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A topological quantum interplay between the magnetic flux Φ and the mass has been investigated, for the case of an electron, by evaluating a gauge-invariant phase factor (a Wilson loop) linked to the electromagnetic gauge field 𝐴 𝜇 of the particle. In particular, from this phase factor and the quantization of the magnetic flux variations, a relationship between the mass at rest of the electron 𝑚 𝑒 and its self-energy 𝛿𝑚, arising from radiative corrections, has been obtained also within a QED approach. Besides, a formulation of an energy scale comparable to the energy at rest of an electron-positron pair is proposed. Remarkably, a reckoning of the Bohr's energy of a 𝑊 + 𝑊 -pair is compatible with constants and parameters usually employed within the electroweak theory and comparable to the energy at rest of an 𝑒 -𝑒 + pair.

Introduction

Of all the massive elementary particles [START_REF] Nakamura | Review of Particle Physics[END_REF] investigated in the standard model (SM) [START_REF] Gaillard | The standard model of particle physics[END_REF], electrons have been definitely central in the development of the semiconductor industry [START_REF] Sze | Physics of Semiconductor Devices[END_REF], being their properties, either classical or quantal, widely exploited in the whole set of integrated circuits made of downscaled solid state devices. For technologists and experts involved in the investigation of matter, electrons are fundamental particles upon which devising explanations regarding atoms, molecules, condensed matter and general observed phenomena. Indeed, thanks also to the rise and reliability of computational methods, tested over the years and established on fundamental principles, scientists can implement today a set of theoretical frameworks to further understand the structure of matter. Examples are the ab-initio methods such as tight binding, Hartree Fock (HF) and self-consistent HF [START_REF] Cramer | Essentials of Computational Chemistry[END_REF][START_REF]Quantum materials: experiments and theory[END_REF]), as well as first principles methods, built on the theory of density functional (DFT) [START_REF] Kohn | Lecture: Electronic structure of matter -wave functions and density functionals[END_REF][START_REF] Jones | Density functional theory: Its origins, rise to prominence, and future[END_REF][START_REF] Hohenberg | Inhomogeneous Electron Gas[END_REF][START_REF] Kohn | Self-consistent equations including exchange and correlation effects[END_REF]. Their use has definitely had an impact on our understanding of quantum effects in solid state thin films (e.g. in the quantum integer and fractional Hall effect) [START_REF] Sasaki | Theory of the Integer & Fractional Quantum Hall Effects[END_REF] and in the development of new device technologies [START_REF] Hasnip | Density functional theory in the solid state[END_REF], too.

To complete the picture, the physical foundations of the methods illustrated above rely upon the theory of quantum electrodynamics (QED) [START_REF] Weinberg | The Quantum Theory of Fields[END_REF][START_REF] Greiner | Quantum Electrodynamics[END_REF] and its later developments within the electroweak theory; making QED the most successful theory in predicting and describing the interaction of electrons with light in every aspect. However, after more than a century from the discovery [START_REF] Thomson | Cathode rays[END_REF] of the electron as a fundamental building block of matter, the electron is still perceived mostly as an enigmatic particle in its essence. Indeed, the words of the scholar Wilczeck [START_REF] Wilczek | The enigmatic electron[END_REF] confirms such a picture: "An electron is a particle and a wave; it is ideally simple, and unimaginably complex; it is precisely understood, and utterly mysterious; it is rigid, and subject to creative disassembly. No single answer does justice to reality".

Recently topology [START_REF] Castelvecchi | The Strange topology that is reshaping physics[END_REF] is receiving considerable attention by condensed matter's physicists focusing on the properties of topological phases [START_REF] Haldane | Model for a Quantum Hall effect without Landau levels: condensedmatter realization of the "parity anomaly[END_REF][START_REF] Kosterlitz | metastability and phase transitions in twodimensional systems[END_REF]. Nonetheless, topological arguments have been already introduced in physics in the past [START_REF] Bhattacharjee | Use of Topology in physical problems in Topology and condensed matter physics[END_REF][START_REF] Nash | Topology and Physics a historical essay in History of topology[END_REF][START_REF] Morandi | The role of topology in classical and quantum physics in Lecture notes in physics[END_REF][START_REF] Nakahara | Geometry[END_REF][START_REF] Stanescu | Introduction to Topological Quantum Matter & Quantum Computation[END_REF]. Indeed, the charge quantization conditions determined by the existence of magnetic monopoles [START_REF] Dirac | Quantised singularities in the electromagnetic field[END_REF][START_REF] Shnir | Magnetic Monopoles[END_REF], the Arhanov-Bohm effect [START_REF] Aharonov | Significance of electromagnetic potentials in quantum theory[END_REF] and the Berry's phase [START_REF] Berry | Quantal phase factors accompanying adiabatic changes[END_REF] are just acknowledged examples of topological properties arising in specific physical systems.

