = As and that f = f5. The
same result remains true when d — 8, d < 8. We have proved that d — ¢(? is continuous
from [1,4o0[ into L*°([0, «]), for all o > 0.

2.2 Sketch of the proof of Theorem 1.4.

The pattern of proof is the same for the four solutions. Let us give an idea of the proof.

1. We construct some solution (a1, b1) such that for all compact subset K of D, there
exist some R > 0, depending only on K and some C' > 0, also depending only on IC, such
that for all » €]0, R] and all (d,~1,72) € K, we have

jar(r)] + [br(r) =2 < Cr7=H2HLand  a) (r)] + by (r) — 72727 < Or7t2

and such that, for all » €]0, R], (d,v1,72) — (a1(r),a}(r),bi(r), b} (r)) is continuous on
IC, and differentiable wrt v; and wrt 9. First, the construction is done for r €]0, R].
Then the definition of this solution in [0, +oco[ and the continuity wrt (d,v1,72) € K, for
all r > 0, follows from the Cauchy-Lipschitz Theorem. Let us remark the importance for
the constants C' and R to be independent of the parameters.
We use a constructive method, similar to the proof of the Banach fixed point Theorem.
We define a fixed point problem of the form (a,b) = ®(a,b), that is
a = [Tl (et (f2h (1 - 2f2)a)dsdt (2.21)
b = for 2721 fg 572+1(f§a — (1 - 2f§)b)dsdt. '

whose solutions verify the differential system that we have to solve.
2. We construct some solution (as, bs), such that, for any compact subset K € D,
exist some real numbers R and C verifying, for all 0 < r < R,

laz(r)—r7| < CrF2 |bs(r)] < Crt2a42 gl (1) =y 7 < Ot by ()| < O b2aEL

12



For this purpose, we consider the fixed point problem

(2.22)

a = [jiEnl fg sHL(f2h — (1 — 2f2)a)dsdt
b= g2 [Tyl [T tl(f20 (1 - 2f2)b)dsdt.

3. For the construction of (ag,b2), in the case when (d,v1,72) € D1, we consider the
fixed point problem

a =0 et s (f3 — (1 2fF)a)dsdt (2.23)

b =022 20 1ft5—72+1(f a—(1—2f3)b)dsdt. ‘
while, when (d,y1,72) € D2, we consider the fixed point problem

a =1 ] t—271—1rf0t 571+1(f2b — (1 —2f%a)dsdt (2.24)

b =112 42 [7202-] f1 T (f2q — (1 —2f2)b)dsdt.

4. 1In order to construct a solution (a4,bs), when (d,y1,72) € D, we solve the
following fixed point problem

@ =r N 4pm foT 271 flt sTNTL(f2h — (1 — 2f%)a)dsdt (2.25)
b= [l f1t s (f2a — (1 — 2f2)b)dsdt. .

and, when (d,v1,72) € Da, we solve the following fixed point problem

a=7(r)+7(r) [y $772(8) Jy s7(s)(Fb — (1= 2f])a)dsdt (2.26)
b=r—2 [T t272 lft —V2+1(f2a—(1—2fd) )dsdt '

2.3 Sketch of the proof of Theorem 1.5.

We use the system (1.10) and we construct a base of four solutions, (z;,y;), 7 =1,...,4,
characterized by their behaviors at +o00. The solutions (u;,v;) announced in Theorem
1.5 are obtained by u; = wj;ryj and v; = %,
We denote
V2r —V2r 2 2 2 2
€ ¢ Mt 2 _ M2~ Mm
Jy=—, Jo=—+, = , n=+?-d?, ¢&=-2—-1
R N 2 ! ‘ 2

We can replace the first equation of (1.10) by

(A (e VY)Y = g~ Sy or (e ) = Ty - &

r)x — =5y or (e r)x 5V,
r r

where ) 2 2
a(r) = =" 430 - 13+ 5).

