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Abstract :   
 
Measurement of suspended particulate matter concentration (SPMC) spanning large time and 
geographical scales have become a matter of growing importance in recent decades. At many places 
worldwide, complex observation platforms have been installed to capture temporal and spatial variability 
over scales ranging from cm (turbulent regimes) to whole basins. Long-term in situ measurements of 
SPMC involve one or more optical and acoustical sensors and, as the ground truth reference, gravimetric 
measurements of filtered water samples. The estimation of SPMC from optical and acoustical proxies 
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generally results from the combination of a number of independent calibration measurements, as well as 
regression or inverse models. Direct or indirect measurements of SPMC are inherently associated with a 
number of uncertainties along the whole operation chain, the autonomous field deployment, to the 
analyses necessary for converting the observed proxy values of optical and acoustical signals to SPMC. 
Controlling uncertainties will become an important issue when the observational input comprises systems 
of sensors spanning large spatial and temporal scales. This will be especially relevant for detecting trends 
in the data with unambiguous statistical significance, separating anthropogenic impact from natural 
variations, or evaluating numerical models over a broad ensemble of different conditions using validated 
field data.  
 
The aim of the study is to present and discuss the benefits and limitations of using optical and acoustical 
backscatter sensors to acquire long-term observations of SPMC. Additionally, this study will formulate 
recommendations on how to best acquire quality-assured SPMC data sets, based on the challenges and 
uncertainties associated with those long-term observations. The main sources of error as well as the 
means to quantify and reduce the uncertainties associated with SPMC measurements are also illustrated. 
 

 

Highlights 

► Errors associated with optical and acoustical sensors for SPMC are quantified. ► A strict protocol limits 
the uncertainties. ► Systematic errors may reach up to ±20% and errors due to biofouling to 100% or 
more. ► Changes of the inherent particle properties may result in uncertainties up to 200%. ► A model 
based on the R2 quantifies the uncertainty of the sensor derived SPMC. ► Hach-turbidities could be a 
cheap alternative for sample SPMC. 

 

Keywords : Suspended Particulate Matter, Measurement uncertainty, Regression, Optical and acoustical 
sensors 
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1. Introduction
Water clarity is an important parameter to understand marine ecosystems and is mainly 
controlled by suspended particulate matter concentration (SPMC). To detect variability in 
SPMC, networks of observational platforms have been installed worldwide using optical and 
acoustical sensors (e.g. Butman et al., 1979; Grabemann and Krause, 1989 Fettweis et al., 1998; 
Guézennec et al., 1999; Ganju and Schoelhamer, 2006; Badewien et al., 2009; Palinkas et al., 
2010; Garel and Ferrera, 2011; Nauw et al., 2014; Anastasiou et al., 2015; Jalón-Rojas et al., 
2015; Many et al., 2016; Druine et al., 2018) as well as sensors or samples that give information 
on the shape, size and composition of the SPM (e.g. Krivtsov et al., 2008; Cartwright et al., 
2009; Gray and Gartner, 2009; Fettweis and Baeye, 2015; van der Hout et al., 2015; Chapalain 
et al., 2019). In addition to these sensors gravimetric measurements of filtered water samples 
are generally used as ground truth reference (e.g. Neukermans et al., 2012a). The infrastructure 
on which the sensors are attached includes fixed (piles, benthic landers, tripods, moored lines 
and buoys) and moving platforms (vessels, gliders, AUV, ROV, floats) or a combination of both 
(Baschek et al., 2017), and the SPMC may cover the whole range of coastal environments from 
oligotrophic to hyperturbid conditions.
Long-term and high frequency data series of SPMC are typically collected indirectly with 
autonomous sensors that measure either the optical beam attenuation as a percentage of light 
transmission (Moody et al., 1987; Spinrad et al., 1989; Agrawal and Pottsmith, 2000), the back- 
or sidescatter intensity of light in volt or factory calibrated turbidity units, or the acoustic 
backscatter in counts or volts (Thorne and Hanes, 2002; Downing, 2006; Rai and Kumar, 2015). 
The measuring frequency should at least be able to resolve the dominant variations (often the 
tidal cycle) and might be as high as to record finer scale variations such as turbulence. The time 
span of long-term measurements should cover variations ranging from lunar to seasonal and 
inter-annual cycles. 
The combination of different sensors measuring in environments with high spatiotemporal 
variability implicitly demands adapted pre- and post-measurement procedures in order to 
obtain homogenous data sets. Conversion of the sensor output to physical units (e.g. mass or 
volume concentration of particles) results from laboratory and field calibrations, as well as data 
post processing procedures. The whole procedure requires direct measurements in the 
laboratory using standard turbidity solutions for calibration, and in the field using SPM mass 
concentrations determined through filtration of water samples. The way the sensor output is 
transformed to SPMC (in g/l) depends further on the modelling techniques used to relate 
sensor output to SPMC and is further complicated by the significant variability of the inherent 
optical (IOP) and acoustical properties (IAP) of the SPM (e.g. Slade et al., 2011; Woźniak et al., 



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF

Version:  August 11, 2019; 

4

2011; Sahin et al., 2017). To guarantee quality and repeatability the laboratory procedures and 
the measuring process need to be documented; from the planning of the measurements to the 
post processing of the data (Lane et al., 2000; Waldmann et al., 2010; Bolanos et al., 2011; Gil 
et al., 2016). 
Direct or indirect measurements of SPMC are inherently associated with a number of 
uncertainties along the whole operational chain; from the laboratory work, to system problems 
due to the autonomous nature of the sensor deployments, to converting the observed proxy 
values of optical and acoustic signals to SPMC. Guidelines for good practice for fluvial sediment 
transport measurements can be found in e.g. Rasmussen et al. (2009). However, limited 
information exists in guidelines or standards that can be applied to long term observation 
programs of SPMC in marine and estuarine environments. Recent literature highlights only part 
of the uncertainties or problems related to the use of optical and acoustical sensors (Rai and 
Kumar, 2015; Rymszewicz et al., 2017). This study goes further as it reviews and discusses the 
benefits, limitations, and problems of present practices as they relate to the use of optical and 
acoustical sensors in long-term deployments, and formulates recommendations for acquiring 
the best quality-assured SPMC data possible. Other uncertainties or biases in the observation, 
which are for example related to the representativeness of the measuring location within the 
regional context, the interactions of the measuring infrastructure with the environment, or the 
disturbances by human activities are not part of this study. 
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2. Methods for long-term in situ SPMC measurements
2.1 Terminology
SPM is a mixture of clay to sand-sized particles that can be detected in suspension and that 
consists of varying amounts of minerals from physico-chemical and biogenic origin, living and 
non-living organic matter, and particles from human origin, see Table 1. The particles are 
considered to be in suspension as long as they do not form an interconnected matrix of bonds 
that prevents their mobility; this is the case when the concentration is below the gelling point 
(McAnally et al., 2007). The inherent properties of SPM (i.e. the concentration, size and 
composition) may change over time depending on the seafloor composition (cohesive and non-
cohesive sediments), the hydrodynamics, the measuring height above the bed and biological 
activity. Sand grains are generally limited to the near-bed layer (bed-load), while fine-grained 
sediments can be found throughout the water column. Charged particles such as clays and 
polymers may become attached to each other to form fragile structures known as flocs. The 
composition, size, density, structural complexity, and settling velocity of flocs vary as a function 
of turbulence, chemical environment (salinity) and bio-chemical composition (e.g. Eisma, 1986; 
Dyer and Manning, 1999; Droppo et al., 2005; Fettweis and Lee, 2017). 
Long-term in situ measurements of SPMC in coastal seas and estuaries involve one or more 
optical and acoustical sensors and, as the ground truth reference, gravimetric measurements of 
filtered water samples. The combination of indirect and reference measurements requires two 
main calibration steps (sensor and model parameter calibration) at different moments during 
the workflow to extract reliable and homogeneous SPMC. These calibration steps are essential 
for relating changes in calibration constants (both sensor and model-parameter constants) to 
either sensor degradation or to natural variability in SPM inherent properties. Changes in SPM 
properties and concentration might be related to seasonal and geographical variations. The 
latter is typically occurring along the gradients from the estuary, coastal zone towards the 
offshore (Fettweis et al., 2006; Becker et al., 2013; Maerz et al., 2016; Many et al., 2016). 
Sensor calibration refers to the comparison of the output signal of an optical or acoustical 
sensor against laboratory standards (e.g. Thorne et al., 1991; Downing, 2006). For turbidity this 
is usually formazine or an alternative standard (AMCO clear®, StablCal®), while for acoustical 
backscatter intensity a solution of standard spheres with a given size distribution, concentration 
and at a given distance from the transducer is used. Acoustic sensor calibration is not 
commonly applied for long-term measurements due to practical difficulties in setting up a 
laboratory device. Sensor calibration is necessary to convert the sensor output to various 
turbidity units (see below) or decibels (dB). During long-term field operations the sensor 
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calibration constants, relative to a standard may change. Any of these changes in the sensor 
calibration constants are inherent to the sensors and not to the environment.
Model parameter calibration refers to the regression between the sensor signal after sensor 
calibration and the corresponding real SPMC. The calibration should ideally be carried out in 
situ. This type of calibration is well distinguished from sensor calibration as it relies on natural 
particles and has to be carried out regularly, as well as each time the SPM inherent properties 
change significantly. If the sensors have been well-calibrated, then any changes in model 
calibration constants are caused by changes in SPM inherent properties.
Sample SPMC is the SPMC obtained from filtration and gravimetric measurements of water 
samples. As the real, in situ SPMC cannot be measured by any direct method we will use the 
sample SPMC as our reference, as it is less influenced by the inherent particle properties of the 
SPM (Neukermans et al., 2012a; Röttgers et al., 2014).
Sensor SPMC is a surrogate obtained by an acoustical or optical backscatter sensors or other 
type of sensors.
Turbidity refers to the optical water cloudiness caused by suspended particles and dissolved 
substances, which scatter and absorb light (Downing, 2005; Ziegler, 2003; Gray and Gartner, 
2009). Turbidity does not have a SI unit, is not uniquely defined and depends strongly on the 
applied protocols. It is thus an arbitrary unit that is incomparable to measurements taken at 
other times and places or with different turbidity meters, which diminishes the comparability of 
turbidity data for scientific purposes (Downing, 2006). There are two international recognized 
methodologies for determining turbidity: the ISO Method 7027 (ISO, 1999) and the American 
EPA Method 180.1 (EPA, 1993). Both estimate turbidity, for the ISO method it is in formazine 
Nephelometric Units (FNU), and for the EPA method in Nephelometric Turbidity Units (NTU), 
respectively, and in both methods, the optical sensor to be used is a nephelometer that must 
measure side-scattered light at 90°. There are, however, some differences between the two 
methodologies. Turbidity following the EPA method, is poorly defined. The strengths of the ISO 
method include the use of a stable monochromatic near infrared light source of 860nm with 
low absorbance interference with samples, which is critical in reducing the impact of particulate 
and coloured dissolved organic matter absorption and in having low amounts of stray light 
(Sadar, 1999). Sensors designed according to the ISO definition of turbidity provide thus a 
better basis for the comparability of measurements than those designed following the EPA 
specification (Barter and Deas, 2003, Nechad et al., 2009; Bright et al., 2018). The ISO compliant 
sensors are therefore recommended when no legal regulations require other protocols.
As previously stated, both protocols refer to a formazine-equivalent turbidity value. If an 
alternative to formazine is used as the standard, it should be explicitly stated that turbidity 
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refers to the alternative standard-equivalent NU or TU. The unit of the formazine (or 
alternative) standard is generally given in NTU, despite the fact that the standard solution can 
be created by following either the ISO or EPA protocol. In an ISO-compliant formazine solution 
of 1000 "NTU" an ISO-compliant side-scattering sensor will measure 1000 FNU, whereas an 
EPA-compliant side-scattering sensor will measure another value in NTU. The difference 
between FNU and NTU is mainly due to the spectral range of lights that are emitted by the 
instruments. For example, in waters with particles highly absorbing in the blue-green range, an 
EPA-compliant instrument measures lower turbidity values than an ISO-compliant instrument. 
Optical Backscatter Sensors (OBS) measure the particle backscattering of light at different 
angles of detection (120°-165°, or even including side and forward scattering depending on the 
type of sensor); although highly correlated, the turbidity measured by an OBS and a 
Nephelometer is not necessarily the same. For example, Nechad et al. (2016) report a large 
variability in the relationship between in situ side- and back-scattering coefficients in the lower 
turbidity range (<20 FNU) and a convergence with increasing turbidity. Turbidity from 
backscatter devices should be expressed in Formazine Backscatter Units (FBU) for the near IR 
(830-890nm) light (ISO Method 7027) and Backscatter Turbidity Units (BTU) for the EPA 
Method 180.1 (Dogliotti et al., 2016; Nechad et. al, 2016). Often FTU (Formazine Turbidity Unit) 
or NTU are used as unit without specifying how the instrument measures the sample (side, back 
or forward scattering) or which protocol it follows (ISO or EPA). By adapting the correct units, 
the confusion on protocol or scattering angle can be avoided.

