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ABSTRACT This paper aims to develop an efficient compressed sensing (CS) based channel estimation
method for non-sample spaced sparse channels in orthogonal frequency division multiplexing (OFDM)
systems, which can effectively balance the channel estimation performance, spectral efficiency and com-
putational complexity. To realize this goal, a novel delay tracking and residual norm minimization (DT-
RNM) method is proposed. In this method, the idea of reference delay grids (RDG) inspired by the delay
tracking (DT) method proposed in [1] is formulated, which is proven to be much more efficient than current
algorithms in estimating non-sample spaced sparse channels. Both theoretical derivation and simulation
results show the effectiveness of the proposed method.

INDEX TERMS orthogonal frequency division multiplexing (OFDM), compressed sensing (CS), channel
estimation, delay tracking and residual norm minimization (DT-RNM), reference delay grids (RDG), non-
sample spaced sparse channels.

I. INTRODUCTION

As a multicarrier modulation technique, orthogonal fre-
quency division multiplexing (OFDM) technique has the
ability to provide reliable high data rate transmission in dif-
ferent communication scenarios [2]. In OFDM system, chan-
nel estimation is essential, because it provides an effective
tool for acquiring the channel state information (CSI), which
is useful for equalizing the channel distortion. However,
obtaining the CSI requires the OFDM system resources, like
spectral resources and power resources, which are also essen-
tial for efficient transmission. Therefore, designing effective
channel estimation methods, which can effectively balance
the channel estimation performance, spectral efficiency and
computational complexity is very important [3], [4].

Compared with sample spaced channels, a non-sample
spaced multipath channel has fractional sample spaced chan-
nel impulse response (CIR). Obviously, the non-sample
spaced channel model is much more appropriate for different
realistic communication environments [5].

Traditional non-sample spaced channel estimation in
OFDM system is mainly based on the least squares (LS)
estimator, minimum mean square error (MMSE) estimator
and discrete Fourier transform (DFT) based method [6], [7].
However, both the LS and MMSE estimators have disadvan-
tages. The performance of the LS estimator is limited by
the noise effects and energy leakage of channel taps while
the MMSE estimator requires the prior knowledge of the
noise variance and channel statistics, moreover, it involves
higher computational complexity [6]. To reduce the leakage
power of CIR, [7] proposes a symmetric extension of the
DFT method. In general, the traditional non-sample spaced
channel estimation methods can hardly balance the channel
estimation performance, spectral efficiency and computa-
tional complexity efficiently.

In recent years, as the existence of the sparse character-
istics of wireless physical channel in many communication
environments has been proven, more and more research is
focused on the compressed sensing (CS) based non-sample
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spaced sparse channel estimation [1], [8]–[13]. [8] focuses on
CS based sparse channel estimation by exploring the delay-
Doppler sparsity to reduce the usage of pilots and improve the
spectral efficiency. [9] has mathematically described how to
use the virtual representation in discrete domain to approx-
imate the frequency selective channel and doubly selective
channel by uniformly sampling the delay space and delay-
Doppler space respectively at the Nyquist rate. However, for
non-sample spaced channel in delay space or delay-Doppler
space, using the original Nyquist rate (resolution) is not
enough to reconstruct the channel with sufficient precision.
In this case, high resolution sparse channel reconstruction is
required [10]. [11], [12] investigate high resolution channel
estimation techniques to efficiently reduce the power leakage
in delay-Doppler space for doubly selective channels. For
high resolution sparse channel reconstruction, the size of
dictionary (measurement matrix in CS) will be dramatically
increased with the oversampling factor R (R > 1), which
significantly increases the complexity of the channel recon-
struction algorithm. To solve this problem, low computa-
tional complexity oriented delay estimation becomes popular
[1], [13]. [1] proposes a novel adaptive delay tracking (DT)
method, which achieves comparatively good channel estima-
tion performance meanwhile significantly reduces the com-
putational complexity by decreasing the number of coherence
matching computations between the bases of the measure-
ment matrix and the residual vector. A closed-form estimate
for the tap delays is derived in [13], which can achieve
effective channel estimation performance with low compu-
tational complexity. However, the delay estimation methods
in [1] and [13] highly depend on the partially equispaced or
equispaced pilot arrangement, which is actually not optimal
in estimating non-sample spaced sparse channels. Therefore,
effective non-sample spaced sparse channel estimation with
optimized non-uniform pilot arrangement requires further
investigation [13].