The second equation of the system (1.10) can be written as

2

2n+1/,.—n //: n+1 52 _
(r (")) gz == fi=3))
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or
. 1, &2
(r2 i my) ) = e = (L= f7 = 5)y):
Finally, the system (1.10) can be written as

(22 (r2eFV2ra)y =
{ (Tﬂ:2n+1(T:Fny)) —r

+2r o ﬁ
q(r)z — 52y (2.27)

1
rie
2

il (Gr - (1- f3 - 5)y)
In order to construct four solutions of (2.27), we give Ry > 0 and we define fixed points
problems of the form (z,y) = ®(z,y), for (z,y) defined in [Ry, +o00|, and whose solutions
are solutions of (2.27). The function ¢ will depend on Ry, except for one solution denoted
by (x2,y2) (vanishing exponentially at +00). The present construction does not allow us

to construct the solutions (z;,y;), j # 2 without taking into account a given compact
subset

K C{(d,71,72);0 <y < 79; €% — d® > 0} (2.28)

Indeed, Ry depends on K. Let us list the different fixed point problems we need.
1. The exponential blowing up behavior at +oc : the solution (x1,y;). For Ry > 0

{m =Jp+ 5 [T (J4) 21fRosJ+ Sy —3(1 — f2 — G)x)dsdt
Y —TnfRot_Qn lfR "+1(§ -(1 fd_?) )dsdt.

2. The intermediate blowing up behavior at oo : the solution (z3,ys). For Ry > 0

v o= Jy [T () sTe(Sy - 3(1— f3 - B)a )dsdt
y =1" —l—r”eroot_Q” lfR "+1(5x—(1—fd S) )dsdt

3. The least behavior at 400 : the solution (x2,y2). We consider

xo=J +J[{ (J- 21f+oos,] (s2y 3(1—fd &) dsdt
L I fm —n+1(5 -3(1-f3-4 2 )y)dsdt

4. The intermediate vanishing behavior at +oo : the solution (z4,y4). For Ry > 0

z =J- fRo 21fj-ooSJ (Szy 3( fd s) )det
Yy =7r +T nf+oot2n 1f+oo —Tb-i-l(f ( fd 4 ) )det

We need the following estimate, which is not difficult to prove, by an integration by part.
Let o € R and 8 > 0 be given. Then

Foo 2 2
/ s% Pds < Zt%e Pt for all t > = (2.29)
¢ B B
and .
2 —2
/ s%ePds < 2Pt forallt > R > —ea (2.30)
R B B
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3 The smallest behavior at zero is connected with the great-
est behavior at infinity.

Proof of Theorem 1.6.

Let (d,v1,72) € D. Let us prove first that (a;,b;) blows up exponentially at +oo.

Let us define z = a; + b1 and y = a1 — b;. We have z(r) ~¢ 772 and y(r) ~o —r"2. Thus,
we have z(r) > 0 and y(r) < 0 near » = 0. Let us suppose that z(r) > 0 and y(r) < 0 in
10, R[. Combining the first equation of the system (1.10) and the equation (1.4), we get,
for all » >0

r 2 2 T r
—?+d
[Tx’fd—rféx]6+/ fysxfdds+u2/ Zfdds—Q/ sfixds = 0.
0 0 0

For 0 < r < R, we deduce that
xz
fa

This proves that + increases in |0, ] and therefore z(R) > 0.
Moreover, combining the second equation of the system (1.10) and (1.4), we get

Y 0) 22 [ sffads. (3.31)

r 2 2 r
N -y +d x
' ta=rfily+ [ ufads + & [ fads =0
0 S 0o S
For 0 < r < R, we deduce that

T 2 2
0 = [ s (332)
fa 0 s

This proves that }—3 increases in |0, R| and therefore —y(R) > 0. Finally, we have proved
that z(r) > 0 and y(r) < 0 for all » > 0. Now (3.31) and (3.32) are valid for all r > 0
and we know that fj; ~i. 1. Thus, the behavior of z at 400 cannot be a polynomial
increasing behavior. We return to Theorem 1.5 that gives all the possible behaviors at
+o00 and we deduce that x and y have an exponentially increasing behavior at +o00. So
a and b have an exponentially increasing behavior at 400, too.

Let us prove now that (ug,vs) ~o D(o(r"),r=72), for some D # 0. Multiplying (1.9)
and integrating by parts, we get easily, for all r; > 0 and r > 0

[s(ajug — ubat + vob] — vhby)(s)|Mt = 0.

Using (a1,b1) ~4o00 C(%,%), for some C' # 0, and (uz,v2) ~4oo (%,%), we
get
lim 7(ahug — uhay + vab) — vhby)(r) = 4CV2.
r—+00
Consequently

}i_% r(ahug — uhay + vab) — vhby)(r) = 4CV2.