In general, topology gives us insights on how different parts of a structure are linked together, or can be connected by paths. The Königsberg's bridge problem of Euler [28], the network of covalent bonds of atoms in a molecule [START_REF] Sauvage | From chemical topology to molecular machines[END_REF], the structure of a LAN or a WAN [START_REF] Chen | Fundamentals of Complex Networks: Models, Structures and Dynamics[END_REF] are also examples of topological structures that can occur in space configurations. More specifically, in geometry, surface topology investigates how paths (open or in loops) can be deformed equivalently and continuously without tears or cuts of the surface or, in a similar manner, how surfaces can be modified smoothly into one another (e.g. a cup into a donut!).

Topological aspects determining the quantization properties of the intrinsic magnetic flux of electrons and the significance of the magnetic flux quantization is acknowledged in the field of condensed matter [START_REF] Parks | Quantized magnetic flux in superconductors[END_REF][32][START_REF] Onsager | Proceedings of the International Conference on Theoretical Physics[END_REF] as determinant to understand the physics of superconducting state and proved experimentally by Deaver and Fairbank [START_REF] Deaver | Experimental evidence for quantized flux in superconducting cylinders[END_REF], as well as by Doll and Näbauer [START_REF] Doll | Experimental proof of magnetic flux quantization in a superconducting ring[END_REF]. Later the role played by the quantization of magnetic flux was extended to the Quantum Hall effect [START_REF] Laughlin | Quantized Hall conductivity in two dimensions[END_REF][START_REF] Avron | A topological look at the quantum Hall effect[END_REF].

In this work, we investigate the role that a quantization of the intrinsic magnetic flux in a particle plays in determining its properties. In particular, we discuss the topological interplay occurring between the intrinsic magnetic flux of a charged lepton, namely an electron, and its mass.

According to the literature, the topic has been investigated to some extent in the past and for a decade by Jehle [START_REF] Jehle | The relationship of flux quantization to charge quantization and the fine structure constant[END_REF][START_REF] Jehle | The relationship of flux quantization to charge quantization and the fine structure constant[END_REF][START_REF] Jehle | Relationship of flux quantization to charge quantization and the electromagnetic coupling constant[END_REF][START_REF] Jehle | Flux quantization and particle physics[END_REF][START_REF] Jehle | Flux quantization and fractional charges of quarks[END_REF][START_REF] Jehle | Topological characterization of leptons, quarks and hadrons[END_REF]. Indeed, in Jehle's works, it is reported about the possibility to formulate a theory of the electromagnetic field of charged leptons as resulting from quantized magnetic flux. Jehle pointed out that the magnetic flux is an option that electrodynamics provides to investigate the nature of charged leptons and proved that the Coulomb potential can be obtained as arising from the quantization of the magnetic flux [START_REF] Jehle | The relationship of flux quantization to charge quantization and the fine structure constant[END_REF]. Although the formulated model was phenomenological and in contradiction with the standard formulation of QED, because of the electromagnetic origin of the mass of the electron, his formulation was an embryonal case of a topological property associated with the magnetic flux of the electron.

More recently, Saglam [START_REF] Saglam | Spin-dependent quantized magnetic flux through the electronic orbits of Dirac hydrogen atom[END_REF] and Stein [START_REF] Stein | Quantized magnetic flux through the orbits of hydrogen-like atoms within the atomic model of Sommerfeld[END_REF] proved that the magnetic flux of an electron in a hydrogen atom is also quantized and that the electron spin contributes to the quantized flux according to -2𝜋𝑐 〈𝑠〉/𝑒, where 〈𝑠〉 is the expectation value of the spin of the particle, -𝑒 is its electric charge and 𝑐 the speed of light. At the best of the knowledge of the author, no further extensive investigations have been reported so far on the topic.

The paper is organized as follows. First, the topological quantum interplay between the magnetic flux Φ and the mass, for the case of an electron, is investigated by evaluating a gauge-invariant phase factor associated with the Wilson loop of the electromagnetic field 𝐴 𝜇 generated by the particle. In particular, from the phase factor and the quantization of the magnetic flux variations, a relationship between the mass at rest of the electron 𝑚 0 and its self-energy 𝛿𝑚 is obtained also within a QED approach. Hence, the formulation of an energy scale comparable with the energy at rest of an electron and compatible with constants and parameters usually employed within the electroweak theory is discussed. Finally the conclusions are reported.