In this paper, by fully considering the spectral efficiency
and exploiting the sparsity of the physical channel, we pro-
pose a novel compressed non-sample spaced sparse channel
sensing scheme for OFDM system. Compared with the meth-
ods proposed in [1] and other methods, our proposed method
has the following distinctive contributions.

1. Different from [1] and [13], which employ the partially
equispaced or totally equispaced pilot arrangement, this pa-
per adopts the suboptimal non-equispaced pilot arrangement
proposed in [14], which is actually effective in the case of
M < Lcp (M is the number of pilots and Lcp is the length
of cyclic prefix). By optimizing the pilot arrangement, the
proposed method has a better spectral efficiency compared
with the methods proposed in [1] and [13].

2. The reference delay grid (RDG) guided residual norm
minimization (RNM) method proposed in this paper is the
main contribution of this work, which is new and clearly
different from the current non-sample spaced sparse channel
estimation methods [1], [10]. The newly proposed reference
delay grid (RDG) guided residual norm minimization (RNM)

method can effectively fight against the non-uniform pilot
arrangement and promote the channel delay estimation preci-
sion, therefore, the proposed method has significantly better
channel estimation performance than the methods proposed
in [1] and [10] throughout the whole considered Eb/N0.

3. Although, the computational complexity of the proposed
method is slightly higher than that of the method proposed in
[1], it is still much lower than that of the conventional or-
thogonal matching pursuit (OMP) algorithm with equivalent
delay resolution [10].

The rest of this paper is organized as follows. The con-
sidered OFDM system model is given in Section II. The
proposed DT-RNM method is described in Section III. Sec-
tion IV provides the simulation results and the conclusion is
drawn in Section V.

II. SYSTEM MODEL
A. OFDM SYSTEM MODEL

Consider an OFDM system withN subcarriers, among which
M are pilots with positions k0, k1, . . . , kM−1. Assume that
the signal is transmitted over a K sparse channel (sparse
channel with K non-zero channel taps) with CIR expressed
as:

h(t) =

K−1∑
l=0

αlδ(t− τlTs) (1)

where αl and τlTs (0 ≤ τl ≤ Lcp − 1) are the complex
gain and delay of the lth tap respectively; Ts is the sampling
interval.

At the receiver, after sampling the channel frequency re-
sponse (CFR) of h(t), the CIR is given by [6]:

h[n] = h(nTs) =
1

N

∑
l

αle
−j πN (n+(N−1)τl)

sin(πτl)

sin( πN (τl − n))

(2)
In (2), when τl is an integer, we have h[τl] = αl, which

means that all the energy of the lth tap is mapped to the
channel tap h[τl] (n = τl). There is no power leakage. For
sample spaced channel, its channel tap positions are exactly
located in some sampling points. When τl is not an integer,
we have h(bτlcTs) 6= αl and h(dτleTs) 6= αl, which means
that not all the energy of the lth tap is mapped to the channel
tap h[n] (n = bτlc or n = dτle). There exists leakage of
power to other most adjacent channel taps. For non-sample
spaced channel, its channel tap positions are not exactly
located in sampling points. In the presence of power leakage,
the channel model is no longer a sparse channel, since most
of the channel taps contain the power of channel paths.

In order to reduce the power leakage effect, high time
resolution (T

′

s = Ts/R) CIR should be considered, (1) can
be rewritten as:

h(t) =
K−1∑
l=0

αlδ(t−RτlT
′

s) (3)

2 VOLUME 4, 2019

Acc
ep

ted
 m

an
us

cri
pt



The CFR of h(t) can be written as:

g(f) =

∫ ∞
−∞

h(t)e−j2πftdt

=
∑
l

αle
−j2πfRτlTs′

(4)

Taking the FFT of h(lT
′

s), l = 0, 1, 2, . . . , RN−1, we obtain
the following discrete CFR:

g[k] =
∑
l

αle
−j2πRτlk/RN (5)

Its IFFT with size of RN is used to obtain the CIR:

h[n] =
1

RN

∑
l

αl

RN−1∑
k=0

ej2π(n−Rτl)k/RN

=
1

RN

∑
l

αl
1− ej2π(n−Rτl)