We know that (a1,b1) ~o (o(r?),77?). According to Theorem 1.4, that gives all the
possible behaviors at 0, we conclude that the only fitting behavior at 0 for (ug,vs) is

(ug,v2) ~o D(o(r"),r=72), for D = 2(,;72\/5
This ended the proof of Theorem 1.6.
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4 The proof of Theorem 1.10 and of Corollary 1.1.

Let d > 1. We can rewrite the system (1.9) as

X' = MX with X = (a,rd’,b,rb')" (4.33)
with
0 1 0 0
M= —r(1—2f§)+§ 0 rf2 0
0 0 0 1
rf3 0 —r(1—2f§)+§ 0

Lemma 4.1 Let us suppose that there exists a bounded solution of (1.9) and let us chose
a base of solutions, X1, Xo, X3, X4, for (4.33), whose third vector is a bounded solution.
Let us name R(s) the resolvant matriz, whose columns are the vectors X;, i = 1,...,4.
Let us name Co and Cy the second and the fourth column of R=1(s). We have

at 0 and when (d,v1,72) € D1 and v1 +v2 —2d —2 <0

B O(Svﬁ%m) B 0(572)
Cy = O(s—) and Cyq= O(s™)
O(s™M) 0(3271+72)
and
at 0 and when (d,vy1,7v2) € D1 and v1 +v2 —2d —2 >0
0(8772+2d+2) 0(8772)
O(S'yg+2d+2) 0(572)
C2 = 0(3771) a’de C4 = O(Si'yl+2d+2)
0(571) 0(371+2d+2)
and

at 0 and when (d,y1,72) € Do

0(7(5)5—72+71+2d+2) O(s7727(s))

| oasreay o (s)
e O(r(s)) md G o (s)
O(S'Yl) O(Sv1+2d+2)

and in any case, at +00

4nJ_ 4nJ_
4nd. dndJ
1 + 1 +
Co ~ioo TG W and  C4q ~4oo s /35
—4y/25™ ™ 4+/25 ™

where —16nv/2 is the determinant of R(s).
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Proof R(s) is chosen as follows

J+ J_ s" s"
s(JL) s(J2) —ns™™  ns"
R(s) ~+o0 (J:) (Jf) —s" ="

s(Jy) s(J2) nmsT™  —ns"

eV2

67\/55

® and the notation J_ stands for

where, as usual, the notation J stands for -

To give the behaviors at 0, we return to Theorem 1.4. We have, for some ¢; # 0,
i=1,...,4

0(872+2d+2) O(s’“) c3sM cys™N

O(s72F24+2)  O(sT) c3y1 s —cyy18 N
If (d’ ’717'72) € D17 R(S) ~0 61872 628_'}/2 O(S'yl+2d+2) O(S%)
6172872 _62728_72 O(S'Yl+2d+2) O(S'P)‘Q)

where we use the notation
A1 = min{~y;, —y2 + 2d + 2} and 42 = min{ye, —y1 +2d + 2} if v+ —2d—2#0

(if 1 4+72—2d—2 = 0, we have to replace O(s71) by O(s7 log 5) and O(s72) by O(s72 log s))
and

O(SW2+2d+2) O(S—v2+2d+2) c3sTt 047'(8)

O(m#2+2) O(s~w#2442) gt —aysr(y)
If (d,71,72) € D2, R(s) ~o 157 o502 O(sM+24+2)  O(r(s)52142)
17287 —cyyesT?  O(sMH2H2) - O(7(s)s772)

where

s~V —gM .
7(s) = { 2 L #0

—logsify1 =0
The determinant W of R(s) is independent of s, due to the fact that the matrix M

of the differential system has a null trace. Moreover, J,J_ = % Using the behavior at
+o0 of R(s), given above, we deduce that W is the principal term, as s — 400 of

1 1 1 1

1 5\/§ —sﬂ -n n
sl 1 1 -1 -1
V2 —svV2 n —-n

that is
W = —16nv2.

A direct calculation of the suitable determinants gives the estimate of Co and Cy.