Topological interplay between magnetic flux and mass

Whenever a particle of charge 𝑞 undergoes a space-time loop 𝐶, in the gauge field 𝐴 𝜇 generated by an electron, it is possible to evaluate a gauge-invariant quantity [START_REF] Wilson | Confinement of quarks[END_REF] 

𝑒 𝑖𝑞 ℏ𝑐 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 |𝜓⟩ = 𝑒 𝑖𝑞𝛼 |𝜓⟩ (1) 
that determines a phase shift 𝑞𝛼 of the state |𝜓⟩. From the derivative of eq. 1 with respect to 𝑞, it results that the quantity 

On the other hand, the gauge-invariant quantity on the first member of eq. 2 can be evaluated independently. For example, for the case of an electron at rest with spin up, in a semi-classical approach, it reads as:

〈 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 〉 = 𝑐 -𝑒〈𝜑(𝑟 ⃗,𝑡)〉 -𝑒 𝑇 -Φ(↑) = 2𝑐 -𝑒 𝛿𝑚 𝑒𝑠 𝑐 2 𝑇 -Φ(↑) (3) 
Where 〈𝜑(𝑟 ⃗, 𝑡)〉 is the expectation value of the time-component of the 4-vector potential 𝐴 𝜇 , 𝛿𝑚 𝑒𝑠 𝑐 2 works as an electrostatic energy and the period 𝑇 is a characteristic time of the electron, which hereafter will be considered equal to 𝑇 = 𝜋ℏ 𝑚 𝑒 𝑐 2 .

In order to calculate the magnetic flux of an electron we proceed by considering the line integral of the operator 𝐴 ⃗ on a closed circular loop 𝐶 𝑟 = {𝑟(𝑡)|𝑡 = 0 → 𝑇} in the space-coordinates and average it over all possible values:

Φ = 〈 ∮ 𝐴 ⃗ ⃗⃗ • 𝑑𝑟 ⃗ 𝐶 𝑟 〉 = ∫ 𝑑𝑉 ∮ 𝜓 † (𝑟, 𝑡)𝐴 ⃗ 𝜓(𝑟, 𝑡) • 𝑑𝑟 ⃗ = 𝐶 𝑟 ∫ 𝑑𝑉′ ∮ 𝜓 † (𝑟′, 𝑡′)𝐴 ⃗ 𝜓(𝑟′, 𝑡′) • 𝑑𝑟′ ⃗⃗⃗ 𝐶 𝑟′ (4) 
In doing such a calculation, we can renominate 𝑟 in 𝑟 ′ , as we expect that the variables 𝑟 and 𝑟 ′ play a symmetric role.

In the semi-classical approach that we are following, according to eq. 4 the magnetic flux of an electron reads as:

Φ = 〈 ∮ 𝐴 ⃗ ⃗⃗ • 𝑑𝑟 ⃗ 𝐶 𝑟 〉 = 1 𝑐 〈 ∫ ∮ 𝑗 ⃗ •𝑑𝑟 ⃗ |𝑟 ⃗-𝑟 ′ ⃗⃗⃗ | 𝐶 𝑟 𝑑𝑉 ′ 〉. (5) 
In particular, for the case of an electron at rest, the magnetic moment 𝑚 𝑧 of an electron depends only on the spin, and it's an observable that commutes with the Dirac's Hamiltonian. It can be shown that:

Φ = 1 𝑐 〈 ∫ ∮ 𝑗 ⃗ •𝑑𝑟 ⃗ |𝑟 ⃗-𝑟 ′ ⃗⃗⃗ | 𝐶 𝑟 𝑑𝑉 ′ 〉 = 4𝜋 𝑐 〈 ∫ 1 2 (𝑟 ⃗×𝑗 ⃗ ) 𝑧 |𝑟 ⃗-𝑟 ′ ⃗⃗⃗ | 𝑑𝑉 ′ 〉 = 4𝜋 𝑐 〈 ∫ 𝑚 𝑧 𝜓 † (𝑟′,𝑡′)𝜓(𝑟′,𝑡′) |𝑟 ⃗-𝑟 ′ ⃗⃗⃗ | 𝑑𝑉 ′ 〉 (6) 
By reasoning on the quantized value that the magnetic moment 𝑚 𝑧 of an electron at rest assumes for a state with spin up, we can deduce that:

Φ(↑) = - 4𝜋ℏ𝑐 2𝑒𝑚 𝑒 𝑐 2 〈 ∫ 𝑒 2 𝜓 † (𝑟 ′ ,𝑡 ′ )𝜓(𝑟 ′ ,𝑡 ′ ) |𝑟 ⃗-𝑟 ′ ⃗⃗⃗ | 𝑑𝑉 ′ 〉. (7) 
Hence the gauge-invariant quantity in eq. 2, can be evaluated as

〈 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 〉 = 𝛿𝑚 𝑒𝑠 𝑚 𝑒 2𝜋ℏ𝑐 𝑒 . ( 8 
)
In the event, the phase in eq. 2 amounts to:

𝑞 ℏ𝑐 〈 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 〉 = 𝑞 ℏ𝑐 𝛿𝑚 𝑒𝑠 𝑚 𝑒 2𝜋ℏ𝑐 𝑒 = 𝛿𝑚 𝑒𝑠 𝑚 𝑒 2𝜋𝑞 𝑒 . (9) 
Moreover, in the hypothesis that there's a certain arbitrariness in the choice of the charge 𝑞, we can choose it such that the gauge-invariant quantity in eq. 3 reads as:

𝑞 ℏ𝑐 〈 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 〉 = 2𝜋𝑛, with 𝑛 𝜖 ℤ (10) 
If this holds, the ratio between 𝛿𝑚 𝑒𝑠 and 𝑚 𝑒 , must satisfy the equation:

𝛿𝑚 𝑒𝑠 𝑚 𝑒 = 𝑛 𝑞/𝑒 . ( 11 
)
On the other hand, also the magnetic flux is quantized and equals

Φ(↑) = - 4𝜋ℏ𝑐 𝑒 𝛿𝑚 𝑒𝑠 𝑚 𝑒 = - 4𝜋ℏ𝑐 𝑒 𝑛 𝑞/𝑒 , (12) 
for the case of an electron at rest with spin up, whereas, for an electron at rest with spin down the magnetic flux reads

Φ(↓) = 4𝜋ℏ𝑐 𝑒 𝛿𝑚 𝑒𝑠 𝑚 𝑒 = 4𝜋ℏ𝑐 𝑒 𝑛 𝑞/𝑒 . ( 13 
)
By imposing that the variation of the magnetic flux from spin down to spin up is equal to the quantum of the magnetic flux:

Φ(↓) -Φ(↑) = 8𝜋ℏ𝑐 𝑒 𝑛 𝑞 𝑒 = 2𝜋ℏ𝑐 𝑒 , ( 14 
)
we obtain that the charge 𝑞 must satisfy the condition 𝑞 = 4𝑛𝑒.

Moreover, by defining 𝛿𝑚 𝑒𝑚 𝑐 2 = 4𝛿𝑚 𝑒𝑠 𝑐 2 as an electromagnetic energy linked to the electron, the magnetic flux can be expressed as:

Φ(↑) = - 𝜋ℏ𝑐 𝑒 𝛿𝑚 𝑒𝑚 𝑚 𝑒 . ( 15 
)
From classical arguments it's reasonable to expect such a dependence. In fact, the magnetic flux Φ(↑) can be expressed in terms of the magnetic moment of the electron -𝜇 𝐵 , where 𝜇 𝐵 is the Bohr magneton, as:

Φ(↑) = - 1 2 2𝜋ℏ𝑐 𝑒 𝛿𝑚 𝑒𝑚 𝑚 𝑒 = - 𝑒 𝑚 𝑒 𝑐 ℏ 2 2𝜋𝛿𝑚 𝑒𝑚 𝑐 2 𝑒 2 = -𝜇 𝐵 2𝜋𝛿𝑚 𝑒𝑚 𝑐 2 𝑒 2 . ( 16 
)
Indeed, the magnetic dipole moment 𝜇 determined by a current 𝑖 flowing, e.g. in a circular coil of radius 𝑟, is 𝜇 = 𝑖𝜋𝑟 2 . The magnetic field generated at the center of the coil is 𝐵 = 2𝜋𝑖 𝑟 , and the magnetic flux is approximately Φ = 𝐵𝜋𝑟 2 . By combining previous equations, we can express the magnetic flux in terms of the magnetic moment 𝜇. In fact,

Φ = 𝐵𝜋𝑟 2 = 2𝜋𝑖 𝑟 𝜋𝑟 2 = 𝜇 2𝜋 𝑟 . A
comparison with equation ( 16) provides the value

1 𝑟 = 𝛿𝑚 𝑒𝑚 𝑐 2 𝑒 2
.

By considering also possible QED corrections for the magnetic moment and indicating with 𝛿𝑚 𝑒𝑠 𝑐 2 the contribution of the electrostatic energy, eq. 7 reads as:

Φ(↑) = - 𝑔 𝑠 2 8𝜋ℏ𝑐 2𝑒𝑚 𝑒 𝑐 2 𝛿𝑚 𝑒𝑠 𝑐 2 , ( 17 
)
where 𝑔 𝑠 is the spin g-factor of the electron.