1− ej2π(n−Rτl)/(RN)

(6)

Let n−Rτl = x (n ∈ [0, RN − 1]), (6) becomes:

1

RN

∑
l

αl
1− ej2πx

1− ej2πx/(RN)
(7)

It is obvious that:

lim
x→0

1

RN

1− ej2πx

1− ej2πx/(RN)
= 1 (8)

When R→∞ and x 6→ 0, we have:

lim
R→∞

lim
x6→0

1

RN

1− ej2πx

1− ej2πx/(RN)
= 0 (9)

Combining the above two cases, we can obtain:

h[n] =

{
αl, n = Rτl
0, n 6= Rτl

R→∞ (n ∈ [0, RN−1]) (10)

From (10), when R → ∞, h[n] becomes a continuous
channel. Therefore, the power of tap δ[n − Rτl], with n =
t/T

′

s will be completely mapped into h[Rτl] when R → ∞.
From the above theoretical derivation, we know that the in-
crease of R improves the channel estimation precision when
estimating the non-sample spaced sparse channels. However,
when R reaches a sufficiently big value (e.g. R > 8), the
channel estimation improvement will be less significant with
the further increase of R. The typical values of R are R = 2
or R = 4 or R = 8 [1], [10], [13]. Practically, the value
of R should balance the computational complexity and the
channel estimation performance. Therefore, R = 4 or R = 8
is usually recommended for the non-sample spaced sparse
channel estimation in practice.

B. COMPRESSED SENSING BASED OFDM SYSTEM
1) Compressed Sensing based OFDM System Model
Let Xp = diag[x[k0], x[k1], . . . , x[kM−1]] ∈ CM×M be the
normalized transmitted pilot matrix. All OFDM pilot sym-
bols are assumed to have equal transmit power. The received

pilot vector yp = [y[k0], y[k1], . . . , y[kM−1]]T ∈ CM×1 can
be written as [15], [16]:

yp = XpFRhR + w
′

p (11)

where FR ∈ CM×R(Lcp−1)+1 is the dictionary matrix with
element FR(m, s) = e−j2π

kmτ
′
s

N (m ∈ {0, 1, . . . ,M − 1},
s ∈ {0, 1, . . . , R(Lcp− 1)}, where R = 1 corresponds to the
Nyquist baseband sampling factor while R ≥ 2 is employed
as the oversampling factor, TR = {0, 1

R , . . . , Lcp − 1}, τ ′s ∈
TR and S = R(Lcp − 1) + 1 is the size of the delay grid
TR); hR ∈ CR(Lcp−1)+1×1 is the CIR with oversampling
factorR; w

′

p = [w
′
[k0], w

′
[k1], . . . , w

′
[kM−1]]T ∈ CM×1 is

the complex additive white Gaussian noise (AWGN) vector
with zero mean and covariance matrix σ2

wIM . From (11), the
observed CFR can be obtained by [1], [17]:

gp = FRhR + wp (12)

where gp = X−1
p yp ∈ CM×1 and wp = X−1

p w
′

p ∈ CM×1

are the observed CFR and the complex additive Gaussian
noise vector with zero mean and covariance σ2

wIM respec-
tively. In the following, (12) will be adopted as the CS model
as in [1], [17].

2) Pilot Arrangement for Compressed Sensing based OFDM
System
In pilot-aided channel estimation field, pilot arrangement is
a vital task for effective channel estimation [1], [13]–[20].
In the case of M ≥ Lcp, the equispaced or uniform pilot
arrangement is optimal [18], [19]. However, this situation
lacks of spectral efficiency. For better spectral efficiency,
M < Lcp is generally considered. In this case, the optimality
of the partially equispaced or equispaced pilot arrangement
considered in [1], [13] is not guaranteed [20]. Therefore, in
the case of M < Lcp, finding the suboptimal or optimal pilot
arrangement for dictionary matrix FR is critical. In com-
pressed channel sensing field, the mutual coherence between
the bases of FR in (12) is an important parameter for the
evaluation of the pilot arrangement methods, which can be
defined as [14], [15], [17]:

µ(FR) = max
u,v∈TR,u6=v

|〈fu,fv〉|
‖fu‖2‖fv‖2

(13)

where fu = [e−j2π
k0u
N , e−j2π

k1u
N , . . . , e−j2π

kM−1u

N ]T ∈
CM×1 (u ∈ TR) is a basis (column) in FR (fv has similar
definition.). According to (13), we can obtain the following
coherence minimization problem regarding to the M pilots
arrangement [14], [15]:

arg min
Λ

max
u,v∈TR,u6=v

〈
M−1∑
m=0

e−j2πkm(u−v)/N 〉 (14)

where Λ = [k0, k1, . . . , kM−1] is the pilot location vector.
For the optimization problem (14), there are

(
N
M

)
possible pi-

lot arrangements, it is actually a computationally heavy task.
Therefore, many suboptimal pilot arrangement criteria and
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methods have been proposed in [14]–[17]. From theoretical
point of view, we should optimize (14) for the non-sample
spaced sparse channels. However, in the case of R ≥ 2,
the bases considered for the optimization in (14) will be
R times as the bases considered in R = 1. Therefore, for
efficiency of practical applications, we still consider R = 1
and simply adopt the method proposed in [14], which firstly
randomly generates a limited number of pilot arrangements,
then selects the optimal one according to (14).

III. DT-RNM FOR NON-SAMPLE SPACED SPARSE
CHANNEL ESTIMATION
A. PROPOSED DT-RNM BASED CHANNEL ESTIMATION
METHOD
This section focuses on the algorithm of OMP and its derived
versions for non-sample spaced sparse channel estimation.
With the CS model (12), the goal of the channel recon-
struction is to find the solution of the following optimization
problem [21]:

ĥR = arg min
h
‖gp − FRh‖2 s.t ‖h‖0 ≤ Kmax (15)

where Kmax is the maximum sparsity (maximum possible
number of non-zero channel taps) of the sparse channel.
Finding the optimal solution of the above l2 norm minimiza-
tion problem is a computational requiring task. Therefore,
many sub-optimal solutions like OMP and its derived algo-
rithms have been developed. The OMP algorithm provides a
sub-optimal solution at the lth (l ≤ Kmax) iteration given
by:

ĥ
′

l = arg min
hl
‖gp − F̂

′

l hl‖2 s.t halting criterion (16)

where F̂
′

l is the Fourier matrix with the selected bases of
OMP at the lth iteration. The residual vector of the lth

iteration is defined as rl = gp − F̂
′

l ĥ
′

l. The halting criterion
can be realized by channel sparsity or threshold, which will
be discussed in the next subsection. F̂

′

l = [F̂
′

l−1 fτ̂ ′l
]. τ̂
′

l can
be estimated by:

τ̂
′

l = arg max
τ∈TR

|< fτ , rl−1 >| (17)

where rl−1 and fτ are the residual at the (l − 1)th iteration
and a basis or a column of matrix FR respectively. In OMP al-
gorithm, (17) and (16) are two essential steps known as delay
tracking (DT) step and residual norm minimization (RNM)
step respectively. As previously mentioned, the increase of
R results in the increase of computational complexity. To
solve this problem, an effective DT method is proposed in
[1]. Assume that the channel sparsity K = 1 and there
is no intercarrier interference (ICI) and noise. Initialize the
delay grids set with T (0)

DT = T1 as shown in FIGURE 1 (a).
Therefore, a rough estimate of delay τ̂0 can be obtained by:

τ̂0 = arg max
τ∈T (0)

DT

|< fτ , gp >| (18)

Based on τ̂0, we can have the following extension of the
initial delay grids set [1]:

T (1)
DT = {τ̂0 −

1

2
, τ̂0, τ̂0 +

1

2
} (19)

With the newly extended delay grids set T (1)
DT , a finer delay

estimation can be obtained:

τ̂
(1)
0 = arg max

τ∈T (1)
DT

|< fτ , gp >| (20)

According τ̂ (1)
0 , we can further get T (2)

DT as follows [1]:

T (2)
DT = {τ̂ (1)

0 − 1

22
, τ̂

(1)
0 , τ̂

(1)
0 +

1

22
} (21)

After Q iterations, we can get the final delay estimate
τ̂

(Q)
0 with its estimation error |τ0 − τ̂ (Q)

0 | ≤ 1/2Q+1, which
decreases with the increase of Q according to the properties
of |< fτ , gp >| (See Appendix A) [1]. Taking K = 1 and
Lcp = 256 as an example, FIGURE 1 (a) and FIGURE 1 (b)
illustrate the delay grids used by the DT method proposed
in [1] with Q = 2 and the delay grids of the OMP method
with R = 2Q = 4 respectively. The number of the calculated
delay points of the OMP algorithm is 1021 while the number
of the calculated delay points of the method proposed in [1] is
260. Therefore, the method proposed in [1] is actually more
efficient in the delay tracking (DT) process than the classical
OMP method.