2.2 Sensors used to obtain long-term SPMC time series
2.2.1 Sensitivity of optical sensors to inherent particle properties
Various measurements of IOPs, which are defined as properties of the water column that are 
independent of the ambient light field, are used as proxies for SPMC. Optical sensors rely on 
the interaction of SPM with light at a given wavelength  through absorption a() and 

scattering b(). For long-term measurements, the attenuation or the scattering at a given angle 
are mainly used to obtain the SPMC surrogates. Details on the optical properties of particles 
can be found e.g. in the Ocean Optics Web Book (2018). Available sensors can differ in 
wavelength and backscattering angle. The backscattering of light by particles, , is 𝑏𝑏(𝜆)
theoretically calculated as the integration of the volume scattering function (VSF; denoted as 𝛽

 [m-1 sr-1] with  representing the scattering angle), over all backward directions. Boss and (𝜆,𝜃) 𝜃
Pegau (2001) and Berthon et al. (2007) showed that  is highly correlated to  at angles 𝑏𝑏 𝛽
between 120°-140°, while Chami et al. (2006) found that the increase of  at  can 𝛽 𝜃 > 150°
significantly impact the backscattering. The backscattering of particles at large wavelengths 
(>700nm) gives the best estimations for SPMC (Downing, 2006; Boss et al., 2009a). The effect 
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of absorption by particles and coloured dissolved organic matter is higher at shorter 
wavelengths (Yentsch, 1962) which can impact (back)scattering or turbidity estimation by 
sensors that emit light at short wavelengths, as was highlighted by Sutherland et al. (2000) and 
Downing (2005). In more turbid waters, high amounts of particle absorption can influence the 
estimation of backscattering coefficient, even at longer wavelengths and should be properly 
corrected for (Doxaran et al., 2016). 
As mentioned above, ISO Method 7027 (ISO, 1999) and EPA Method 180.1 (EPA, 1993) estimate 
turbidity T in Formazine Nephelometric Units (FNU) or Nephelometric Turbidity units (NTU), 

respectively, such as  where [m-1] is the VSF at 90° of a unit of formazine. As 𝑇 =
𝛽(90°)

𝛽𝐹(90°) 𝛽𝐹(90°)

has been outlined above, other types of optical sensors such as backscatter sensors are widely 
used to measure turbidity and hence to estimate SPMC. In terms of sensor calibration based on 
successive dilution of a standard solution, this use of multiple sensor types does not cause 
problems as the sensor output will be compared, and then associated, to the standard solution 
that can be expressed in a turbidity unit. This calibration must then be used for quality control 
and to ensure the stability of the intrinsic sensor performance, and possible drifts induced by 
electronic failure or damages on optical windows that may induce maintenance and repair. The 
main issue comes when these instruments measure turbidity in situ or from natural water 
samples as IOPs (i.e. scattering efficiency K), in that case the VSF are dependent on particles 
shape (Slade et al., 2013), particles size and density, refractive index (Mishchenko et al., 2002; 
Boss et al., 2004), and colour (Sutherland et al., 2000; Hatcher et al., 2000; Bright et al., 2018). 
Generally, , where K is the scattering efficiency factor for non-absorbing 𝑏(𝜆) = 𝐾(𝜆,𝑟)𝑁(𝑟)𝜋𝑟2

particles, N the number of particles, and r the particle radius. For spherical particles 𝑆𝑃𝑀𝐶 =
4
3

, where ρ is the dry density (i.e. particle mass divided by the particle volume), resulting in 𝑁𝜌𝜋𝑟3

a ratio of turbidity to SPMC that is inversely proportional to the particle radius and density 
(Sutherland et al., 2000; Babin et al., 2003): 

 (1)𝑏(𝜆) =
3
2𝐾(𝜆,𝑟)

𝑆𝑃𝑀𝐶
𝜌𝑟

The SPM dry density (proportional to the excess density) can, depending on the particle 
composition, be anywhere in between the range of well below 100 kg m-3 for the organic flocs 
and up to 2650 kg m-3 or more for the individual mineral particles. In case the SPM consists of 
flocs the variations in density and size can be very large, with the densest flocs having the 
smallest size and vice versa. The consequence of this is that the dependence of  on ρr is 𝑏(𝜆)
weaker than its dependence on 1/r (Bowers et al., 2009) but can still be significant (Gibbs, 
1985; Babin et al., 2003; Baker and Lavalle, 1984). This demonstrates that a change in the 
composition of particles and/or their shape, size and density affects the turbidity measured by 
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a side- and backscatter sensor (e.g. Binding et al., 2005; Neukermans et al., 20012b; Zhang et 
al., 2014; Druine et al., 2018), but also indicates that the model parameter calibration of optical 
backscatter instruments using a single optical property (backscattering coefficient or beam 
attenuation) against sample SPMC is often successful over a wide range of particle sizes (Boss et 
al., 2009b; Bowers et al., 2017) as long as SPM characteristics do not change significantly over 
the observed period.
2.2.2 Sensitivity of acoustic sensors to particle properties
Some acoustics devices commonly used in coastal areas, such as ADVs or ADCPs are primarily 
designed for current velocity measurement, while others (ABS) are specifically designed for 
measuring SPMC at a single point (Guerrero and Di Federico, 2018) or in a vertical profile (Hay 
and Sheng, 1992). Analogously to optical devices, the emitted acoustic wave, at a given 
frequency, interacts with particles in suspension while propagating in the medium and are 
backscattered to the receivers (Thorne and Hanes, 2002). The recorded volume backscattering 
strength (Sv, in dB) is a proxy of the SPM concentration, but is also strongly modulated by SPM 
features such as size, density and shape, depending on the acoustic wavelength. Originally used 
in sandy environments (Sheng and Hay, 1988; Thorne and Hanes, 2002), these devices are now 
routinely deployed in fine sediment environments (e.g. Gartner, 2004; Hoitink and Hoekstra, 
2005; Merkelbach, 2006; Merkelbach and Ridderinkhof, 2006; Tessier et al., 2008; Sahin et al., 
2013). The sonar equation (Urick, 1975) is commonly used to relate Sv (in dB) and SPMC 
concentration, including acoustic signal correction for geometry compensation, spherical 
spreading, and water and particle attenuation: 

(2)
𝑆
𝑁 = 𝑆𝐿 ‒ 20𝑙𝑜𝑔10(𝜓𝑅2) ‒ 2∫𝑅

0(𝛼𝑤(𝑟) + 𝛼𝑠(𝑟))𝑑𝑟 + 𝑆𝑣 + 10𝑙𝑜𝑔10(𝜑𝑅2𝑊𝑆
2 )

and

(3)𝑆𝑣 = 10𝑙𝑜𝑔10(𝑆𝑃𝑀𝐶𝜎
𝜌𝑠𝑣𝑠 )

where S/N is the signal to noise ratio (dB) received by the device. After Gostiaux and Van Haren 
(2010), Mullison (2017) specifies the values of S/N in function of the raw echo readings (in 
counts) of the ADCP devices. SL is the source level (dB); R is the along-beam distance from 
transducers, aw and as respectively the water and sediment attenuation,  the angular 𝜑
aperture; WS the cell size and ψ the near field correction. , ρs and vs are particle features: 𝜎
backscattering cross section, particle dry density and volume respectively.
Comparably to optical devices, the relationship between the acoustic backscatter and SPMC 
strongly depends on the nature, size, density and shape of the particles, both for the estimation 
of the particle attenuation and for the calculation of the backscattering cross section (Fugate 
and Friedrichs, 2002; Ha et al., 2009; Salehi and Strom, 2011; Rouhnia et al., 2014), achieved 
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using theoretical acoustic models (Stanton, 1998; Thorne and Hanes, 2002; Thorne et al., 2014). 
However, contrary to optical devices, the sensor calibration is not routinely (often never) 
operated due to the difficulty to access requested laboratory facilities. Hence this step is often 
skipped and quality check is based on comparison with other in situ sensors or SPMC samples. 
2.2.3 Conversion of acoustical and optical sensor output to SPMC
The relationship between OBS or nephelometer signal and SPMC is almost linear as long as the 
sensor is not deployed in highly concentrated waters (Downing, 2006), and the simplest model 
is a linear regression model. The same holds for single point acoustical sensors (ADV) or for the 
first bin of a profiling acoustical sensor, where the target volume is very close to the sensors. As 
far as SPMC are lower than several g/l, a direct empirical relationship can be built such as 
log10(SPMC)~Sv, where Sv can be related to the signal/noise ratio (Fugate and Friederichs, 2002; 
Voulgaris and Meyers, 2004; Verney et al., 2007; Ha et al., 2009; Salehi and Strom, 2011). 
For profiling acoustic sensors, the sonar equation should be considered to correct for the signal 
loss along the acoustic path. The conversion factor from counts to dB, as commonly used in 
acoustics, is typically provided by the manufacturer. Close to the transducer, the acoustic signal 
has to be corrected for near-field effects (Downing et al., 1994) and for ringing effects that may 
affect the first bins, in particular when blank distance is set too small in the configuration 
parameters. Corresponding data cannot be corrected and should be discarded (Muste et al., 
2006). A formulation for the water absorption coefficient was proposed by e.g. François and 
Garrison (1982a, 1982b) and later simplified by Ainslie and McColm (1998), who showed that 
their result did not differ from the original equation more than the accuracy error. The sonar 
equation yields the so-called water-corrected backscatter, which is a property of the suspension 
at all locations along the acoustic path. Subsequent processing depends on the SPMC. In case of 
moderately turbid environment, i.e. lower than 100mg/l, sound attenuation by SPM is usually 
neglected as it is one or two orders of magnitude lower than the water absorption coefficient 
(Ha et al., 2011). SPMC is then either determined by applying an appropriate calibration, similar 
to single point optical sensors, or by a theoretical acoustic model. In the latter case, physical 
properties of the transducer and of the SPM must be exactly known, which are rarely available. 
If SPMC exceeds 100mg/l, sediment absorption should be considered. However, this term is a 
function of the SPM concentration, which is also the unknown of the calculation. The inversion 
problem is solved by iterative methods (Thorne et al., 1994; Holdaway et al., 1999). This 
technique is efficient but requires assumption or knowledge about SPM characteristics (size, 
density) and is based on the choice of an acoustic model adapted to the observed SPM, and 
may in some specific case exponentially propagate uncertainties and fail to estimate SPMC 
(Becker et al., 2013). 
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Theoretical acoustic models were originally built to simulate the physical interactions between 
particles and the acoustic signal (Sheng and Hay, 1988, Medwin and Clay, 1998) and were 
applied to sand particles in suspensions (Thorne and Hanes, 2002). These models were later 
adapted to represent low density aggregates of SPM (Stanton, 1998; McDonald et al., 2013, 
Thorne et al., 2014). Differences between models mainly appear in the methodology to 
calculate the total scattering and backscattering cross section as well as the compressibility of 
flocs and their ability to interact with sound. Merckelbach and Ridderinkhoff (2006) and Nauw 
et al (2014) observed that at strong currents (>1 m/s) acoustical backscatter exceeds the linear 
relationship to sample SPMC noted at lower currents. This was not due to changes in the 
particle-sizes and the non-linearity was compensated for, based on a model that suggests a 
transition from random phase to coherent particle backscatter by turbulence-induced 
variability in in the spatial distribution of SPMC (Merckelbach, 2006). More research is however 
required to understand the cause of this effect. 