The proof of Theorem 1.10 completed.
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Let m = lim._0 M+, 4,(€). We can define w. € H,, an eigenvector associated to
My, ~,(€) and wy = (ag, by) such that &, — wp on each compact subset of [0, +oo[. In

2 2
what follows, let us suppose that m < 1. Then % —md? > 0.
Since ag > —bg > 0, the possible behaviors at +o0 for (ag, bg) are (r~"°, —r="0) and (r"°, —r"0)

where
2 2
ng =1/ % — md?. (4.34)

Since m < 1, we have by Theorem 1.9 (i), that wp has a bounded behavior at +oco and
consequently

(a0, b0) ~ioo (r7™, —r™™) and ag+by=O(r ™"2) at +oo.
At 0, in view of ag > —bg > 0, the only possible behavior is
(a0, bg) ~o (er™, O(Fr"T2442))  for some ¢ > 0.

Let us prove that the hypothesis m < 1 leads to a contradiction.

Since n =/ W%JQFJ — d?, we have, by (4.34)

(m < 1)< (np > n).
Let us denote Xo = (ao, rag, b, 7b,)!, the vector corresponding to wy. We have
Xp=MXo— (m—1)(1— f3)(0,rao, 0,7by)".

let us define X7, X2, X3 and X, as in Lemma 4.1. We are going to prove that there exist
some constants C; such that

Xo = icixi — (m — 1)24:Xi,
i=1 i=1
with X
X; bounded at 0,7 =1,2,3,4 (4.35)
and ) - . -
at +oo{ X1 = Xg(l XgOt)) : ?j;;jg(%‘ I+ (4.36)
In order to prove (4.35) and (4.36), we write
4
Xo=>_ Ai(r)X; (4.37)
i=1
with
0
P14 Ar) = A (m—1) /T[R_l(s)s(l | s sy
1 b
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where the notation [ |; means the i*1 line of the vector, and where A; is a constant.
Let us examine the behavior of each term A;(r)X; at +o0o0 and at 0, using Lemma 4.1.
For the first term, we use the first terms of Co and Cy4, given in Lemma 4.1, to obtain

0
_ 1
BN s)s( = 13) | ) [ ~oe O T (a0 + bo))
bo
s(O(sMap + O(s™2bg)) if (d,v1,72) € D1, +72 —2d—2<0

and ~ 8(0(5_72+2d+2a0 + O(s b)) if (d,v1,72) € D1,71+72—2d—2>0
s(O(1(s)sM™12H+24+204 1 O(7(5)sM ™ 2by)) if (d, v1,72) € Da.

Let us define

0 0
By = —(m—1)/1+00[3—1(s)s(1—f3) o |hds  and X1 = X, /+ (R (s)s(1=f) | ) |hds
b() bO

We can write
Al(T)Xl = (A1 + Bl)Xl — (m — 1)X1
We see that X7 = X10(1) at 0. Using (2.29), we get X1 = X;0(r™073J_) at +oc.
For the second term, we obtain

0

R0 = 12) | % {12 ~roo O T (a0 + b))

bo
s(O(sM212a0) + O(s72by)) if (d,v1,72) € D1 and v +v2 —2d — 2 < 0

and ~q { s(O(s72124204) + O(s72bg)) if (d,y1,72) € D1 and 1 + 72 — 2d —2 > 0
s7(s)(O(sM 220 2)ag 4+ O(s172)bo) if (d,11,72) € D2

Denoting
0 0
By = —(m—1)/10[31(s)s(1—f3) 0 ds and X, = X /(:[31(3)3(143) 0 |]ads
bo bo
we get

AQ(T’)XQ = <A2 + BQ)XQ — (m — 1)X2

with, by (2.30) )
Xy = Xo0(r™ ™73 ], ) at 400 .

Moreover, X, is bounded at 0.
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For the third term, we obtain

0
_ d2
B s -7 [ 0 ]3”+°°16nl¢§4f Pan by, (439)
bo

Since —ag + by ~100 —27 ™0, then this term is integrable at +o00. At 0, it is

O(s™Mag) 4+ O(s™M+2842p0)) if (d,y1,v2) € Dy and 41 + 72 —2d —2 >0

s(O(s™Mag) + O(s"by)) if (d,71,72) € D1 and y1 +72 —2d—2 <0
NO 5(
s(O(7(s)ag) + O(7(s)s*™*?by)) if (d,71,72) € Do

and this is bounded at 0.