With (18)-(21) and Appendix A, it is easy to know that
the authors in [1] try to pursue the accurate delays of the
channel taps mainly based on equation (27) in Appendix A.
Based on (27) and the following two properties of f(∆τ) =
|sin(π∆τ)|
|sin(π∆τ/M)| , we know that for multipath channel (e.g. K ≥
2), the coherence between the residual and the considered
bases around each true delay is a sinc function or an approx-
imate sinc function of ∆τ . Therefore, it is reasonable to pur-
sue the accurate delay for each channel tap, which is essential
for no leakage channel estimation. However, the conditions
for getting (27) require M > Lcp and equispaced pilot
arrangement. Although Algorithm 1 in [1] tries to add some
additional new elements such that a new delay grid is chosen
with 2C + 1 elements (C ≥ 1 is a small number) to reduce
the effect of non-uniform pilot arrangement, leakage effect
and interference, it still requires that the pilot arrangement is
partially or globally equispaced. The same requirements also
appear for the algorithms in [13]. As previously mentioned,
equispaced pilot arrangement is not optimal when M < Lcp,
especially when M � Lcp [20]. In the case of M < Lcp,
we should optimize the pilot arrangement according to (14).
After pilot arrangement optimization, the pilot can hardly
be uniformly distributed, which can actually cause a serious
distortion on the sinc function mentioned above. In this
case, the true delay for the lth tap may appear in a delay
subset Tsub = sup((FH

R,T rl−1)D) or a comparatively small
neighbourhood of a delay within Tsub with high probability
(where T =

⋃Q
q=0(T (q)

DT ) for the DT method in [1] and
T = TR for OMP method et al. Tsub contains the position
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indices of the D largest components of the coherence vector
FH
R,T rl−1, D is generally a small number) and only consider

the delay point τ̂l = arg max
τ∈T
|< fτ , rl−1 >| is not sufficient

for accurate delay tracking and channel estimation with high
precision. In other words, the delay points within a delay sub-
set where the corresponding bases have high coherence with
the residual vector, should be considered. With these delay
points, the reference delay grid (RDG) guided RNM method
is proposed in this paper to effectively fight against the non-
uniform pilot arrangement and realize the near optimal delay
searching of the lth channel tap, which will be discussed after
the DT method in this section.

According to the above discussions and taking the proper-
ties of |< fτ , gp >| into account, we propose the one time
local delay expansion, which is given by:

T (1) ={τ̂0 −
1

2
, τ̂0 −

1

2
+

1

R
, . . . , τ̂0, . . . ,

τ̂0 +
1

2
− 1

R
, τ̂0 +

1

2
}

(22)

where ∆τ = − 1
2 and ∆τ = 1

2 are the two cut-off points. It is
more direct, robust and convenient to consider (22) as the lo-
cal delay expansion. In the following, the proposed reference
delay grid (RDG) guided RNM method is described based on
the local delay expansion T (1) to improve the performance of
the channel recovery in the case of M < Lcp.

The algorithm in [1] uses the same RNM method as the
OMP algorithm expressed by (16). τ̂

′

l estimated by (17)
is actually computationally efficient for RNM computation,
however, it is not always optimal for RNM at the lth iteration.
We consider the RNM method of the OMP algorithm for
simplicity, F̂

′

l = [F̂
′

l−1 fτ̂ ′l
] is adopted for the RNM (16),

which is only a suboptimal RNM at the lth iteration. The
optimal RNM at the lth iteration should apply the following
expression:

[ĥ
′

l,opt, τ̂
′

l,opt] = arg min
hl,τ∈TR

‖gp−F̂
′′

l hl‖2 s.t halting criterion

(23)
where F̂

′′

l = [F̂
′′

l−1 fτ ] (τ ∈ TR), which is different from
F̂
′

l = [F̂
′

l−1 fτ̂ ′l
] for the OMP algorithm, in which τ̂

′

l is
estimated by (17).