2.3 Existing international guidelines and standards
In the European framework guidelines for SPMC determination consider only the collection of 
water samples. OSPAR’s Joint Assessment and Monitoring Programme JAMP (2012) refers to 
the ICES TIMES report by Yeats and Brügmann (1990). The Trilateral Monitoring and 
Assessment Program for the Wadden Sea (TMAP) refers in their handbook on nutrients (TMAP, 
2009) explicitly to the corresponding guidelines of JAMP. HELCOM (2015) treats SPMC as a co-
factor in water analysis and keeps its determination by filtration according to ISO (1997). In a 
global framework, the IOC-EU-BSH-NOAA-(WDC-A) International Workshop on Oceanographic 
Biological and Chemical Data Management did not include SPMC in the list of bio-geochemical 
bulk parameters (IOC, 1996). For the ARGO programme, Quality Control (QC) manuals for Bio-
Argo particle backscattering measurements are yet in development (Schmechtig et al., 2015), 
the main purpose of these measurements is the use of the backscattering coefficient as proxy 
for POC concentration (IOCCG, 2011). The National Oceanic and Atmospheric Administration 
NOAA does not provide standards for SPMC measurements in official documents. In some 
technical reports, however, the methods to obtain SPMC are described, always using 
gravimetric analyses of water samples (e.g. Pait et al., 2015). For the large-scale integrated 
ocean and coastal ocean observatories, such as IOOS in the United States (www.ioos.us) and 
IMOS in Australia (www.imos.org.au), no guidelines for best practice of SPMC measurements 
are put forward. The U.S. Geological Survey provides a number of documents comprising 
guidelines for the sampling (Edwards and Glysson, 1999), for the lab analysis of the samples 
(Matthes et al., 1992; Shreve and Downs, 2005), for the proper layout and operation of field 
stations and sensors to meet accuracy and precision requirements (Wagner et al., 2006). They 
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also describe how to compute time series of SPMC and their related loads using proper 
statistical regression models (Rasmussen et al., 2009, Topping and Wright, 2016). These 
guidelines were developed for measurements in rivers, but many of them can be transferred to 
estuaries and coastal seas in a straightforward way, except that estuarine and coastal SPM 
exhibits much higher variability on texture and composition. 
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3. Sources of uncertainties
Uncertainties, as described in Ramsey and Ellison (2007) and ISO (2008; 2017), hamper data 
quality and may arise from mal-functioning of sensors (3.1), the environment influencing the 
sensors without changes in SPMC (3.2), SPMC sample collection and analysis (3.3), modelling of 
sensor output to sample SPMC (3.4), and additional uncertainties arising from human error and 
uncontrolled environmental boundary conditions (3.5).

3.1 Sensor
Sensor related uncertainties occur if the sensor output changes over time unrelated to changes 
in inherent particle properties or SPMC. Concerning optical backscatter sensors this is caused 
by variations in voltage supply, changes in the transmittance of the window that is the interface 
between the sensor and the water or other degradations. Concerning acoustical backscatter 
sensors, the main sensor related uncertainty is related to battery power. The reason that no 
other sensor related uncertainties are documented is due to the limited availability of facilities 
to test acoustic sensors in a lab, and that in contrast to optical sensor, no standards and norms 
exists so far to test and calibrate acoustical backscatter sensors. Other uncertainties may arise 
from the drift of the internal clock of the sensor or the data logger in particular in case of long 
term monitoring. 
3.1.1 Drift with time
Optical sensors are subject to gradual decreasing transmittance of the sensor window during 
deployment due to scratches caused by the collision of particles. Therefore, the factory 
calibration parameters should be used with care and be checked regularly. The damage of the 
transmission and detection windows is often not visible by visual inspection. A re-calibration of 
11 Seapoint turbidity sensors operated by HZG in the laboratory for example revealed that the 
average slope between factory calibration and formazine recalibration agreed within 1%, but 
the individual slopes showed discrepancies up to ±30% with a standard deviation of 15%. Figure 
1 shows a comparison between an OBS3+ factory calibration and a sensor calibration obtained 
after 329 and 421 days highly turbid (SPMC > 1g/l) sea water. Using the factory calibration 
constants without recalibration would indicate an apparent increase of the turbidity. Any of 
these changes in the calibration constants are inherent to the sensors itself and the need of 
recalibration has to be specified by the user based on the required precision. 
Variations in voltage supply result in a drift, which is unrelated to variations in SPMC or 
inherent particle properties. In clear water the output of for example an OBS3+ will be a 
minimum voltage, increasing to a maximum voltage at the maximum turbidity range. The 
sensor needs to be fed by a constant minimum voltage in order to give good data. Lower 
voltage supply results in an apparent decrease in turbidity. Figure 2a shows an OBS3+ in low (0-
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2000 BU) and high (0-4000 BU) range that has been fed with different input voltages while 
measuring in a standard of 2000 AMCO Clear®-equivalent BU. For an input voltage of more than 
6 V the low range registers a constant value of 5.1 V (saturation), while the high range registers 
about half of it (2.5 V). If the supplied voltage decreases, the signal registered by the OBS3+ 
decreases as well. An example of a time series collected with an OBS that received a low 
battery voltage and another one with a normal voltage supply is illustrated in Figure 2b. The 
recorded SPMC signal of the first sensor was on average about 90% lower than it should be. 
After sensor calibration with lower voltage supply the data could be corrected. Battery power 
affects also acoustical backscatter sensors (Tessier et al., 2008). From the registered battery 
voltage during the deployment the emitted power can be converted into the correction factor 
Pdbw calculated as Pdbw=10log(P²)/R, with R the electrical resistance. If only one of the 
transducers of profiling acoustical sensors supplies more or less power than the others, then 
this can be corrected using the other transducers (Tessier, 2006).
3.1.2. Sensitivity
Some optical backscatter sensors, such as an OBS3+, are dual range sensors having both a low- 
and a high-range output. The two measuring ranges increase the resolution of the 
measurements, but each output is more accurate when its designed turbidity range matches its 
calibrated range. The RMS error between high and low range output depends on the turbidity. 
For example, for an averaged turbidity around 20 the low range (500 BU) recordings during a 
tidal cycles differed by about 2% with the high range ones (2000 BU). When increasing the 
ranges (low: 1000 BU, high 4000 BU) then the relative difference increased to 24%. The optimal 
range is to be chosen according to the expected range of turbidity values in the field. 
3.1.3 Inter-sensor variabilities
The aim of multi-sensor calibration is to generate a reliable model parameter calibration to 
estimate SPMC at long-term monitoring stations by repeated field surveys and to record 
variabilities caused by the use of similar types of sensors. Figure 3 shows the result of a 
simultaneous calibration of three OBS3+ sensors during a tidal cycle. The RMSE between the 
three OBS3+ sensors, which have been calibrated against the same sample SPMC, was 2.6% for 
1 Hz sampling and 2% for an averaging over 60s. The difference between sensor outputs is 
changing during the course of the measurements. This points to small-scale variations in the 
SPMC (sensors are located about 50 cm from each other) and to different sensitivities of the 
individual sensors. These examples presented strengthen the necessity of sensor calibration 
(difficult to achieve for profiling acoustic sensors) and model calibration for each sensor 
separately. 

3.2 Environmental related uncertainties
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Environmental related uncertainties occur when the sensor output changes over time unrelated 
to changes in inherent particle properties or SPMC. This occurs when the signal is for example 
attenuated by biofouling or the occurrence of air bubbles. Another environmental uncertainty 
is specific to optical sensors and occurs when the emitted light beam is strongly attenuated and 
backscattered light decreases with increasing sediment concentration. 
3.2.1 Biofouling
Biofouling or other type of fouling can limit the accuracy and quality of long-term SPMC 
measurements within a week, depending on the season and the environment. Biofouling occurs 
in four phases starting with the development of an organic film, followed by primary and 
secondary micro colonizers and finally tertiary colonizers attach to the micro-fouling film 
(Abarzua and Jakubowski, 1995). The impact of these different phases on the recorded signal 
remains difficult to estimate and can result in a temporary or permanent increase of the 
backscattered signal due to additional reflection or a decrease due to attenuation (Kerr et al., 
1998; Delauney et al., 2010). Increase of the backscattered signal can also be caused by plant or 
artificial (e.g. fishnet) filaments trapped by the measuring infrastructure and constantly or 
ephemerally influencing the detection volume. There are several methods and reasons to 
protect the sensors against biofouling (Ridd and Larcombe, 1994; Manov et al., 2004; Whelan 
and Regan, 2006). The most obvious reason is to obtain good quality data. Another one is that 
the fouling development on the whole measuring infrastructure can disturb the properties of 
the study site. For example, the growth of epi-fauna on the infrastructure may influence the 
measurements as they trap, accumulate and temporarily release SPM (Baeye and Fettweis, 
2015). Effectively biofouling results in a gradual and continuous drift of the signal over time 
together with an apparent decrease in sensitivity (Dolphin et al., 2000; Downing, 2006). 
Permanent biofouling events will gradually change the backscatter intensity and can only be 
corrected if a non-affected reference sensor is at hand. The reference sensor can be single 
beam acoustic or optical backscatter sensor or a not-affected beam of an acoustic profiler. The 
onset of a change in the SPMC signal due to biofouling is difficult to identify and therefore 
should be based on the hypothesis that the observed changes cannot any more be explained by 
known physical behaviour of SPMC variations.
Figure 4 is an example of epifauna (barnacles) growing on an OBS that resulted in an increase of 
backscatter intensity until saturation and thus an overestimation of the SPMC. The timing of 
biofouling was estimated at the point where the ratio of the affected sensor to a non-affected 
one started to increase monotonically. Biofouling has also been observed on moored up-ward 
looking ADCPs. A straightforward identification of these events is possible by computing the 
cross-beam backscatter ratio. Expressed in dB, this ratio is computed as the difference between 
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the maximum and the minimum of all backscatter intensities recorded at a given depth by all 
beams of the sensor. In case of an ADCP, each ratio value is then computed over a typical 
ensemble composed by three or four data points (Jourdin et al., 2014, their eq.10). Hence, in a 
homogeneous medium and in absence of biofouling, measured values of the cross-beam 
backscatter ratio are close to the sensor noise (typically 1 dB). But a drop of up to 10 dB has 
been observed in ADCP moorings deployed off the French coast (Jourdin et al., 2014), while in 
an ADCP mooring off the Belgian coast a gradual drop of more than 20 dB in acoustic 
backscatter intensity have been recorded. A value of 10 dB leads to under-estimation of the 
suspended sediment concentration by one order of magnitude, over the entire acoustic profile. 
If only one beam of an ADCP is affected by biofouling, this can be corrected by applying the 
median function to all beams as explained in Jourdin et al. (2014). Figure 5 provides an example 
of permanent biofouling resulting in a gradually decrease of the acoustic backscatter intensity 
during the mooring, while in Figure 6 episodic biofouling events are shown. In any case, 
acoustic and optical instrument should be serviced at least once a month and at higher 
frequency during periods of strong seasonal bloom (van der Hout et al., 2017).
3.2.2. Saturation and ambiguity problems
SPMC in the field may vary from several mg/l to a few g/l. At these ranges, the OBS output 
increases with SPMC, and the gain setting is adjusted by the manufacturer for an optimized 
sensitivity at the expected concentrations in the field. However, for too high SPMC values, 
saturation occurs and the OBS output will show a plateau as illustrated in Figure 4 (the OBS at 
0.2 mab from day 137 onward). The individual setting of certain probes can be adjusted (see 
section 3.1.2) to broaden the range of SPMC before saturation.
For many OBS probes, beyond the saturation range, the output signal decreases with increasing 
concentration as was firstly observed in the field by Kineke and Stenberg (1992). They 
attributed this trend to the partial blockage of the emitted beam by highly concentrated 
suspensions, the reduction of the scattering volume relative to the area of detection. Figure 7 
shows typical bell-shaped backscatters curve, meaning that a given OBS output can correspond 
to two possible SPMC values. The two values that can be obtained (i.e. the up and over 
response) depend on the sensitivity of the individual sensor. This bell-shaped response can be 
particularly useful when measuring near-bed very high concentrations (Sottolichio et al., 2011). 
However, because of this ambiguity, the determination of SPMC in highly concentrated waters 
(>4 g/l) with a single-point measurement is not always possible. A correction is possible in case 
of vertical profiles, because SPMC is continuously increasing downward and the decrease of the 
near-bed OBS output can be readily related with an increase of SPMC (Kineke and Sternberg, 
1992). However, this does not help in case of time series, obtained by one probe at fixed height 
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above the bed. The use of a second probe above the other could help to solve the ambiguity of 
one of the two probes (Figure 7). Acoustic backscattering sensors show the same type of 
response than optical probes, and the ambiguity issue applies thus also to acoustic devices, 
such as single point ADV sensors (Ha et al., 2009; Sottolichio et al., 2011).
3.2.3 Air/gas bubbles 
Due to the high acoustic impedance or the very different refractive indices between gas and 
water, the volumetric backscattering strength measured by acoustical sensors or the scattering 
efficiency measured by an optical sensor is sensitive to the presence of air or gas microbubbles 
(1 to 500 µm in radius) in water. These bubbles are mainly generated at the sea surface by 
wave breaking or white-capping (e.g. Schwendeman and Thomson, 2015) and as a consequence 
the subsurface scattering is perturbed by the sea state (e.g. Klein, 2003; Downing, 2006; Puleo 
et al., 2006) from surface up to depth (in m) that approximately equals the wind speed (in m/s) 
squared divided by 15 (Wang et al., 2016) or in the vicinity of bubble plumes (Nauw et al., 
2015). Indeed, the finest bubble population of typical size less than 50 µm in radius penetrates 
within the water column where it can remain in near-equilibrium suspension (e.g. Randolph et 
al., 2014). Outside the surf zone, bubbles can be carried down in form of plumes or patches by 
convergent fronts or wind-induced down-welling to depths up to 30 m. The vertical distribution 
of wave bubbles decays exponentially with depth resulting in a similar decrease of the 
backscattering strength at lengths scales of 0.5 to 5 m (Wang et al., 2016). Expressed in decibels 
the backscattering intensity displays a linear decrease with depth (e.g. Wang et al., 2011) and 
this property together with measurements of the wind speed (U10) and wave height in parallel 
can be used to discard parts of profiles affected by wave bubbles, see the example in Jourdin et 
al. (2014).
3.2.4 Density stratification
As reminded in Eq. 2, acoustic backscatter inversion requires first correction for water 
attenuation, which is a function of the acoustic frequency, temperature, salinity and depth 
(Lurton, 2010). In estuaries and coastal seas, strong density stratification can be observed, and 
may introduce noise in the backscatter intensity inversion if not corrected properly: for a 1200 
kHz ADCP, the water attenuation coefficient can vary from 0.2 dB/m to 0.55 dB/m. For a given 
average temperature, the water attenuation coefficient variability is around 0.1 dB/m for a 
1200 kHz. The uncertainty introduced by stratification was examined using ADCP and CTD 
measurements in the Seine estuary, where strong temporal and vertical stratification are 
observed as shown in Figure 8 (Sahin et al., 2017). In the given example, not considering water 
salinity/temperature variability may induce uncertainty on absolute acoustic backscatter 
intensity of the order of 1 dB, which results in a systematic error of about ±40%. Similar 
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uncertainties can be expected offshore, as salinity/temperature variability is lower but depths 
are larger.