Letting
0 0
0 r
By = ~(m=1) [ (R )s(1-5D) | |ads and Ko = X [ (Rs)s0-12) | D [
1 0
bo bO
we find X
Asz(r)Xs = (As+ B3) X3 — (m — 1) X3
with

X3 = X30(1) at +oo

and X3 is bounded at 0.
For the fourth term,

0
_ a ~1 4d*v2 _,
(R 1(3)3(1—f§> 00 la NJFOOlGTﬂ . s "(—ap + bo)
bo

and

s(O(sMag) + O(sM+2942pg)) if (d,v1,72) € Dy and 1 +y2 —2d — 2 > 0

s(O(sMag) + O(s271772bg)) if (d,v1,72) € D1 and vy +v2 —2d — 2 < 0
~0
s7(s)(O(s7 )ag + O(s7 2 2)bo) if (d, 71,72) € D2

Letting
0 0

By = —(m-1) /10[3—1(3)5(1—f3) 0 | Juds and X, = X, /OT[R_l(s)s(l—fj) e
bo bo

we find

A~

Ay(r) Xy = (A4 + By) Xy — (m — 1) Xy.
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Then X, = X,O(1) at +00 and Xy is bounded at 0.

Now, summing the four terms, and letting C; = A; + B;, we find (4.35) and (4.36).

Since X is bounded at 0, we have Cy = C4 = 0.

But Xy is bounded at +o0o0 and X; is bounded at 400, i = 1,2,3. Since we have also
a1 >> a4 at +oo, we infer that C7; = 0 and that X4 must be bounded at +oc. Returning

to the definition of X4, we must have

0
[T esa s | 9 las=o,
0 b
therefore
0
£ = X, / B )s— ) | % |luds,
+00 b
that gives
Xi=X, /_:OO s(1 = f)]aoCa + boCala ~1o00 X4 /_:OO mg_"o_"cpds.
Thus, ,
at +oo a4 = ay 167_11/5 ia:_\?/jr”ao +o(r—"0).

Since we have now \
Xo=C3X3— (m— 1)2)@
i=1
and since a1 = O(r~™~%) and ap = O(r—"0~%)
Consequently
ag+ (m — 1)ag ~400 C3az — (m — 1)as

Recalling (4.40) and recalling n < ng, this implies that

0
Gy n=1) [ s 1) | 90 flads =0
0 bo
and then
0
@%—mfn@z—m—n%lrml@drwﬁ 0 |1ads.
bo
Using (4.39), we get
-1 —8d*V2

at +oo Cszag — (m — 1)&3 = —(m — 1)

a
3 16v/2 n(n — ngp)
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r" 0 4 o(r7"0).

(4.40)

, then a; = o(ag) and as = o(ag) at +oo.

(4.41)

(4.42)



Finally, we sum (4.40) and (4.42) to get, by (4.41)

—8d®> 1 84>, 1
1 —1 ~ —(m—1)— —no
ao(1+(m ) 16n n—l—no) +oo —(m )16n n—no)r
and thus )
8d -1 1
(m—1)—( + )=1.

16n'n—nyg n-+ng

But we have by (4.34)
nd —n?=(—m+1)d*

After simplification by m — 1, we get ng = n, that gives m = 1, that is in contradiction
with the hypothesis m < 1. So we deduce that m = 1.

The proof of (4.35) and (4.36) for (d,~1,72) € D1 and 1 + 2 —2d — 2 = 0 is left to the
reader.

Proof of Corollary 1.1.

By Theorem 1.9 (ii), if there exists a bounded solution w, then there exists some eigen-
value tending to 1. So m = 1. It remains to prove that wy = cw, for some ¢ # 0. But
w cannot have the least behavior at 0, otherwise it would blow up exponentially at +oc.
So, there exists ¢ # 0 such that w ~q cwy. If w # cwp, then w — cwy has the least behavior
at 0, and consequently blows up exponentially at +o0o. This cannot be true, because w
is bounded at +oo and, since ag > by > 0, the possible blowing up behavior at +oco for
wp can only be polynomial. We can conclude that w = cwy.

5 The case n > d+ 1 : the proof of Theorem 1.12.

Let wy = (a1, b1) be the solution defined in Theorem 1.4 and 73 = (ug, v2) be the solution
defined in Theorem 1.5. According to Theorem 1.6, w; ~4o (J+,J4+) and ny has the
greater blowing up behavior at 0. Let n3 and 74 be defined in Theorem 1.5 and having
the intermediate behaviors at +o0o0. Let w3 = (as, bs) be defined in Theorem 1.4. With
these definitions, we can write

w3 = C1(n, d)w1 + Ca(n, d)n2 + C3(n, d)n3 + Cy(n, d)na.