The computational complexity of the solution to (23) is
higher than both (16) and (17). By making full use of the
local delay expansion in (22), we can have a subset of delay
grids approaching to τ0 (for the non-sample spaced sparse
channel with sparsity K = 1, the delay grids within the
shadow area are given in FIGURE 1 (c)), which is actually
robust to fight against the effect of power leakage of channel
taps. With the delay grids within the shadow area and the
delay subset Tsub defined previously, we can easily have the
following corresponding RDG at the lth tap for the proposed
DT-RNM method:

TRDG(l) = sup((FH
R,T (1)(l)rl−1)D) (24)

FIGURE 1: Tap delay grids of the method in [1] (a), tap
delay grids of the OMP algorithm (b), tap delay grids of the
proposed DT-RNM method (c).

Considering thatD in Tsub is a small number, we typically
have D = 2, 3 in (24). Therefore the RNM of the proposed
DT-RNM method is given by:

[ĥl, τ̂l] = arg min
hl,τl∈TRDG(l)

‖gp − F̂RDG,lhl‖2 (25)

where F̂RDG,l = [F̂l−1 fτl ], τl ∈ TRDG(l). Obviously, the
presence of RDG (D = 2, 3) will increase the computational
complexity mainly due to the two or three times (D = 2, 3)
of residual norm minimization computations compared with
the algorithm in [1], however, we have actually significantly
improved the channel estimation precision. The main steps
of the proposed method (presented in Algorithm 1) will be
described in the following section.

B. MAIN CHARACTERISTICS OF THE PROPOSED
DT-RNM METHOD
Compared with the algorithm in [1], the traditional OMP
algorithm and other greedy pursuit algorithms, the proposed
DT-RNM method has the following characteristics.
1)Suboptimal pilot arrangement

As previously mentioned, the case ofM < Lcp is considered
for higher spectral efficiency. In this case, the suboptimal
pilot arrangement proposed in [14] is adopted, which has
better spectral efficiency than the partially equispaced or
equispaced pilot arrangement used in [1], [13].
2)RDG guided residual norm minimization

Different from the algorithm in [1] and conventional OMP
method in [10], on the one hand, one time local delay expan-
sion is proposed for delay tracking (DT), and on the other
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Algorithm 1 Proposed DT-RNM algorithm
Input:
1) Initial residual vector r−1 = gp;
2) Noise standard deviation σ;
3) Oversampling factor R;
4) Initial set of DT-RNM TDT−RNM (−1) = ∅;
5) Initial matrix with the selected bases F̂−1 = ∅;
6) Size of the set of reference delay grids D;
7) Flag of the iteration flag = 0;
8) Initial the tap number l = 0.
Main body:
1: while (flag == 0)
2: τ̂ (0)l = argmaxτ∈[0,Lcp−1]|< fτ , rl−1 >|; % Get the initial maximum
coherence;
3: T (1)(l) = {τ̂ (0)l − 1

2
, τ̂

(0)
l − 1

2
+ 1
R
, . . . , τ̂

(0)
l , . . . , τ̂

(0)
l + 1

2
− 1
R
,

τ̂
(0)
l + 1

2
}; % Local delay expansion inspired by [1];

4: TRDG(l) = sup((FH
R,T (1)(l)

rl−1)D); % Obtain TRDG(l);
5: [ĥl, τ̂l] = arg min

hl,τl∈TRDG(l)
‖gp − [F̂l−1 fτl ]hl‖2;

6: TDT−RNM (l) = [TDT−RNM (l − 1) τ̂l];
7: F̂l = [F̂l−1 fτ̂l ].
8: rl = gp − F̂lĥl;
9: if min(|ĥl|) ≤ T (T =

√
2(1 + a)ln(Lcp)σ (σ = σw√

M
)) % Halting

criterion;
10: ĥ = ĥl−1;
11: TDT−RNM = TDT−RNM (l − 1);
12: flag = 1;
13: end
14: l = l + 1;
15: end
Output: ĥDT−RNM = ĥ(TDT−RNM ) % Estimated CIR with DT-RNM
method.

hand, based on the fact that the true delay for each channel
tap may appear in a delay subset, the RDG guided residual
norm minimization (RNM) method is proposed and analyzed
to effectively fight against the non-uniform pilot arrange-
ment and to obtain near optimal delay searching. Thanks
to its efficiency in computation and effectiveness in fighting
against the non-equispaced pilot arrangement, the proposed
DT-RNM method has better channel estimation performance
than the methods in [1], [10], much lower computational cost
than the method in [10] and slightly higher computational
cost than the method in [1].