3.3 Sample related uncertainties
Sample related uncertainties occur during collection and analysis of the sample SPMC, i.e. the 
filtering and weighing. A diversity of methods and equipment are used to collect water samples, 
such as Niskin bottles, Go-Flow bottles and stand-alone or on-board sea water pump or suction 
systems. The bottles attached to a profiling frame, or the intake for the pump system should be 
close enough to the detection volume of the sensors, which are deployed for model calibration. 
Whereas the occurrence of SPM in plumes creates random scatter in the relation between filter 
weights and sensor outputs, the occurrence of permanent gradients causes systematic errors. 
Therefore, one should take beforehand knowledge of the spatial gradients to define “close 
enough”. It is not possible to present a general number here, as the gradients are dependent on 
the spatial extension of the studied basins or estuaries or the typically prevailing hydrodynamic 
energy inputs. In most cases samplers are mounted on the same frames as the sensor packages. 
Scales of horizontal gradients are normally in the order of more than 10 m and therefore less 
critical than vertical that are typically in the order of a meter or less.
Standard protocols for dry mass SPMC determination (Strickland and Parsons, 1968; Pearlman 
et al. 1995) and additional procedures to partition SPMC into its organic and inorganic content 
(e.g. loss on ignition, element analysis) are straightforward: They include filtering a specific 
volume through a pre-weighed filters, washing of sample filters and filter edges with deionized 
water (or MilliQ water) to remove salt, drying, and weighing of the filter to determine the dry 
mass of the SPMC. In early years, paper filters were used; later membrane filters (Banse et al., 
1963) have been in use, while nowadays often glass-fibre filters (type GF/F or GF/C) are used. 
The removal of the salt in filters is a critical source of uncertainty, which if not well done, will 
lead to an overestimation of the SPMC (Neukermans et al., 2012a). Additional uncertainties are 
related to the determination of the dry mass and filter volume and the amount of structural 
water in minerals (Barillé-Boyer et al., 2003). Most uncertainties are related to a constant mass 
offset (salt, weight and volumetric determination) and are, hence, relatively small when enough 
mass of particulates (several milligram) is collected on the filter. The collection of a sufficient 
mass is easy to achieve in turbid nearshore or estuarine waters dominated by mineral material, 
but more difficult in low turbid organic-rich waters or for example during a Phaeocystis bloom. 
In the latter case the gelatinous algal colonies may clog the filter before enough material is 
collected and prevent the removal of the salt. In cases were the sample mass on the filter is not 
very high, errors due to salt are significant (Banse et al., 1963; Stavn et al., 2009; Röttgers et al., 
2014). In cases were the sample is turbid (>100 mg/l), the main uncertainty is often caused by 
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the difficulty to homogenize the sample prior to subsampling and filtration (Fettweis 2008). 
Methodological improvements include the optimization of the filtration volume and cleaning of 
the filter margin after the funnel is removed (Neukermans et al., 2012a); the correction of the 
salt mass bias using procedural control filters (Stavn et al., 2009), the filling of the filter margin 
with salt-free water before filtration and the determination of a SPMC free of the salt-bias using 
a set of different sample volumes (Röttgers et al., 2014).
The uncertainty in sample SPMC decreases with increasing SPMC as shown for a data set of 
about 2500 sample SPMC from the Belgian nearshore obtained with the method of triplicates 
with the same volume using GF/C filters. The uncertainty (expressed as the RMSE of the 
triplicates divided by the mean value) is highest (8.5%) for sample SPMC lower than 5 mg/l and 
decreases with increasing SPMC to 6.7% (<10 mg/), 3.5% (10-50 mg/l) and 2.1% (>100 mg/l). 
This error corresponds to the uncertainty introduced if only one replica was used instead of 
three replicas. In case of triplicates the error is limited by excluding sample SPMC with a RMSE 
exceeding a threshold value. The need of subsamples with different volumes versus subsamples 
with the same volume has been checked from samples collected in three stations with different 
turbidity in the southern North Sea. The estimated slope, i.e. the SPMC, has an uncertainty that 
can be higher than 1 mg/l (>30%) for clearer waters (SPMC about 3 mg/l) and then it drops to 
about 0.3 mg/l for SPMC of about 11 mg/l (3%) or 25 mg/l (1%). Using the method with the 
same volume, the uncertainty is about 0.3 mg/l (10%) for the clearest sample, about 0.4 mg/l 
(4%) for SPMC around 11 mg/l and about 0.8 mg/l (3%) for SPMC of around 25 mg/l. The 
relative difference between the estimated SPMC using this method and the different volume 
method (applied three times, and averaged) is about 11% for clear waters, 6% and 4% for 
higher levels of turbidity. One should consider that the uncertainty (standard deviation) of the 
SPMC through averaging of triplicates with the same volume is not the same uncertainty as that 
obtained via the slope determination using the different volume method. The latter includes a 
random and a systematic error due to the offset by salt, while the same volume method 
provides only a measurement error. The systematic error is not detected in the same volume 
method, which explains the apparent lower uncertainty of this method, especially at low SPMC 
as compared to the different volume method. The method with different volumes is more 
accurate, the latter holds especially in low SPMC waters, where the effect of salt is important 
(Röttgers et al., 2014). 

3.4 Relating sensor output to sample SPMC
Modelling techniques establish a statistical relationship between turbidity or acoustical 
backscatter intensities and reference SPMC data, i.e. the sample SPMC (ISO, 2014). This 
relationship is applied to convert the time-series of turbidity or acoustical backscattered signal 
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into SPMC. However, for acoustic devices such as an ADCP a calibration against in situ water 
samples is challenging, as samples are often difficult to collect next to the profiling sensor and 
as the property of the SPM may change over the water column. For these cases the SPMC 
derived from optical sensors measuring close to the ADCP is often used as reference SPMC. It 
must be noted that the sample SPMC or the optical-derived SPMC is collected at a given 
location in a confined volume, while the acoustic backscatter signal from a profiling sensor is 
the mean of a user-defined volume, which is generally much larger than the one of the sample 
SPMC. This procedure will add additional uncertainty to the model. 
The first two sections deal with a purely technical aspect, i.e. the biases involved with the 
choice of the linear regression model. The third section addresses uncertainties that are caused 
by systematic changes of the particle IOPs or IAPs that will result in varying proportional factors 
between the detected signal and SPMC that are not detected during the generally short 
calibration periods. A general bias in the model parameter calibration relation may be caused 
by the spatiotemporal mismatch between the sample and the sensor, by local changes in the 
turbulence and floc size caused by the sampling device or by the calibration period that is not 
necessarily representative for the whole unsupervised time series. The fourth section deals 
with the inconsistencies between parallel optical and acoustical data that are caused by the 
uncorrelated and random variations in the IOPs and IAPs.
3.4.1 Modelling techniques
The relationship between optical sensor output to SPMC or the acoustic backscatter to the 
10log10(SPMC) can be modelled using a linear model (see section 2.2). The model can be 
applied to the linear domain or the log-log transformed domain (the latter only for turbidity 
data). Mostly, after quality checks of the data, linear regression finds optimal regression 
parameters by minimization of the squared differences between the values of the dependent 
variable and the regression line (X2 method, further called LSQ). In general, however, different 
options for the linear regression method can be considered that lead to different values in the 
regression parameters for the same data set and different levels of predictability of SPMC from 
optical turbidity or acoustic backscatter intensity. 
The first option is the choice of the independent (explanatory) and dependent (response) 
variable. As one finally wants SPMC as a function of turbidity, mostly SPMC is used as 
dependent variable. On the other hand, as turbidity depends on SPMC and not vice versa, this 
requires turbidity as dependent variable and then compute SPMC from turbidity using the 
inverse of the calibration regression. As another option, one may regard both SPMC and 
turbidity not strictly causal dependent on each other. This situation may be adequate for cases 
where water sampling locations and turbidity detections volumes differ by typically more than 



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF

Version:  August 11, 2019; 

21

the coherence lengths of the SPMC in the observation area. Then the minimization of the 
difference between data and regression line should take place perpendicularly to the regression 
line solving an Eigenvalue problem. This method leads to symmetric results no matter whether 
SPMC or turbidity is the dependent or independent variable.
In most real data sets, the assumptions for linear regressions are not met (e.g. Gilbert, 1987) 
and ordinary least-squares fitting can have undesired sensitivities both in best model parameter 
or confidence interval estimations. In this study, two examples of robust fitting are contrasted 
with ordinary least-squares, i.e. the Theil-Sen estimator and the “iteratively reweighted least 
squares” (further called Robust) method (Press et al., 1989). 
To overcome the problems with data heteroscedasticity, log10 - transformations of the variables 
can be applied, a decision that should be based on the examination of the model residuals 
(Helsel and Hirsch, 2002). This transformation has also the advantage that the distribution of 
data along the independent variable is more homogeneous as there is very often a bias in the 
coastal water sample data sets towards lower SPMC. The re-transformation of the regression 
line into the original units introduces a bias that arises as the regression estimates are 
computed from means in log units unequal to the mean in original units. Helsel and Hirsch 
(2002) recommend the usage of the non-parametric “smearing” estimator