Let us remark that wy and w3 — C4(n, d)w; form a base of the bounded solutions at 0, and
that wg — C1(n,d)w; = o(w1) at +00. So the problem of the existence of some bounded
solution is reduced to the problem C3(n,d) = 0.

Supposing that there exists a bounded solution for (ng, doy), dp > 1, ng > dp+ 1, we have,
by Theorem 1.1, ng < 2dy — 1. From now on, (n,d) is such that 1 < d < dy + 1 and
d <n < 2d. Clearly, (d,|n —d|,n+ d) stays in a compact subset of D. This is sufficient
for the solutions 73 and 74 to be defined without ambiguity. The real numbers C;(n, d)
defined above can be computed by means of determinants involving the four components
(a,a’,b,b")(r) of the five solutions present, for a given r > 0. Thus, C; is continuous wrt
(d,v1,72) and consequently is continuous wrt (d,n). C; is also differentiable wrt ~; and
wrt v and therefore wrt n, since n > d.
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Lemma 5.2 With the notation above, if there exists (ng,do), do > 1, ng > do + 1 such
that Cs(no,dp) = 0, then there exists a continuous map d — n(d), defined for d < dy,
closed to dy and verifying C3(n(d),d) = 0.

Proof Let us prove that 303 -3 (ng, do) # 0. If 803 -2 (ng,do) = 0, then 2 5 (w3—C1(n, d)w1)(no, do)
is bounded at +o00. Let us denote (a,b) = w3 - Cl (n,d)wy. Then (a,b) verifies the system
(1.1), with (ng, do) in place of (n,d), and (g—g, %)(no, dp) verifies also a system, obtained
by differentiation wrt n, at (ng,dp), that is

da” | 10 (n—d)? 8 d) 200 2\ O
o Fai/— e o : ”+d) i = 2a) (5.43)
S R G ol i — —(1-2pfh

By combining the systems (1.1) and (5.43), for (ng, dy), an integration by parts gives

+00 _d d
/ QM0 T 0 2 G0 F 00, g
0 T

r

and we conclude that a = b = 0, that is false.

So, we have proved that 8603 (ng,dy) # 0. The Implicit Functions Theorem gives a
continuous map d — n(d) such that Cs(n(d),d) = 0, and defined in a neighborhood of
dp, with values in a neighborhood of ng.

The proof of Theorem 1.12 completed.

With the definitions given above, let us define the set
1
E={d>1; d<dyp+1, 3n2d+§, C3(n,d) = 0}.

If d € €, then n < 2d — 1, by Theorem 1.1. Thus, £ is a closed subset of [1, +00[, thanks
to the continuity of C3 wrt (n,d). Since dy € &€, £ # () and we let d; = inf £. Given
that dq € &, there exists nq > dy + % such that C3(ny,d;) = 0. According to Theorem
1.11, ny > di + 1. If di > 1, we deduce from Lemma 5.2 that there exists d < dj,
sufficiently closed to d; in order to have n(d) > dy + % Therefore n(d) > d + %, which
is in contradiction with d; = inf £. This proves that dy = 1. But 1 € &, by Theorem
1.1. This contradiction proves the non existence of (ng,dp) such that ng > dy + 1 and
03(710, do) =0.

The proof of Theorem 1.12 is complete.

6 The proof of Theorem 1.9 (i) and of Theorem 1.8.

Proof of Theorem 1.9 (i). Let us define ng = 4/ %ﬁ — pud?.
Let we = (ae,b:) € H,, be an eigenvector associated to (). Using (1.15), we write

1 1 2 2
ue) |- iar = [ea om0 a2 22 L o b
0 0

e2

We use the definition (1.17) of mg(g) to get

@ /1 r(1— ) (a2 + b2)dr
0

e2
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1 L2 g2 d2
> mggs)/ r(l_fQ)(a§+bg)dr+/ (i - a§+v . 2f2(ae+b ).
0 0

Now, we use the trick of TC Lin (see [7]). Letting b. = 7d., we consider the map

H:7— +
r

d2 2 d2
i 2 f (LT (6.44)

and we minimize this map. The minimum is attained for 7y verifying

2 d2 2 d2 2 d2
7'0(72 +rfH+rf2=0 and 1+7'0:72 /(72 " +rf3)
and consequently
2_ 2 2_ 12 —d?
7i—d rf 5 —d
Hew) = 255 4 e PO i
Z—+rf; +rf3

We have

H(70) ~rs100 (V3 +75 —2d*)/r.  Moreover, for all 7 >0, H(7) > H(7).