3)Halting criterion
Unlike the method proposed in [1], which employs two
thresholds. For conveniency and effectiveness in practical
applications, the proposed method considers the universal
threshold (T =

√
2(1 + a)ln(Lcp)σ (σ = σw√

M
)), we take

a = 0 in this paper) [4], [18], [22] as the halting criterion.

IV. SIMULATIONS
In the simulations, we consider a QPSK modulated OFDM
system. The system has 1024 subcarriers and Lcp = 256. A
five tap channel is considered, each channel tap has uniformly
distributed delay [6]. The power of each channel tap has an
exponential distribution described by φ(τ) = e−

τ
τrms with

τrms =
Lcp
4 . Both the delays and powers of channel taps

vary from one OFDM symbol to another.
For performance evaluations, the normalized minimum

mean square error (NMSE) of CFR for one OFDM symbol
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=3), C=1)
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Known channel delay information

FIGURE 2: Performance of NMSE among proposed DT-
RNM method with R = 8, different D (D = 2, 3) and
Algorithms 1 in [1]

defined in (26) and bit error rate (BER) are employed. Ad-
ditionally, the computational complexity comparison is also
presented.

NMSE =

∑N−1
k=0 |g[k]− ĝ[k]|2∑N−1

k=0 |g[k]|2
(26)

The compared methods are the proposed DT-RNM
method, Algorithm 1 in [1], the conventional OMP method
in [10] and the known channel delay information. In simula-
tions, 96 pilots (9.375% of pilots), with positions optimized
by the method proposed in [14], are employed (In order to
make fair channel estimation performance comparisons, one
optimized pilot arrangement is used for all the simulation al-
gorithms mentioned above). Both Algorithm 1 in [1] and the
conventional OMP method use the two thresholds α = Mσ2

w

and β = σ2
w given in the simulation part of [1].

A. PERFORMANCE OF THE PROPOSED DT-RNM
METHOD
The performance of NMSE comparison among the proposed
DT-RNM method with (R = 8) and different D (D = 2, 3)
and Algorithms 1 with Q = 3 in [1] is illustrated in FIGURE
2. Compared with Algorithms 1 in [1], the proposed DT-
RNM method with different D (D = 2, 3) achieves better
NMSE performance throughout the considered Eb/N0, es-
pecially within the Eb/N0 range (14dB-30dB), their perfor-
mance gap is at least 2dB for the same NMSE performance.
Additionally, with the increase ofD, the performance gain of
NMSE is decreased.

FIGURE 3, FIGURE 4 and FIGURE 5 show the NMSE
performance comparison between the proposed DT-RNM
method with R = 2, D = 2 and other existing methods,
the proposed DT-RNM method with R = 4, D = 3 and
other existing methods and the proposed DT-RNM method
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FIGURE 3: Performance of NMSE comparison between the
proposed DT-RNM method with R = 2, D = 2 and other
existing methods
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FIGURE 4: Performance of NMSE comparison between the
proposed DT-RNM method with R = 4, D = 3 and other
existing methods

with R = 8, D = 3 and other existing methods respectively.
Generally, with the same value of R (R = 2, 4, 8), the
proposed DT-RNM method outperforms the conventional
OMP channel estimation method and Algorithm 1 in [1],
their performance gaps are decreased with the increase of R.
Additionally, from FIGURE 3, FIGURE 4 and FIGURE 5,
we know that the performance gaps of NMSE between the
proposed DT-RNM method and Algorithm 1 in [1] with the
correspondingQ are generally bigger compared with that be-
tween the proposed DT-RNM method and the OMP method
with the same R throughout the considered Eb/N0. The
primary reason is that, theoretically, the NMSE performance
of Algorithm 1 in [1] is not better than the OMP method.