(4)𝐵𝐶𝐹 =
∑𝑛

𝑖 = 110
𝑒𝑖

𝑛

introduced by Duan (1983) as bias correction factor (BCF) with  the number of samples, and  𝑛 𝑒𝑖

the residual of sample  in log-units. This BCF is not symmetric when using the Eigenvalue 𝑖

regression in the log space as SPMC and turbidity have different units.
Figure 9 shows the calibration of an OBS against sample SPMC for the different methods and 
the exchange of dependent and independent variables. It also shows that outside the data 
range available for calibration, the uncertainty may increase significantly. The next example the 
direct calibration of an ADCP (1 MHz Nortek AWAC) against sample SPMC in a moderately 
turbid environment (<100 mg/l) is shown (Figure 10). The direct calibration with sample SPMC 
was performed for the surface and bottom samples separately as they originate from different 
population of particles in suspension, i.e. surface plume and bottom resuspension. The data are 
from a coastal observatory located at the mouth of the Seine estuary and consists of a bottom 
station equipped with an ADCP and a Wetlabs NTUSB optical backscatter sensor (Wetlabs OBS) 
and a surface buoy measuring turbidity with a similar Wetlabs NTUSB sensor.
In Figure 11 the model calibration of two acoustic sensors (3 MHz Sontek ADP with series 
number M284 and M947) is shown using the OBS-derived SPMC as the reference SPMC. The 
data is from a one-year time series in 2013 collected in the turbid Belgian nearshore area at 
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about 2 m above the bed (Fettweis et al., 2016). Both acoustic sensors have measured about 
half of the period at a burst rate of 15 minutes and all the available OBS and ADP data pairs 
have been used for the model calibration (M284: 12280; M947: 14923). The OBS sensors have 
been calibrated twice during the period against sample SPMC. The model calibration (M284: 
R²=0.4; M947: R²=0.6) shows strong scatter in the data and thus a high uncertainty in the 
acoustic derived 10log10(SPMC) versus acoustical backscatter in dB. This is indicated by the 
dashed lines in Figure 11 representing the results of 7 different regression models. Their slopes 
differ by a factor of 1.8 and the associated uncertainties by even a factor of 3 within the data 
range when the OBS-SPMC data are re-transformed to SPMC. Other studies report similar (up 
to 0.8) ranges of R² (Fugate and Friedrichs, 2002; Gartner 2004; Dufois et al., 2014). The 
difference between OBS and ADCP estimates of SPMC during a one-week deployment in San 
Francisco Bay was 8% to 10% relative to OBS range and about 35% to 40% relative to OBS mean 
(Gartner, 2004). 
3.4.2 The choice of the linear regression model
To estimate the uncertainties introduced by the choice of a specific regression method, we 
applied the different regression methods as described in section 3.4.1 to eleven data sets with 
R² between 0.58 and 0.99. With three minimisation schemes (LSQ, Eigenvalue and Robust fit) 
plus the Theil-Sen estimator, exchanging turbidity and SPMC as independent variable and 
taking the data with and without log10 -transformations we obtain 15 combinations per data 
set, as for the non-transformed data the eigenvalue method is symmetric to the choice of 
abscissa and ordinate. The data sets consist of pairs of sample SPMC and turbidity collected at 
various location with Hach nephelometers (North Sea, English Channel, Mediterranean Sea, 
French Guiana coast, Gironde estuary, Rio de la Plata) and Seapoint sensors (Wadden Sea, 
North Sea, Oosterschelde estuary, Weser estuary). As an example for a field data set (R2=0.61, 
26 samples), Figure 9 depicts the 15 regressions. Within the range of the calibration data, the 
different model results differ by some 20 %, but they increase significantly beyond the data 
sample range. In the following, we define Regression Spread (RS) as the percentage difference 
between SPMC computed from the regression models with highest and lowest slope as a 
function of turbidity. In Figure 12a the RS derived from the seven regression models for the 
non-transformed (i.e. linear scale) sample-SPMC/turbidity data pairs versus data set R². Figure 9 
exemplifies that within each data set RS depends on the value of the turbidity relating to the 
mean turbidity. To make the regressions of all data sets comparable, RS was computed for 
different z-transformed (standardized) turbidities,  defined as𝑇𝑧 ‒ 𝑠𝑡𝑑

(5)𝑇𝑧 ‒ 𝑠𝑡𝑑 = (𝑇 ‒ 𝑇) 𝑠𝑡𝑑(𝑇)
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where T is turbidity and  the average and std(T) the standard deviation of the turbidities in 𝑇
each data set. For , six values between -0.5 to 8 (see Figure 12) were chosen to cover the 𝑇𝑧 ‒ 𝑠𝑡𝑑

turbidity range from close to the origin to far beyond the range of the calibration data pairs. For 
=2 (typically the 95% percentile of the turbidities in the calibration data sets) RS 𝑇𝑧 ‒ 𝑠𝑡𝑑

increases significantly with decreasing R2 from nearly 0% for R² close to 1, to 10% for R2=0.93 
and 30% for R2=0.60. For =0 (centre of the turbidities in the calibration data sets), RS is 𝑇𝑧 ‒ 𝑠𝑡𝑑

close to zero, as expected. For =8 and R2<0.6, RS amounts to more than 50%. 𝑇𝑧 ‒ 𝑠𝑡𝑑

Figure 12b and c display slopes and intercepts by linear regression (Eigenvalues method) of RS 
for the six . Their dependence can be closely fitted by exponentials and yields the 𝑇𝑧 ‒ 𝑠𝑡𝑑

following formula for RS as a function of R2 and :𝑇𝑧 ‒ 𝑠𝑡𝑑

(6)𝑅𝑈 = 140(𝑒 ‒ 0.35𝑇𝑧 ‒ 𝑠𝑡𝑑 ‒ 135)𝑅2 + 140(1 ‒ 𝑒 ‒ 0.44𝑇𝑧 ‒ 𝑠𝑡𝑑) ‒ 5
This formula predicts the percentage spreading within 5% for an R2 of 0.91 and can be used to 
estimate the uncertainties involved with the choice of the regression method applied based 
only on R2 and dependent on the value of  for any data set.𝑇𝑧 ‒ 𝑠𝑡𝑑

We further investigated RS of each regression method for the exchange of independent and 
dependent variables, as this, according to Figure 9, is the main control for the magnitude of RS. 
For each data set, we created the mean of all seven linear scaled data regressions as a baseline 
and computed for each regression method the Regression model choice Uncertainty (RU), 
defined as the relative differences of SPMC to the baseline value as a function of . In 𝑇𝑧 ‒ 𝑠𝑡𝑑

Figure 13a RU averaged over the data sets with R²<0.75 and in Figure 13b RU averaged over the 
data sets with R²>0.90 versus  is shown. At =0, RU is nearly zero for all methods, 𝑇𝑧 ‒ 𝑠𝑡𝑑 𝑇𝑧 ‒ 𝑠𝑡𝑑

whereas towards negative  it diverges sharply reaching more ±40% at  (the 𝑇𝑧 ‒ 𝑠𝑡𝑑 𝑇𝑧 ‒ 𝑠𝑡𝑑 =‒ 1
10% percentile of the turbidities in the calibration data set), as the computed absolute SPMC 
differences in the denominator of RU are approaching zero. With increasing , these 𝑇𝑧 ‒ 𝑠𝑡𝑑

differences remain confined to ±15% (R²<0.75) and ±5% (R²>0.9) within the calibration data 
range below =1.6 (90% percentile). However, further increasing  results in even 𝑇𝑧 ‒ 𝑠𝑡𝑑 𝑇𝑧 ‒ 𝑠𝑡𝑑

higher RU that depends both of the R2 of the data set and the regression method. For data sets 
with R²>0.90, this plateau remains below ±5% for all regression methods, but raises to nearly 
±20% for data sets with R²<0.75. Here, the regression methods differentiate distinctively from 
each other, see Figure 13a. The LSQ method for example, with turbidity as dependent variable 
and SPMC computed from the inverse of the regression, deviates from the baseline by +20%, 
whereas the Eigenvalue and inverse robust fit regression still remain close to +5%. All inverse 
regressions have a positive bias with respect to the mean, whereas the regressions with SPMC 
as dependent variable have a negative bias of the same amount. 
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The situation is quite different for the regressions performed with log10-transformed data. The 
slope of the regression may deviate from 1, resulting in a non-linear power function after re-
transformation. This may result in quite large RU at high , see Figure 14. For data sets 𝑇𝑧 ‒ 𝑠𝑡𝑑

with R2<0.75, the RU exceeds by more than ±50% at  with no signs to reach a plateau 𝑇𝑧 ‒ 𝑠𝑡𝑑 = 8
limit at higher . For R²>0.9, the RU is much lower with ±20% at most and reaching the 𝑇𝑧 ‒ 𝑠𝑡𝑑

plateau at . This value still is four times higher than for the regressions with not-𝑇𝑧 ‒ 𝑠𝑡𝑑 = 6
transformed data. Within the calibration data range the uncertainties are still higher by a factor 
of 2 compared to the not transformed cases. At the lower end of the of , the RU of all 𝑇𝑧 ‒ 𝑠𝑡𝑑

models are more or less identical and remain low as all regressions are forced to cross the 
origin point.
Of course, the results shown here are valid for any data set independent of the meaning of the 
variables. This means that the uncertainties involved with the model calibration of acoustical 
backscatter data against an OBS derived 10log10(SPMC) are much larger as the examples in 
Figure 10 and 11 show, where the R2 is 0.4 and 0.6 respectively. The situation is even 
aggravated after raising the data to the power of 10, where the uncertainties will increase 
accordingly and likely exceed 100 %.
3.4.3 Variabilities in SPM inherent properties
Variabilities in IOPs may occur between different geographical areas or within a same 
measuring location. The former is illustrated in Figure 15, where the relation between sample 
SPMC and Seapoint turbidity is shown for different areas in the North Sea. The spreading in the 
data is caused by variabilities in inherent particle properties between the areas. Additional 
causes of the differences are inter-sensor variabilities and uncertainties due to the sampling 
and filtration protocols. The latter are thought to be of lesser importance as the differences in 
slope of the regression lines (German Bight: 1.05 and Oosterschelde estuary: 2.34) is larger than 
these additional uncertainties. Local variation in the IOPs have thus to be considered when 
regional turbidity data are compiled into SPMC maps.
Intra-tidal variabilities in IOPs at a same location have been observed at various locations. 
Figure 16a shows that the specific backscatter ratio (i.e. turbidity divided by sample SPMC) is 
oscillating with the tides (Becherer et al., 2016) and that this may be largely assigned to the 
organic content of the particles that increases with the specific backscatter ratio (Figure 16b). 
The magnitude and the tidal signal of the ratio nearly persisted after the storm even though 
sample SPMC at maximum currents increased threefold. With respect to the tidal mean this 
would result in a systematic over- and underestimation of the SPMC by 60 % over the tidal 
cycle. Variation in the specific backscatter ratio may also occur on seasonal time scales as 
observed in Liverpool Bay (Jafar-Sidik et al., 2017). These variations are caused by the 
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seasonality of the primary production and turbulence regime and have changed the ratio by a 
factor 2.
Another example shows intra-tidal variations in acoustical and optical inherent particle 
properties due to occurrence of mixed particles (i.e. sand and mud) in suspension at a muddy 
and sandy bed site located in the main tidal channel of a brackish marsh in the Scheldt estuary 
(Schwarz et al., 2017). The optical sensor was calibrated with sample SPMC and the optical 
derived SPMC was subsequently used to calibrate the acoustic backscatter sensor. The muddy 
bed site shows a strong correlation in contrast with the sandy bed site between acoustical and 
optical backscatter during the two tidal cycles (Figure 17). These observations indicate constant 
particle properties during a tide at the muddy site and changing particle properties at the sandy 
site, indicating that the SPM at the muddy site consists mostly of muddy flocs resuspended 
from the bed, while at the sandy site sand grains with diameters comparable to those of flocs 
are eroded into suspension at high flow velocities. Their intermittent abundance will lead to 
changes in the IOP’s of the SPM due to their higher specific density, i.e. the increase of rρ will 
lower the ratio of turbidity to sample SPMC (see eq. 1). A storm event recorded at an 
observation pole in the Elbe river (Baschek et al., 2017, Kappenberg et al., 2018), discloses a 
further example of significant changes in this ratio due to sand grains entrained into the water 
column. The ratio of optical turbidity to SPMC derived from water samples taken hourly over a 
period of 12 hours before, during and after the storm varied from 0.4 during the moderate 
wind phases to 0.12 just after the peak of the wind speed (Figure 18). Grain-size analysis of the 
samples revealed a significant increase of mainly sand around the 90 µm fraction. As a 
consequence, optical turbidity remained in the range of average tidal variability during the 
storm, whereas sample SPMC exceeded this by a factor of five. Similar observations have been 
made at other locations where mixed sediments and/or strong changing current and wave 
conditions caused sandy material or particle with other erosion characteristics to be 
resuspended up to the detection volumes of the acoustic and optical sensors (see e.g. Fugate 
and Friedrichs, 2002; Fettweis et al., 2012). 
The sample SPMC and the sensor data should preferably be collected in situ as it represents the 
actual inherent properties of the SPMC and is thus more reliable than in laboratory model 
calibrations (ISO, 2014). In case no in situ samples can be collected or if the range of sample 
SPMC is too small, in laboratory model calibration can be applied with representative samples. 
Bollen et al. (2006) describes a laboratory model calibration using a representative in situ bed 
sample taken near the monitoring station. The bed sample was sieved on a 63µm sieve, 
followed by desalination and drying, to finally produce standard solutions with defined SPMC. 
The regression model using in situ data has a larger slope and overestimates the sensor output 