2 2
Since W — d? > 0, there exists some constants C; > 0 and Ry > 0, independent of 7,
such that for all 7 >0

H(t)> G for all » > Ry.
r

Then, for all R > Ry and all £ < }%, we write

Ro R
/ He@mdr > | HEO@E0)dr + [ HE)aEr)dr.
0 Ry

Now ag blows up exponentially at +o00, or as r™. We can choose Ry large enough and a
constant Cy > 0 to have also

2 eV
ag(r) = Cs( 7

Since a. — ag as € — 0, uniformly in [0, Ry], we can chose g such that for all € < g

)2 or Cyr?™ for all r > Ry,.

Ry 1 [Ro
H(r)&?(r)dr > 5 H(r)ag(r)dr.
0 0

Moreover, for all R > Ry, a. — ag as € — 0, uniformly in [Rp, R]. Then, there exists
g(R) such that for all £ < (R) we have

02 R Vo

R R
H(ra@(r)dr > C;/R 2M0dp o Hra(r)dr > 22

. " v

And finally, for ¢ < ¢(R), we have

(el o) / (1 )2+ e > 5  H)adr)drt
0

52 0
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i [0 L(=70)dr, if (a0, bo) ~o (JF, )

where C7 and Cjy, given above, are independent of R and €. But we can choose R such
that the lhs is positive.

We deduce that p(e) —mo(e) > 0. Then we use Theorem 1.7 (i), that gives mo(a) >C

and consequently % > C'. The lemma is proved.
The proof of Theorem 1.8. The proof for n = 2 and d = 2 is originally in [9].

R .
+{ 01202 Roi Qno’ if (a0, bo) ~oo (1", =)

For real numbers d > 1 and n > 1, let x = Tfil = d{—i. A calculation gives

—(ra!) + Lo~ Sy r(1-3fz =22 fi(1- f2) (6.45)
~(ry) + Ty =S —r(1- Ry =0 '

For a = mQﬂ and b = 5%, we deduce that

{‘<mf>'+ﬁa+f3b—r<1—2f3>a = —werfal= /D) (6.46)

—(rY) + Lb+ f2a—r(1 - 22 = -1k f,(1— f2)

7

2 _ i+ 2
where, as usual, v = [n —d|, 2 =n+d, v* = 252 and {* = 25

We verify that
z ~y ~o driT + 042 and, at +oo, £ = O(r ™), y=0(r""),
and consequently that
a ~o 2dr" + O 2) and b ~¢ O(ri"*2).

let us suppose that d > 1 and that 1 < n < d+ 1. We can multiply the system (6.46)
and integrate by parts. We obtain that

+00 2 2
/ (ra” + b + 7—rla2 + %bQ +rf3a+b)? —r(l— f2)(a® + b%))dr
0

+o0 n —
= [ S - e var

This gives

S (ra” + b + ”1 a® + ”2 v+ rf2(a+b)?)dr

° r(l — fg)(a2 + b%)dr

—1-C,

with

oo ;z D fall = f3)(a + b)dr
® (L= f3)(a® + 0?)dr

Now we use an approximation argument, valid as soon as n > 0. For example for a given
constant 0 < N < 1 we define

Cp =

25



(ae,be)(r) = (1(a )b)(r) in(l[O,)JQV] We have that (az.b.) € H o
o = (al(r) {55 b(r) $5) in [N, 1] eb:) € Hpna

that
fol(ra’g + rb’2 71 a? i+ 12 bg +rs fz(aE + b.)2)dr
= L[ (1 — f2)(a2 + b2)dr

N

= (2 2 R 2 23 2 2

S (ra” + b + Da? + BB 41 f2(a + b))dr + O
Jo* (ra TN rfilat b)*)dr ( )—>1—Cn7asstendst00.

JoF r(1 = ) (a? + b2)dr + O(e?™)

We deduce that, if 1 <n < d+1, mg_pdin(e) < 1 — 5, for ¢ small enough and the
proof of Theorem 1.8 is complete.
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