In conclusion, the gauge-invariant quantity appearing in eq. ( 2), can be expressed as:

𝑒 ℏ𝑐 〈 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 〉 = 2𝜋 𝑔 𝑠 2 𝛿𝑚 𝑒𝑚 𝑚 𝑒 = 2𝜋, (18) 
and being quantized in units of 2𝜋, it implies that there must exist an interplay between the magnetic flux and the mass, such that:

𝑔 𝑠 2 𝛿𝑚 𝑒𝑚 𝑚 𝑒 = 1. (19) 
Clearly such a conclusion has been achieved by pursuing a semi-classical approach. In fact, within the QED formulation it is not possible to evaluate a quantity such as the electrostatic selfenergy of the electron. However, from the gauge-invariant quantity appearing in eq. ( 2), we can consider that 𝑑𝑥 𝜇 = 𝛾 𝜇 𝑐𝑑𝜏, where 𝛾 𝜇 are the Dirac Matrices and 𝜏 is an intrinsic time, characteristic of the system. If this is the case, by evaluating the line integral as an integral over the time 𝜏, and the expectation value turns out the value of a quantity which has the dimension of an energy 𝑒〈A 𝜇 𝛾 𝜇 〉. On the other hand, within the QED formulation the self-interaction of the electron with its own electromagnetic field is determined as the self-energy 𝛿𝑚𝑐 2 of the electron. Consequently, the gauge-invariant quantity of eq (2) can be estimated as

𝑒 ℏ𝑐 〈 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 〉 = 𝑒 ℏ𝑐 〈 ∫ A 𝜇 𝑑𝑥 𝜇 𝑑𝑐𝜏 𝜏 0 𝑐𝑑𝜏〉 = 𝑒 ℏ𝑐 𝑐𝜏〈A 𝜇 𝛾 𝜇 〉 = 𝜏 ℏ 〈A 𝜇 𝑒𝛾 𝜇 〉 = 𝜏 ℏ δ𝑚𝑐 2 , ( 20 
)
where the characteristic time 𝜏 is set as

𝜏 = 𝑔 𝑠 2 2𝜋ℏ
𝑚 𝑒 𝑐 2 , so that it can be related to the magnetic moment of the electron. In fact,

Φ(↑) = -𝜇 𝐵 2𝜋𝛿𝑚𝑐 2 𝑒 2 = - 𝑔 𝑠 2 𝑒 𝑚 𝑒 𝑐 ℏ 2 2𝜋𝛿𝑚𝑐 2 𝑒 2 = - 1 𝑚 𝑒 ℏ 2 2𝜋𝛿𝑚𝑐 𝑒 , (21) 
and the variation of the magnetic flux provides the value 

Φ(↓) -Φ(↑) =
) 22 
In conclusion, the Wilson loop appearing in eq. ( 2) is equal to 1 and reads as

⟨𝜓|𝑒 𝑖𝑒 ℏ𝑐 ∮ A 𝜇 𝑑𝑥 𝜇 𝐶 |𝜓⟩ = 𝑒 𝑖 𝜏 ℏ δ𝑚𝑐 2 = 𝑒 𝑖2𝜋 𝑔 𝑠 2 δ𝑚 𝑚 𝑒 = 1, (23) 
if the gauge invariant quantity appearing in eq. 1 is such that:

𝑔 𝑠 2 δ𝑚 𝑚 𝑒 = 1. (24) 
In table I, we summarize such considerations by evaluating the normalized magnetic flux

Φ 𝑛𝑜𝑟𝑚 = -𝜇 𝐵 2𝜋𝛿𝑚 𝐸𝑀 𝑐 2 𝑒 2 2𝜋ℏ𝑐 𝑒 ⁄
as determined by the confinement size or scale length, for the cases of two representative spin ½ charged particles (antiparticles), namely the electron (positron) and the proton (antiproton). The case of the electron is reported for the Bohr radius, the classical radius of the electron, the Compton wavelength and is compared with the calculation obtained from the evaluation of the radiative corrections of the electron mass at first order as obtained from the QED theory. The case of the electron, considered as a point and structure-less particle, is compared with the case of the proton, which is different, since its size is determined by the confinement of its constituent quarks. for different scale lengths or confinement sizes of the spin 1/2 particle. Normalization has been done with respect to the quantum flux 2𝜋ℏ𝑐 𝑒 . For the case of an electron (positron) different scale lengths can be considered. By taking into account the electron spin g-factor, a variation of the normalized magnetic flux ∆Φ 𝑛𝑜𝑟𝑚 for an electron flipping from spin up to down is in module equal to ⁄ . Finally for the case of the proton, we consider that the minimum length scale is determined by the radius of the proton, which, being a composite particle, is determined by its constituent quarks.

In Figure 1, from a to d, a set of schematizations is also reported in order to show the evolution from classical models of the electromagnetic field of the electrons to QED model of the selfinteraction of the electron with its own electromagnetic field. In particular, in Fig. 1a we report a representation of the lines of force of the electric and magnetic fields that can be deduced from classical electrodynamics considerations [START_REF] Jackson | Classical Electrodynamics[END_REF]. In Fig. 1b we report a representation of the main features and properties of an electron at rest, according to quantum mechanics. Along with its charge -𝑒 and its mass at rest 𝑚 𝑒 , we have to consider the intrinsic angular momentum or spin ½ of the particle, up in this specific case, its magnetic moment -𝜇 𝐵 (where 𝜇 𝐵 is a Bohr magneton unit) and the associated flux of the magnetic field Φ, which is independent of the specific contour line 𝐶 𝑟 . In order to evidence the topology which is behind the quantum mechanical properties of an electron, we report an analogical model of the property of spin rotation which is well represented by the topological properties of a Möbius strip (Fig. 1c). Fig. 1d reports the one-loop Feynman diagram of the one-loop electron self-energy according to QED.