The BER performance in FIGURE 6, FIGURE 7 and
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FIGURE 5: Performance of NMSE comparison between the
proposed DT-RNM method with R = 8, D = 3 and other
existing methods
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FIGURE 6: Performance of BER comparison between the
proposed DT-RNM method with R = 2, D = 2 and other
existing methods

FIGURE 8 has similar trends to that of NMSE performance
in FIGURE 3, FIGURE 4, FIGURE 5 respectively. Although
the BER performance gaps between different methods are
smaller, the proposed DT-RNM method still maintains the
best performance except the known channel delay infor-
mation. In FIGURE 6 and FIGURE 8, the proposed DT-
RNM methods with R = 2 and R = 8 improve the BER
performance of the Algorithm 1 in [1] by no less than 2dB
and 1dB respectively throughout the high Eb/N0 (20dB -
30dB).

B. COMPUTATIONAL COMPLEXITY
The computational complexity of the conventional OMP
method in [10], Algorithm 1 of [1] and the proposed DT-
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FIGURE 7: Performance of BER comparison between the
proposed DT-RNM method with R = 4, D = 3 and other
existing methods
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FIGURE 8: Performance of BER comparison between the
proposed DT-RNM method with R = 8, D = 3 and other
existing methods

RNM method is given in TABLE 1.

TABLE 1: Computational complexity comparison

Algorithm Complexity
OMP O(M(R(Lcp − 1) + 1)K)

Alg 1 [1] O(M(Lcp + 2QC)K)
DT-RNM under O(2M(Lcp +R)K)

The computational complexity of the conventional OMP
is O(M(R(Lcp − 1) + 1)K) mainly due to the coherence
computation on R(Lcp − 1) + 1 bases; the number of bases
of Algorithm 1 of [1] for coherence computation is (Lcp +
2QC), therefore, its complexity is O(M(Lcp + 2QC)K);
the complexity of the proposed DT-RNM is composed of two
parts, the first part is the complexity of Algorithm 1 in [1]

O(M(Lcp + R)K), the second part is the added complexity
of one or two times (D = 2, 3) of residual norm minimization
computations, which includes the pseudoinverse and residual
update et al, which is less than O(M(Lcp +R)K), so we
have the total complexity less than O(2M(Lcp + R)K).
Additionally, although the total complexity of the proposed
DT-RNM method is a bit higher than the Algorithm 1 in
[1], it is still much lower than the complexity of OMP
O(M(R(Lcp − 1) + 1)K).

V. CONCLUSION
In this paper, a new DT-RNM method is proposed for the
non-sample spaced sparse channel estimation. Based on the
OMP algorithm and inspired by [1], the proposed method
introduces the idea of reference delay grids (RDG) guided
residual norm minimization (RNM), which can effectively
promote the channel estimation performance by adding lim-
ited computational complexity in the case of M < Lcp.
Simulation results and computational evaluations fully show
that the proposed DT-RNM method comprehensively out-
performs the conventional OMP method in [10] and the
algorithm proposed in [1] and can effectively balance the
channel estimation performance, spectral efficiency and com-
putational complexity.

.

APPENDIX A PROPERTIES OF |< fτ , gp >|
The mathematical expression of |< fτ , gp >| (channel
sparsity K = 1, pilots are equispaced, kn = k0 + nd, where
n = 0, 1, . . . ,M − 1, d = N/M and M > Lcp) is given by
(Appendix in [1]):

|< fτ , gp >| =|h0

M−1∑
n=0

e−j
2π
N kn∆τ | = |h0|

|sin(π∆τ)|
|sin(π∆τ/M)|

=|h0|f(∆τ)
(27)

where ∆τ = τ0 − τ , ∆τ ∈ [−Lcp + 1, Lcp − 1]. According
to [1], f(∆τ) = f(−∆τ) and f(∆τ) has the following two
properties:

1) f(∆τ) is monotone increasing and monotone decreas-
ing within the range [− 1

2 , 0) and (0, 1
2 ] respectively;

2) For ∆τ ∈ [−Lcp + 1,− 1
2 ) and ∆τ ∈ ( 1

2 , Lcp − 1], we
have f(−∆τ) < f(− 1

2 ) and f(∆τ) < f( 1
2 ) respectively.
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