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF

Version:  August 11, 2019; 

26

by about 10%. The difference is most probably caused by changes of the laboratory versus in 
situ IOP of the SPM.
The examples demonstrated that in situ calibration with samples is necessary at all 
representative locations and phases of the local hydrodynamic and biogeochemical conditions 
to take the varying composition of the suspended particles into account. 
3.4.4 Comparison between optical and acoustical derived SPMC
A comparison of the modelled SPMC was performed from different optical and acoustical 
sensors, based on the data from the mouth of the Seine estuary (Figure 10). The same sample 
SPMC was used to build models for a moored Wetlabs OBS, a profiling OBS3+ and a moored 
ADCP (1MHz Nortek AWAC) and the modelled optical derived SPMC was further used as 
reference SPMC to build a model for the moored ADCP in order to estimate and compare 
model performance and associated uncertainties (Figure 19). Results show that the optical 
sensors have highest accuracy against sample SPMC (OBS3+: 10%, Wetlabs OBS: 40%) and that 
the acoustical derived SPMC compare well with the OBS3+ profiles for the period where both 
sensors have been calibrated against sample SPMC. In the same figure the acoustic derived 
SPMC is compared with the SPMC time series derived from the Wetlabs OBS’s, thus for periods 
that are not covered by the field campaigns dedicated for calibration. The optical and acoustic 
derived SPMC values significantly differ, the ADCP underestimating large optical derived SPMC 
and overestimating the lower ones. The acoustic sensor has the larger uncertainty at lowest 
(400% for SPMC < 5 mg/l) and highest values; in the mid-range the uncertainty is about 100% (5 
mg/l < SPMC < 10mg/l) and below 50% (SPMC <75 mg/l). The results also show that the error of 
the reference SPMC propagates into the uncertainty of the acoustic derived SPMC, as can be 
seen when comparing the ADCP derived SPMC from Wetlabs OBS (20-150%) and OBS3+ (20-
50%). 
High uncertainties between acoustic and OBS derived SPMC have been observed in the data 
from the Belgian nearshore, see Figure 20. The normalized RMSE associated with the regression 
model varies between 100-500% (mean regression is 170%) for the M284 ADP and 90-140% 
(mean regression is 90%) for the M947 ADP. The uncertainty is lowest in the mid-range SPMC 
(100-1000 mg/l), with normalized RMSE between 50-70% (M284) and 45-60% (M947) for the 
best regression models and higher for the lower and higher SPMC values. 
Both examples indicate that the differences between acoustic and optic derived SPMC can be 
very large and that these uncertainties increase when long time series are used for calibration. 
These differences are probably caused by variabilities in inherent acoustical and optical 
properties of the SPM that occurred over time scales longer than the sampling surveys, by 
differences in built-in sensor technology or due to time-delay between sensor measurements 
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and sample time. Further differences may also be caused by the presence of coloured dissolved 
organic matter (CDOM) that affects the optical measurements (Bright et al., 2018) and that may 
change the size and density of the flocs and thus the inherent properties of the particles (Lee et 
al., 2019). In order to improve the correlation, the inherent acoustic and optical properties of 
the particles, and the presence of dissolved OM should be incorporated into the model 
calibrations.

3.5 Additional uncertainties
Additional uncertainties are caused by the direct and indirect human interference in the chain 
of operation. These includes errors directly caused by the human variability, by the specific 
problems associated with working in the sea or by the effects of human activities not related to 
the operational chain that have an impact on the SPMC. Many of these errors are often only 
detected after the field campaign and should therefore be discarded, see for example the 
occurrence of outliers in the model parameter calibration that cannot be explained by natural 
processes. 
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4. Towards best practice
To come to best practice for long-term monitoring activities of SPMC an accurate 
documentation of the successive operations and of the accumulating effect of uncertainties is 
required. An overview of the generic succession of operations required to run long-term or 
large-scale measurements of SPM concentrations is depicted in Figure 21. In long-term 
observations the pre-measurement, measurement and post-measurement phases and activities 
are not in strict sequence but interleave. 
Beforehand knowledge on the magnitudes in SPMC will guide the choice of instrumentation 
and define the need for adjoined measurements of state variables such as particle size, shape 
and composition, salinity, temperature, current velocity or turbulence, see Table 2. Before field 
usage, all sensors should be calibrated in the laboratory against standards to manifest a 
reference against any possible changes in sensor response after recovery.
During the measurement phase the observing system is impacted by processes that may 
disturb the sensor outputs with respect to the preceding sensor and model calibration, as 
presented in chapter 3. A functional understanding of the interrelation between inherent 
particle properties, system state conditions and sensor SPMC will only be achieved if sufficient 
surveys are carried out to estimate the source and magnitude of changes in the sensor SPMC 
between the in situ calibration activities. 
Post-measurement phase starts with the raw data retrieval and their conversion into ascii-
based data and archiving information that collate all so far undertaken calibration, accuracy and 
precision measures (Tzeng et al., 2016). After recovery from the field, optical and (if possible) 
acoustical sensors should be calibrated against the lab reference to quantify any changes in 
sensor response due to electronic drift or optical window damages. In post-processing the data 
should first undergo an expert judgement to flag occurrences of spikes, stuck values or 
unreliable magnitudes. The resulting set of accepted and corrected data together with sample 
SPMC acts as input for the computation of the sensor SPMC. The associated error estimates are 
due to the measurement procedures themselves and yield only the errors at the observing 
point and for the calibration periods of the time series. 

4.1 Discussion and ranking of the uncertainties
The overall error of the SPMC data set consists of random errors that lead to uncertainties of 
individual SPMC but approximate the accurate value with increasing amount of data; and 
systematic errors (biases) that lead to an average over- or underestimation of all data. There 
exist two types of biases: one that is constant or independent of observing times and locations 
(e.g. the choice of the regression method, as discussed in section 3.4.2) and another one that 
changes with time and location (section 3.4.3). Some kinds of errors can be detected, and to 
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some extent corrected, whereas, others are inherently associated with the applied technologies 
and its interference with the environment and remain spurious and difficult to quantify or to 
control. The first types of errors are related to the sensors, sampling and lab protocols or the 
modelling techniques, while the latter are mainly related to systematic, often gradually 
changing natural variability in SPM inherent properties. Table 3 lists the sources of uncertainties 
as described in chapter 3. The listed uncertainties represent typical values that indicate their 
relative importance for the overall error. The following discussion continues along the vertical 
order of table 3 and relates to the major items of the workflow depicted in Figure 21.
As the errors and their mitigation or correction measures are quite dependent on the site 
conditions, we did not give a set of specific guidelines. In our view, regular sensor calibration 
against a standard solution, field inter-calibrations of sensors against reference sensors, 
biofouling, splitting up the sample into different volumes for filtration at SPMC <3 mg/l, the 
choice of the regression model and long-term changes in the IOPs are the most critical 
elements in the workflow. 
4.1.1 Sensor related uncertainties
Most sensor related sources of uncertainty can be deduced from the correct ratio of the sensor 
signal to a standard solution. Any deviation from the 1:1 ratio results in a bias of potentially 
±15% that will pass through the whole workflow and needs to be detected and corrected for. 
Controlling the sensor drift will require either the close follow up of the battery voltage and 
indirect field inter-calibration against a well calibrated reference sensor operated in parallel 
very close to the long-term observing location, or by regular re-calibration checks in the 
laboratory with formazine or other reference solutions after recovery of the sensor. 
The usage of sensors that are not adapted to the range of turbidity values of the site, as shown 
in section 3.1.2, may reduce the overall accuracy of the output in general by a bias of about 2% 
up to 24%. The limited turbidity resolution may also increase the random or steady changes in 
IOPs and thus in the ratio of sample SPMC to turbidity.
The comparison of the SPMC derived from different OBS3+ sensors (section 3.1.3) shows that 
inter-sensor variability for identical sensor types can be reduced to natural random fluctuations 
in the water bodies, if all sensors are calibrated separately against sample SPMC. If inter-
comparing different types of sensors, it is not evident beforehand that even separate 
calibration leads to the same results for longer time series, as different sensors may react 
differently to changes in the IOPs of the SPM. This may result in time-dependent biases and has 
to be investigated case by case.
4.1.2 Environmental related uncertainties
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Biofouling represents an important challenge for accurate measurements of turbidity and in 
some cases of acoustical backscatter intensity in the field. If not detected and flagged, the bias 
(positive for turbidity; negative for acoustical backscatter) can easily reach many tens of 
percent. Especially optical sensor output is sensitive to increasing coverage of the sensors 
material disturbing the light pathways or scatter detection volume. Although technologies exist 
to mitigate the impact of fouling, regular cleansing of the sensors remains a necessity and 
needs to be accompanied by sensor inter-calibration against a reference device or solution. As 
long as the effect of biofouling is limited, corrections by means of independent not-affected 
devices is sometimes possible. In many cases, however, tagging and discarding bio-fouled data 
is the only option.
Discarding the very high SPMC that saturate the sensor output will introduce a bias. Modelling 
the gaps by extending the power spectrum of the time series will lead to more realistic values, 
however, the degree of uncertainty depends on the specific situation and the applied 
interpolation model. 
4.1.3 Sample related uncertainties
The determination of sample SPMC is through three steps, sampling, filtering and subsequent 
weighing. The main uncertainties involved are related to the filtering procedure at SPMC <3 
mg/l, because the weights of the filter loadings are in the order of the sample specific filter 
offset. So far the most accurate protocol to determine this offset is the method with different 
filter volumes by Röttgers et al. (2014). At SPMC >25 mg/l the error without knowing the filter 
offset amounts to 3%, but raises to 50% for SPMC <3 mg/l. When the filter offset is known then 
the uncertainties reduce to less than 10 % for SPMC <3 mg/l. For SPMC >25 mg/l the impact of 
the filter offset becomes negligible. Using only one filter in this range bears the risk that faulty 
sample SPMC cannot be identified and show up as outliers in the scatter plots that cannot be 
removed from the calibration data set. This can be avoided by working with triplicates and 
removing the sample that differs from the other two by more than a pre-defined value which 
reduces the random error by a factor of 2 down to the order of 5% or less. 
A simple method to evaluate the quality of the sample SPMC compared with in situ optical 
measurements consist in using a Hach turbidimeter in addition to the filtration. Large 
inconsistency between the Hach sample turbidity measured on board, the in situ turbidity from 
a sensor and the sample SPMC will designate this sample as unreliable.
4.1.4 Choice of the linear regression model 
The choice of the linear regression model including the choice of the dependent and 
independent variable has some significance as it is systematic and leads to SPMC that are too 
high or too low. To our knowledge, publications involving SPMC estimated from optical 
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turbidity or acoustical backscatter do not consider this issue. It is quite evident and quantified 
in Figures 13 and 14 that a calibration data set within an R2>0.9 should be achieved to keep 
uncertainties involved with the choice of a specific regression model well below 10%, 
independent of the model and the range of the calibration data compared to the complete data 
set. However, under circumstances of variable IOPs or IAPs in the sample calibration period, 
such a high R2 may not be achievable. 
From the three regression methods that are sensitive to the exchange of dependent and 
independent variables, it is the Robust fit that in our examples shows the least sensitivity to this 
exchange, followed by the Theil-Sen estimator and the LSQ method as exemplified by Figures 
13 and 14. A recommendation for the best, i.e. least sensitive regression model is not 
straightforward. The reason is that although prominent outliers in the calibration data set may 
suggest the preference for a robust method, they bear the risk of creating biases in the 
regression if they are caused by erratic variations in the inherent particle properties (see 
section 3.4.3) and not by sensor, sampling or human related faults. In the absence of 
substantial, not removable outliers, Eigenvalue regression may be the proper option, as both 
SPMC and turbidity/acoustical backscatter, averaged over the sampling period, have errors of 
comparable magnitude. As another option, the regression average of a method with exchanged 
ordinate and abscissa may be used. The random error statistics of this approach may be 
generated by a boot-strap method. Regressions with log10-transformed data exhibit a generally 
higher sensitivity to the model choice for >0 that increase substantially for turbidities 𝑇𝑧 ‒ 𝑠𝑡𝑑