Fig. 1a Representation of the lines of force of the electric 𝐸 ⃗⃗ and magnetic fields 𝐵 ⃗⃗ as deduced from classical electrodynamics [START_REF] Pohl | The size of the proton[END_REF] for a moving charged particle, being 𝑣 ⃗ the vector velocity. . Fig. 1c A Möbius strip can work as an analogical model reproducing the topological properties of a spin ½ particle subject to a 2π rotation. In the specific case, a spin up will turn into a spin down particle, after following the one-sided surface of the strip and rotating of 2π.

Fig.1d

Feynman diagram of the one-loop electron selfenergy. Within the QED formulation the self-interaction of the electron with its own electromagnetic field is determined as the self-energy δm𝑐 2 of the electron. By evaluating the line integral in eq. 2 as an integral over the time 𝜏, the expectation value turns out an expectation value of a quantity which has the dimension of an energy 𝑒〈A 𝜇 𝛾 𝜇 〉.

Formulation of an energy scale comparable to the energy at rest of the electron

In the following an application of equation 19 is considered in order to provide a formulation of an energy scale which is comparable to the energy at rest of the electron. As a matter of fact, radiative corrections within the QED theory provide a contribution to the self-energy determination of the electron [START_REF] Weinberg | The Quantum Theory of Fields[END_REF][START_REF] Greiner | Quantum Electrodynamics[END_REF]. Indeed, by opportunely choosing the cut-off energy required in the QED formulation, a value of the self-energy which is comparable with the energy at rest of the electron can be determined. However, concerning the origin of masses, the diversification of lepton masses can be explained by a Yukawa mechanism of coupling of massless charged leptons with the Higgs field that spontaneously breaks the gauge symmetry [START_REF] Weinberg | The Quantum Theory of Fields[END_REF]. If this is the case we should be able to provide an evaluation of the electron mass within a minimal extension of a scheme which takes into account somehow of the electroweak forces.

In this respect, we may observe as in defining the classical radius 𝑟 𝑜 of the electron, the mass at rest of the electron is proportional to the fine structure constant 𝛼 , whereas the classical radius of the electron can be associated to the Compton wavelength of a more massive particle whose mass reads (𝑚 𝜇 -𝑚 𝑒 )𝑐 2 , we can observe as the mass associated to the classical radius of the electron is of the same order of magnitude of the mass of a muon. In such a way we can provide a value of the mass of the electron in terms of that of a muon. However, usually we do the opposite, namely we express the mass of heavier leptons in term of the lightest lepton mass, the electron.

On the other hand, we can conjecture that the dependence of the mass of the electron on the fine structure constant 𝛼 is reasonable but it may involve a higher power of 𝛼, such as 𝛼 2 . If this is the case, the 𝛼 2 quantity must be multiplied by the mass value of a heavier particle opportunely chosen. Moreover, we can also expect that the unknown equation expressing an energy, should be in a certain way related to standardized expressions of use within the quantum theory among which we can make a choice. In particular, a mass-energy formula that we can consider stems from the atomic theory. In fact, the equation that relates the Bohr energy of the hydrogen energy levels to the mass of the electron has the same dependence on 𝛼 2 . Moreover, if we want to pursue the determination of a formula for the mass of the electron within a minimal extension scheme which includes quantities appearing in the electroweak theory, we have to consider the possibility that such heavier mass might be related to the masses of the vector bosons mediating the weak force. Let us devise a thought experiment hence. Namely, let us consider a pair 𝑊 + 𝑊 -of charged 𝑊 vector bosons that undergoes a scattering process at very low energy. If this is the case, neglecting the very short lifetime of such particles, it results that the scattering amplitudes determined by the Coulomb scattering are influenced by the possible bound states determined by the 𝑊 + 𝑊 -system. The energy of such bound states is lowered with respect to 2𝑀 𝑊 𝑐 2 by the Bohr energy determined by the electromagnetic interaction of the 𝑊 + 𝑊 -pair, resulting, as a first approximation, in a binding energy , 𝐸 𝐵 = 1 2 𝛼 2 𝑀 𝑊 𝑐 2 2 , of 1.07 𝑀𝑒𝑉. This energy value is quite close to the energy of an 𝑒 + 𝑒 -pair, which amounts to 2𝑚 𝑒 𝑐 2 = 1.02𝑀𝑒𝑉 when both particles are at rest. And indeed, we can say that the energy scale of an electron at rest is comparable to half of the Bohr energy of a 𝑊 + 𝑊 -pair:

𝑚 𝑒 𝑐 2 ≈ 1 8 𝛼 2 𝑀 𝑊 𝑐 2 . ( 25 
)
Moreover, the difference 2∆𝐸 between the Bohr energy 𝐸 𝐵 and the electron-positron pair mass, results of 48.15 keV:

2∆𝐸 = 1 4 𝛼 2 𝑀 𝑊 𝑐 2 -2𝑚 𝑒 𝑐 2 = 48.15 𝑘𝑒𝑉. (26) 
Indicating as 𝛿𝑀 𝑊 = 2.085 ± 0.042 𝐺𝑒𝑉 [START_REF] Beringer | Review of particle physics[END_REF] the decay width of a charged vector boson, assuming that 2𝛿𝑀 𝑊 is the uncertainty of the mass of the 𝑊 + 𝑊 -pair, it results that: 

In the hypothesis that such a difference turns out from an indetermination on the mass of the charged boson vector 𝑊, we can wright equation ( 26) as:

∆𝐸 = 1 8 𝛼 2 𝑀 𝑊 𝑐 2 -𝑚 𝑒 𝑐 2 ≈ 1 8 𝛼 2 2𝛿𝑀 𝑊 𝑐 2 . ( 28 
)
Therefore, the error associated with the mismatch of the two energy scales, the mass of the 𝑚 𝑒 𝑐 2 and the corrected Bohr energy of a 𝑊 + 𝑊 -pair

1 8
𝛼 2 (𝑀 𝑊 -2𝛿𝑀 𝑊 )𝑐 2 is:

1 - 1 8 𝛼 2 𝑀 𝑊 𝑐 2 - 1 8 𝛼 2 2𝛿𝑀 𝑊 𝑐 2 𝑚 𝑒 𝑐 2 ≈ 0.7%, (29) 
and differs only by 0.7 % from the mass at rest of an electron.

It is also possible to go further in our evaluation. Indeed, we can introduce an angle 𝜃 such that to take into account of the deviation of difference reported in eq. 26 with respect to the quantity calculated in eq. 27 : 

and such a value differs only by 0.08% with respect to the mass of the electron. On the other hand, the Bohr energy is an electromagnetic form of energy, by considering the results reported in eq. ( 19), eq. ( 31) must be multiplied by half of the spin g-factor 𝑔 𝑠

2

. By doing such a correction, we can obtain a value of an energy scale which differs by only 0.04% with respect to the mass at rest of the electron: Is this what the mass of an electron should look like? Does eq. 32 determines the mass of the electron? Although the advantage of such a formulation is the use of parameters and quantities which are proper of the electroweak theory, in spite of the close value of the calculated energy scale in eq. 32 to the energy at rest of the electron, a skeptic reader might also consider that the previous heuristic reasoning leads only to a fortunate guess of an energy value which is very close to the mass of an electron. As a fact, we cannot exclude that such a conclusion is a pure coincidence arising from the calculation of the Bohr energy of a 𝑊 + 𝑊 -pair. Although of the many clues provided, such as the Bohr energy and its corrections which are very close to the energy at rest of an 𝑒 + 𝑒 -pair, the Bohr radius of the 𝑊 + 𝑊 -system which is comparable to the classical electron radius, a critical point to consider is the appropriate identification of the angle 𝜃. However, independently of the possible implications which are behind eq. 25 and 32, it is sure that eq. 25, a Bohr energy, is the value of an energy scale comparable to the energy scale of an electron at rest which has been formulated by means of the mass 𝑀 𝑊 of the 𝑊 particle.

𝑚 𝑒 𝑐

Conclusions

In conclusion, by evaluating a gauge-invariant phase factor (that is a Wilson loop) linked to the electromagnetic gauge field 𝐴 𝜇 of the particle, namely an electron, a topological quantum interplay between the magnetic flux Φ and the mass has been demonstrated, In particular, it has been shown that, from the phase factor and the quantization of the magnetic flux variations, a relationship between the mass at rest of the electron 𝑚 e and its self-energy 𝛿𝑚, arising from radiative corrections, can be obtained, also within a QED approach. Besides, a formulation of an energy scale comparable to the energy at rest of an electron-positron pair is proposed. It is remarkable that a reckoning of the Bohr energy of a 𝑊 + 𝑊 -pair, which is compatible with constants and parameters usually employed within the electroweak theory, is comparable to the energy at rest of an 𝑒 -𝑒 + pair. Moreover, it has been shown how corrections can be provided such that the calculated energy scale approaches better the value of an 𝑒 -𝑒 + pair. However at this stage we cannot exclude that such a conclusion is a pure coincidence arising from our speculation. Nevertheless, independently of such speculations, it is certain that the electron, the lightest lepton, will continue to be exploited in the entire spectrum of technological applications that will emerge. A better approximation can be obtained by introducing an angle 𝜃, such that a projection of the "segment" 
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 1b Fig.1bRepresentation of the main features of an electron at rest. An electron, even at rest, has a magnetic field which determines a magnetic moment of -𝜇 𝐵 (a Bohr magneton), for an electron with spin up. The associated magnetic flux determined by the electron is independent of the line path and is quantized in units of Φ(↑) = -2𝜋𝑐ℏ 2𝑒
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 3 If we consider the Barut formula[START_REF] Barut | The mass of the muon[END_REF] 𝑚 𝜇 = 𝑚 𝑒 + 𝑚 𝑒
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 12 2𝛿𝑀 𝑊 )𝑐 2 = 55.5 ± 1.1 𝑘𝑒𝑉.
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 2a Fig.2a A pair of charged 𝑊 vector bosons (𝑊 + 𝑊 -) is considered to survive long enough to arrange a hydrogen-like system. The Bohr's radius 𝑎 0𝑊 + 𝑊 -= 2ℏ 𝛼𝑀 𝑊 𝑐 of the system results comparable to the classical radius of the electron 𝑟 0 and to the Compton's wavelength of the muon. In particular, the radius of the n th Bohr's level 𝑟 𝑛𝑊 + 𝑊 -= 𝑛 2 2ℏ 𝛼𝑀 𝑊 𝑐

Fig. 2b . 1 2𝑛 2 𝛼 2 𝑀 𝑊 𝑐 2 2 25 • 1 .

 2b1222251 Fig.2b. Comparison of the Bohr's energy scale 𝐸 𝐵 of a 𝑊 + 𝑊 -pair, working as a hydrogen-like system, with the energy of an electron-positron pair 2𝑚 𝑒 𝑐 2 = 1.02𝑀𝑒𝑉. The energy associated to the n th Bohr's orbit with respect to 2𝑀 𝑊 𝑐 2 is lowered by the energy 1 2𝑛 2 𝛼 2 𝑀 𝑊 𝑐 2 2 and differs, with respect to the ground state, by an energy ∆𝐸 of ∆𝐸 = 1 2 (1 -1 𝑛 2 ) 𝛼 2 𝑀 𝑊 𝑐 2 2 . The energy ∆𝐸 associated to the ground state and n = 5 level is ∆𝐸 = 24 25 • 1.07𝑀𝑒𝑉 = 1.027 𝑀𝑒𝑉 .
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 12 2𝛿𝑀 𝑊 )𝑐 2 , i.e.

1 4𝛼 2 ( 4 𝛼 2

 1242 2𝛿𝑀 𝑊 )𝑐 2 cos𝜃, on the vertical axis, equals the difference between ( 1 𝑀 𝑊 𝑐 2 -2𝑚 𝑒 𝑐 2 ). The evaluation of such an angle provides a value which is close to the Weinberg angle 𝜃 𝑊 . By adopting 𝜃 𝑊 = 𝜃, we can estimate a value of the electron mass which differs only by 0.08 % from the measured one. Multiplying such a value by

  |∆𝛷 𝑛𝑜𝑟𝑚 | =

	𝑔 𝑠 2	4𝛿𝑚 𝑒𝑠 𝑚 𝑒	=	𝑔 𝑠 2	𝛿𝑚 𝑒𝑚 𝑚 𝑒	=	𝑔 𝑠 2	𝛿𝑚 𝑚 𝑒	. Such a variation equals unity, if 𝛿𝑚 𝑒𝑚 = 𝑚 𝑒	𝑔 𝑠 2

  Such a value is comparable with the Weinberg angle 𝜃 𝑊 = 28.1°. In the hypothesis that the angle 𝜃 is the Weinberg angle 𝜃 𝑊 , we can gain a value for the energy scale that we are evaluating which is even closer to the energy at rest of the mass of the electron:

	1 4	𝛼 2 (2𝛿𝑀 𝑊 )𝑐 2 𝑐𝑜𝑠𝜃 =	1 4	𝛼 2 𝑀 𝑊 𝑐 2 -2𝑚 𝑒 𝑐 2 .	(30)
	It results that a reckoning of 𝑐𝑜𝑠𝜃 provides a value of 𝜃 which amounts to 𝜃 =
	𝑎𝑐𝑜𝑠 ( 55.5±1.1 𝑘𝑒𝑉 48.15 𝑘𝑒𝑉 ) = (29.8 ± 2)°. 𝑚 𝑒 𝑐 2 = 1 8 𝛼 2 𝑀 𝑊 𝑐 2 -	1 8	𝛼 2 (2𝛿𝑀 𝑊 )𝑐 2 𝑐𝑜𝑠𝜃 𝑊 = 0.5106(5) 𝑀𝑒𝑉 (0.08%),