above the calibration data range. In this respect they bear the risk of substantial biases in the 
SPMC computed from higher optical or acoustical backscatter data. 
4.1.5 Variabilities in SPM inherent optical and acoustical properties
Uncertainties due to undetected changes in inherent particle properties of the SPM are difficult 
to quantify during long-term SPMC measurements, however, they may be significant for 
specific sites or periods. All of them can be ascribed to changes in particle size, shape, 
composition and density and to the occurrence of coloured dissolved organic substances. 
Regular water sampling to compare the sample SPMC with sensor output will provide insight 
into the stability of models used to estimate sensor SPMC over time and/or space (e.g. Druine 
et al., 2018). The examples of section 3.4.3 show that even intra-tidal variations or events of 
several hours lead to systematic uncertainties of 50% to 200%. Therefore, it is recommended to 
add further sensors to the observing system that give direct indication for changes in the 
inherent particle properties (Table 2). 
When measuring in the benthic boundary layer the SPMC may reach values that exceed the 
calibration data range. The calibration data set does not cover the sensor SPMC data range and 
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may result in high uncertainty for the largest SPMC value. For these situations a model 
calibration in the laboratory allows extending the calibration data range (see section 3.4.3). This 
is meaningful if the associated uncertainty is lower than the one from an in situ model 
calibration at large . 𝑇𝑧 ‒ 𝑠𝑡𝑑

4.2 Water sample turbidity as a surrogate for SPMC?
4.2.1 Uncertainty between SPMC and turbidity
To separate variability due to measurement errors from variability due to natural variations in 
IOPs, protocols that use the same water sample for filtration and for turbidity estimation should 
be used in parallel to the in situ procedures. Figure 22 shows a collection of sample SPMC 
versus turbidity measurements of the same water sample recorded with a portable ISO Hach 
2100P nephelometer from various waters around the world (North Sea, English Channel, 
Mediterranean Sea, Rio de la Plata, French Guiana nearshore, Gironde estuary, Scheldt estuary, 
see Table 3), collected by the RBINS (Dogliotti et al., 2015; Knaeps et al., 2015) and HZG 
(Röttgers et al., 2014). The protocols for sample SPMC and turbidity measurements are those 
described in Neukermans et al. (2012a) for RBINS and Röttgers et al. (2014) for HZG. The figure 
shows that the ratio between sample SPMC and Hach turbidity is quite stable within an 
uncertainty of 20% throughout the regions. In this collection, 4.1% of couples fail outside of the 
95% confidence interval regarding the t-distribution of sample SPMC/turbidity in the 
logarithmic space. The outlying couples probably reflect the tails of the combined natural 
variability of particles mass-specific side-scattering coefficient, and sampling and filtration 
errors. The average ratio of sample SPMC to turbidity from all data is about 1.13 mg/l/FNU 
(RBINS data), and 1.19 mg/l/FNU (HZG data). 
Despite calibration to a formazine reference solution and the use of ISO-normed optical 
sensors, model calibration may vary considerably in recorded turbidity for a same SPMC 
solution across different instruments resulting in instrument-specific turbidity-SPMC relations, 
see Figure 23. Although different types of optical sensors have been calibrated against the same 
reference solution, they yield up to 20% differences results in the field. Another example 
concerns data collected by Ifremer and the University of Rouen at different locations in the 
Seine estuary (Druine et al., 2018) with a ISO Hach 2100N nephelometer (same constructor, but 
different type as the above mentioned 2100P) give significant different turbidity values for the 
same SPMC. Given the consistency of the Hach 2100P data pairs from two institutes over a 
wide range of areas we assume that the differences are mainly caused by the instrument 
specificities. The latter was confirmed during inter-calibration of both ISO standardized 
nephelometers with StablCal® and with SPMC solutions. The inter comparison revealed that the 
2100N measures about 13% lower turbidity values for the same StablCal® solution than the 
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2100P. This strengthens further that any turbidity unit should be referred to the instrument 
used and the protocol applied (see section 2.1).
4.2.2 Need for further sample SPMC?
The above results prohibit the comparison of turbidity values measured by different types of 
optical sensors. Turbidity as a surrogate of SPMC is only reliable, as long as site-specific (model) 
and instrument-specific (sensor) calibrations are carried out. On the other hand, the quiet 
stable relationship between the ISO Hach water sample turbidity and the sample SPMC in 
Figure 22 throughout different localities suggests that this relationship could be used as an 
estimate of SPMC in two ways. Firstly, it adds a third independent measurement and helps to 
separate model-calibration outliers due to natural fluctuations from sample or human faults. 
Secondly, the stable ratio of Hach derived turbidity to sample SPMC could be used instead of 
sample SPMC for in situ turbidity data. This introduce an individual random uncertainty of some 
20%, which could be compensated by less laboratory effort and therefore more available 
calibration data. The site specific regressions for sample SPMC versus Hach turbidity vary by 
only 20% in the RBINS data set shown in Figure 22. Using the global fit at different sites still 
reproduces the sample SPMC within less than 20% with an average bias of 3%. Especially given 
the high uncertainties of low sample SPMC due to the filter offsets, a 20% random error for 
Hach-derived SPMC seems to be a suitable and cheap alternative to filter weights. 
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5. Conclusions and Outlook
Optical and acoustical sensors have proved invaluable in the study of SPM dynamics in marine 
and estuarine environments as they allow collecting easily in situ, high-frequency SPMC time 
series over long periods of time. The payback is the availability of large homogeneous data set 
of SPMC from various locations on the globe; the drawback is that the quality or certainty of the 
data and thus also the inter-comparability depends on factors that are only to a certain level 
avoidable. 
Long-term observations of SPMC are the result of a complex ladder of operations that involve 
field, laboratory and modelling methods. Each step contributes its own random and systematic 
errors to the overall uncertainties of the sensor SPMC. Systematic errors related to the 
functioning of the sensors, the environment, the collection and processing of calibration 
samples and faulty human operations are detectable and sometimes correctable. As long as 
protocols for sample analysis and sensor calibration are carefully obeyed, uncertainties can be 
confined within ±5%, otherwise they may reach up to ±20%. Biofouling may add a further bias 
of 100% (positive for optical, negative for acoustical sensors), and their detection in generally 
leads to a loss of data. A good understanding of the processes that are causing changes in SPMC 
and particle inherent properties (size, shape, density and composition) is required in order to 
estimate their importance and to possibly rescale the sensor data to some reference particle 
properties. Variations in these properties may result in over- or underestimation of the SPMC 
by up to a factor 2 or more. Based on the uncertainties, listed in table 3, one can achieve 
random errors below 25 % and biases below 40% only with substantial efforts in technologies 
that indicate the changes in inherent particle properties. 
Acoustical and optical sensors require both the conversion of the sensor output (after sensor 
calibration) to a mass concentration. This is done by relating the sensor output to a reference 
SPMC, which is preferably the sample SPMC. The choice of the regression method, the 
dependent and independent variable, and the error associated with the reference SPMC 
determines the coefficient of determination. We have built a model that based on the R² and 
the normalized turbidity/dB quantifies the uncertainty of the sensor derived SPMC in the 
calibration range and outside of it. The model shows that the Robust fit and the Eigenvalue 
regression have less prediction bias than the Theil-Sen estimator and the ordinary LSQ. This bias 
is not an issue for R²>0.9 and remains below 10%, but it becomes significant for lower R² and 
can amount to 30%. Short-term variabilities in the model-regressions generally show up as 
random noise limiting the R2 of the calibration data set, but the extrapolation of the regression 
parameters to longer periods or larger areas may introduce biases of more than 50%. 
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The site specific regressions for sample SPMC versus Hach turbidities vary by 20% between 
different coastal regions and even less within the same region. This relationship could be a 
cheap alternative to filter weights as less laboratory effort is needed as long as the same 
nephelometer is used. Indeed, our study confirms that the relation between turbidity and 
sample SPMC is depending on protocols (EPA, ISO), technology (scattering angle) and the 
manufacturer, and even may differ between sensors of the same type (e.g. Downing, 2006; Rai 
and Kumar, 2015; Rymszewicz et al., 2017). The relation between the output of an acoustical 
sensor and SPMC is even more variable. In spite of these uncertainties, turbidity is still often 
used as a proxy for water clarity or SPMC as is the dB of acoustical sensors. We advise to not 
use turbidity (or dB) for scientific purposes as it diminishes the comparability of the data. 
Instead, the sensor output should be transformed into a mass concentration, a unit that is 
comparable in time and between regions. If this is not possible, then the turbidity data should 
always be referred to the instrument used and the protocol applied. The problem aggravates 
when turbidity data that have been collected using different technologies and protocols over 
long periods of time and regional scales are stored in international data bases (e.g. turbidity in 
EMODnet, see http://www.emodnet.eu), and used to derive conclusive trends of the 
environmental status of marine and estuarine areas. We hope that the uncertainty analysis 
presented here will serve as a basis for the validation of historical turbidity and SPMC data and 
that it offers guidelines to obtain inter-comparable high quality long-term SPMC time series.
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Table 1: Bulk mineralogical composition (in %) of the SPM in the English Channel and southern 
North Sea sampled with a centrifuge during transect or anchoring of the vessel. Offshore 
Somme mouth, Dover Strait, Calais, Zeebrugge and north of the Rhine mouth. Qtz=Quartz; 
Kspar =K-feldspar; Plag=Plagioclase; Carb=Sum of Calcite, Mg-rich Calcite, Dolomite, Aragonite; 
Am=Amorphous fraction (organic matter and biogenic opal); Hal=Halite; NClays=Sum of non-
clay minerals; Kaol=Kaolinite; Chl=Chlorite; 2:1=Sum of 2:1 clays and micas; Clays= Sum of 
Kaol+chl+2:1. The samples have been collected with a centrifuge (water intake about 4 m below 
surface) and analysed with XRD (data from Adriaens et al., 2018).

Qtz Kspar Plag Carb Am Hal NClays Kaol Chl 2:1 Clays
Somme 29 2 3 30 15 5 86 <1 <1 10 10
Dover Strait 22 3 2 21 18 7 84 2 4 20 26
Calais 10 1 <1 29 22 3 66 <1 2 31 33
Zeebrugge 20 1 5 24 10 2 61 2 4 33 39
Rhine offshore 29 4 1 21 12 3 70 1 2 27 30
Rhine nearshore 17 4 2 21 16 1 61 2 1 35 38
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Table 2: List of additional state parameter and their measuring methods that are necessary to 
interpret the results of long-term SPMC measurements with more accuracy and completeness 
(sensor: instrument that can be used in long-term measurements; water/centrifuge sample: can 
be measured occasionally; station: nearby meteorological, tidal, or wave station; LoI=loss on 
ignition, POC=particulate organic carbon, PON: particulate organic nitrate, XRD: x-ray 
diffractometer). 

State parameter Method Type

Particle size in situ
laser diffractometer, holography, optical 
camera systems

sensor

Particle size in lab Grain size analysis (primary particle size)
water sample, 
centrifuge sample

Particle composition 

LOI: Organic matter
Element analysis: POC, PON
XRD: Mineral composition
Pigment analysis: Chlorophyll
Colorimetric analysis: TEP concentration
Electron microscopy

water sample, 
centrifuge sample

Particle composition
Fluorimeter: Fluorescence
Primary production: Fast Repetition Rate 
Fluorimeter

sensor

Holography, floc camera sensor
Particle shape

Electron microscopy water sample
Turbulence High frequency Acoustic Doppler Sensor sensor
Currents Acoustical Doppler Sensor sensor
Waves Acoustic Doppler Profiler, Wave rider, floater sensor or station
Density Conductivity, Temperature sensor
Water level Pressure sensor; tide gauge sensor, station
Distance to bed Acoustic altimeter sensor
Meteorology from relevant meteorological stations station
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Table 3: Quantification and nature (random or bias) of uncertainties (in % based on normalized RMSE) from the examples described in chapter 3. 
Negative (positive) bias corresponds to an underestimation (overestimation) of the actual value. 

Uncertainty without correction Uncertainty with correction Comment
Source of uncertainty Detectable Correctable

random bias random bias
3.1 Sensor

3.1.1 Factory calibration yes yes - ±15% - less than ± 2% not fully conclusive, as sensors 
were checked after intense usage

3.1.1 Optical degradation yes yes - 20% - ±5% Figure 1
3.1.1 Voltage supply yes yes -90% ±10% Figure 2
3.1.2.Sensitivity of sensor yes no <25% no example no example depends on measuring range

3.1.3 Inter-sensor variability yes no 2% no example 
provided

no example 
provided

no example 
provided

Figure 3
Comparing sensors of same type  
and applying the same set of 
sensor output to sample SPMC 
calibration constants for all sensors

3.2 Environment

3.2.1 Biofouling yes no1, yes2 -
positive, large (up 

to >100%)1

negative2
f(no of beams) 2 data loss1

partial data loss2

1optical sensors
2acoustical sensors with >3 beams

3.2.2 Saturation yes no Negative1 - - 1numerically not specified
3.2.2 Ambiguity yes yes not specified - - -
3.2.3 Air bubbles yes no - - - 1data loss 1optical and acoustical sensors
3.2.4 Density stratification yes yes less than ±43% - acoustical sensors
3.3 Sample

one filter
triplicate filter
volume method

yes1

yes1

yes2
no

2%-10%
1%-6%

3%
1%-50%3

-
-
-

not correctable
not correctable

<5%3

1 only random uncertainty
2 random + bias
3 random bias per sample ; 
depends on SPMC (>50-<1 mg/l) 

3.4 Model

3.4.2 Regression model yes no 10%-60%1 0->30%1,2
1depends on R² and Tz-std
2depends on regression model

3.4.3 Inherent particle 
properties yes1 partly

±50%2

40%-60%3

50%-200%4

±10%5

1only with reference SPMC
2geographical variation, Figure 15
3organic content, Figure 16
4sand in suspension, Figure 17+18
5in lab vs in situ calibration

3.4.4 Optic vs. acoustic 
sensors yes no 50-100%2

40%1

O(100%)2

1acoustic sensor calibrated with 
sample SPMC, Figure 19
2acoustic sensor calibrated with 
OBS, Figure 19, 20
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Figure 1: Factory and in lab sensor calibration of two OBS3+ (8729 and 8849). The laboratory 
calibration was done after 421 (8729) and 329 (8849) days of measurements in high turbid 
(SPMC > 1g/l) sea water during the period 2014-2016. The solid lines are the 2nd order 
polynomial fittings provided by the factory, the dashed lines are the 2nd order fittings after 
recalibration.  
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Figure 2: (a) Power provided by an external source to a OBS3+ (T8549) measuring in high and 
low range in a standard solution of 2000 AMCO Clear® equivalent BU. When the voltage drops 
below 6 V, the sensor registers low voltage output values. (b) SPMC time series from the Belgian 
nearshore measured with a OBS3+ that was attached to a SonTek Hydra data logging system for 
storage and battery supply. The system was replaced on day 118.7 by a similar system. The first 
system was not providing the minimum of 6V to the OBS, the second system worked correctly. In 
blue is shown the corrected time series. 
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Figure 3: Inter-sensor variability between three OBS3+ sensors measuring at about 50 cm from 
each other during a tidal cycle (Belgian nearshore area). The sensors have been calibrated using 
the same sample SPMC. The differences between the OBS’s are not constant but change during 
the course of the tide. This points possibly to variations in the SPMC (sensor are located about 
50 cm from each other) or to different sensitivities of the individual sensors.
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Figure 4: The time series collected in the Belgian nearshore area show the OBS derived SPMC at 
0.2 and 2 mab (left axis) and the ratio between SPMC at 0.2 and at 2mab (right axis). The thick 
lines are the low-passed filtered data. The OBS at 0.2 mab was covered by barnacles, while the 
one at 2 mab was not affected by biofouling. The low-pass filtered ratio indicates that biofouling 
started to affect the OBS at 0.2 mab from about day 134 onward. The OBS at 0.2 mab saturated 
during the measuring period when the SPMC exceeded about 1.6 g/l. 
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Figure 5: 35-day time series of cross-beam backscatter ratio (up) and the acoustic backscatter 
intensity (down) recorded by an upward-looking 1.2 MHz RDI ADCP (5th bin at about 1.5 m 
above the ADCP is shown) moored offshore the Belgian coast. Changes in the cross beam 
backscatter ratio, Rv, occurred from day 165 onward and from day 172 a gradual increase is 
observed. Superposed are quarter-diurnal variations in Rv of the order of 2-3 dB that result from 
the deposition of fine sediments during slack water and the subsequent erosion during 
increasing currents. The recovered ADCP was massively fouled by barnacles, tube building 
worms and hydrozoa. 
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Figure 6: 9-day time series of the backscattering strength vertical profile recorded by an 
upward-looking 500 kHz ADCP (Nortek ADP) moored on the sea bottom at 20 m depth in the 
Bay of Vilaine, South of Brittany (France). The surface oscillation corresponds to the tidal 
elevation. a) Volume backscatter strength measured by the transducer 1. At day 152 a 
biofouling event caused a sudden drop in all backscatter values of the profile, by nearly 10 dB. 
Following, backscatter values rise again and drop again until day 153. b) Cross-beam 
backscatter ratio Rv. Biofouling events on other transducers are identified at days 149 and 151. 
c) Median acoustic backscatter intensity. The median allows a computation of a backscattering 
strength without perturbations by the biofouling.
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Figure 7: Typical bell-shaped backscatters curve of an OBS (Sottolichio et al., 2011), meaning 
that a given OBS output can correspond to two SPMC values. The figure shows how this 
ambiguity can be solved by using two superimposed sensors. Left: when the upper probe records 
lower turbidity than the lower probe, upper concentration is solved, but the lower remains 
unsolved. Right: when the upper probe records higher turbidity than the lower one, lower 
concentration is solved, but the higher remains ambiguous and unsolved. 
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Figure 8: Salinity (top panel) and temperature (°C, middle panel) variability in the Seine Estuary 
turbidity maximum zone during spring tide. The lower panel shows the water attenuation 
correction differences (in dB) with and without consideration of salinity and temperature 
variability.
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Figure 9: Relating sample SPMC to sensor output using different linear regression models for the 
actual and the log transformed data (R2=0.61, 26 samples). The data have been collected in the 
Belgian nearshore area and consist of 26 sample SPMC and corresponding turbidity values from 
a Seapoint OBS. The solid lines correspond to the relationship BU=f(sample SPMC) and the dash 
lines to sample SPMC=f(BU). The bold line is the mean of the 7 regressions and consist of a 
baseline to show the variability of the different regression models (compare sections 3.4.2 and 
4.1.4).
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Figure 10: Direct calibration of a profiling acoustic sensor (Nortek AWAC) against sample SPMC 
in a moderately turbid environment (<100 mg/l) located at the mouth of the Seine estuary (red 
dots: surface samples, blue dots: bottom samples). 
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Figure 11: Relating OBS derived SPMC to the backscatter intensity of the first bin of two Sontek 
3 MHz ADP profilers (M284, M947) using linear regression models. The data set consists of 
about one-year data collected in 2013 in the Belgian nearshore area; every sensor measured 
about half of the period (M284: R2=0.4; M947: R²=0.6). The dashed lines represent the 
regressions of 7 different models (see text) and the bold lines show the mean over the 
regressions, which is our baseline to show the variability of the different regression models 
(compare sections 3.4.2 and 4.1.4). 
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Figure 12: (a) Regression spread (RS) versus R² for 11 sample-SPMC/turbidity data calibration 
sets. Coloured dots denote values for different standardized turbidities Tz-std (see section 3.4.2), 
coloured lines the corresponding results of the Eigenvalue regressions. (b) Slopes of the 
regression functions shown in panel (a) versus Tz-std. The line shows the result of the exponential 
fit. (c) The same as (b) for the intercepts. 
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Figure 13: Regression model choice uncertainty (RU) for the different regression models as a 
function of standardized turbidity (Tz-std) for the linear scale. The examples show RU averaged 
over data sets with R²<0.75 (upper panels) and R²>0.90 (lower panels). The black lines represent 
the 10 and 90% percentiles of Tz-std averaged over all calibration data sets. Note the different 
limits in the ordinates of the left and the right panels. 



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF

Version:  August 11, 2019; 

61

Figure 14: idem Figure 13 but now for the log10 – transformed data.
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Figure 15: Sample SPMC as a function of Seapoint turbidity collected at various locations in the 
southern North Sea. The regression is calculated with the Eigenvalue model. The mean 
regressions are (SPMC=ax+b): all data (R²=0.88; a=1.53, b=-1); Jade Bay (R²=0.83; a=1.95, b=-
17), Weser estuary (R²=0.83; a=1.62, b=-21); Hoernum Bight (R²=0.95; a=1.41, b=0); German 
Bight (R²=0.99, a=1.05, b=1); Oosterschelde estuary (R²=0.74; a=2.34, b=-3); Belgian coast (data 
from Figure 9, R²=0.61, a=1.90, b=-5).



JO
URNAL P

RE-P
ROOF

JOURNAL PRE-PROOF

Version:  August 11, 2019; 

63

Figure 16: Sample SPMC and turbidity collected in the tidal inlet between two islands in the 
German Wadden Sea between 10 and 19 May 2011 (Becherer et al., 2016). Sample SPMC 
ranged between 7 mg/l and 500 mg/l, during the storm (14-17/05) no samples have been taken. 
(a) Time series of the ratio turbidity/sample SPMC and (b) dependence of the specific 
backscatter b = turbidity / sample SPMC on total organic carbon. All samples shown are taken 
after the storm, from 17th through 19th May. Surface data are taken 1 m below water surface. 
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Figure 17: Relation between optical (YSI, type 6920 V2) and acoustical backscatter sensor (ADV 
(Nortek, 6MHz) at a muddy (location 1) and a sandy bed site (location 2) located 1200m apart in 
the main tidal channel of a brackish marsh located in the Scheldt estuary during 2 tidal cycles 
(Schwarz et al., 2017).
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Figure 18: Changes in the ratio of turbidity to sample SPMC from 0.4 to 0.12 during a storm 
period in the Elbe estuary caused by the resuspension of sand grains. 
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Figure 19: The model SPMC uncertainty (normalized RMSE and residuals) as a function of the 
reference SPMC (sample or sensor derived SPMC) and SPMC range (see the dataset shown in 
Figure 10 and 11) for an acoustical and some optical backscatter sensors. The reference SPMC is 
from sample or OBS3+ derived SPMC. 
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Figure 20: The model SPMC uncertainty for the ADP’s of Figure 11 expressed as normalized 
RMSE and normalized residual for different regression models and as a function SPMC. Negative 
residuals have a higher ADP-derived SPMC than the OBS-derived one. 
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Figure 21: Workflow of activities and tasks to be performed in long-term SPMC measurements. 
The arrows indicate the flow information between the tasks and activities over the 
measurement phases. The measurement phases are plotted in serial order, but may overlap in 
the course of long-term installations.
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Figure 22: Scatterplot of sample SPMC (mg/l) versus turbidity measurements from various 
waters around the world. The turbidity data from RBINS and HZG have been collected with a 
Hach 2100S and those from Ifremer and University of Rouen by a Hach 2100N IS. HZG 
measurements were collected from 2009 to 2013, RBINS data are from 2007 to 2015 and 
Ifremer and University of Rouen data from 2015-2016. 
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Figure 23: The performance of different sensors (side-scattering: Hach; backscattering: OBS3+ 
and Wetlabs) during sensor calibration with different formazine solutions (left) and as 
compared with natural SPM samples.
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Highlights

Errors associated with optical and acoustical backscatter sensors for SPMC are quantified

A strict protocol limits the uncertainties

Systematic errors related to sensors, environment, sampling, calibration and humans may reach 
up to ±20% and to biofouling to 100% or more.

Changes of the inherent particle properties may result in uncertainties up to 200%. Additional 
sensors that detect particle properties are needed to limit uncertainties. 

A model based on the R² quantifies the uncertainty of the sensor derived SPMC in the 
calibration range and outside of it.

Hach-turbidities are a cheap alternative for sample SPMC within 20% uncertainty




