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On the orbital stability of a family of traveling waves for the
cubic Schrödinger equation on the Heisenberg group.

Louise Gassot

Abstract

We consider the focusing energy-critical Schrödinger equation on the Heisenberg group
in the radial case

i∂tu−∆H1u = |u|2u, ∆H1 =
1

4
(∂2
x + ∂2

y) + (x2 + y2)∂2
s , (t, x, y, s) ∈ R×H1,

which is a model for non-dispersive evolution equations. For this equation, existence of
smooth global solutions and uniqueness of weak solutions in the energy space are open
problems. We are interested in a family of ground state traveling waves parametrized by
their speed β ∈ (−1, 1). We show that the traveling waves of speed close to 1 present some
orbital stability in the following sense. If the initial data is radial and close enough to one
traveling wave, then there exists a global weak solution which stays close to the orbit of this
traveling wave for all times. A similar result is proven for the limiting system associated to
this equation.
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1 Introduction

1.1 Motivation
We are interested in the Schrödinger equation on the Heisenberg group{

i∂tu−∆H1u = |u|2u
u(t = 0) = u0

, (t, x, y, s) ∈ R×H1. (1)

The operator ∆H1 denotes the sub-Laplacian on the Heisenberg group. When the solution
is radial, in the sense that it only depends on t, |x+ iy| and s, the sub-Laplacian writes

∆H1 =
1

4
(∂2
x + ∂2

y) + (x2 + y2)∂2
s .

The Heisenberg group is a typical case of sub-Riemannian geometry where dispersive
properties of the Schrödinger equation disappear (see Bahouri, Gérard and Xu [3]). To take
it further, Del Hierro [9] proved sharp decay estimates for the Schrödinger equation on H-type
groups, depending on the dimension of the center of the group. More generally, Bahouri,
Fermanian and Gallagher [2] proved optimal dispersive estimates on stratified Lie groups of
step 2 under some property of the canonical skew-symmetric form. In contrast, they also
give a class of groups without this property displaying total lack of dispersion, which includes
the Heisenberg group.

Dispersion impacts the way one can address the Cauchy problem for the Schrödinger
equation. Indeed (see Burq, Gérard and Tzvetkov [6], remark 2.12), the existence of a
smooth local in time flow map on the Sobolev space Hs(M) for the Schrödinger equation on
a Riemaniann manifold M with Laplace-Beltrami operator ∆{

i∂tu−∆u = |u|2u
u(t = 0) = u0

implies the following Strichartz estimate

‖ eit∆f‖L4([0,1]×M)≤ C‖f‖H s
2 (M)

.

The argument also applies for the Heisenberg group with the homogeneous Sobolev spaces
Ḣs(H1), for which the inequality holds if and only if s ≥ 2 [12]. In particular, uniqueness of
weak solutions in the energy space Ḣ1(H1) is an open problem, whereas without a conser-
vation law controlling the Ḣ2-norm, there is no existence existence result of smooth global
solutions. Constructing weak global solutions to the Schrödinger equation on the Heisenberg
group is still possible through a compactness argument, nevertheless, this method does not
ensure that these solutions are relevant. Indeed, the energy of the solution is only bounded
above by the initial energy. Therefore, the cancellation of the energy of the solution at some
time may not imply that the solution is identically zero, and we do not exclude the possibility
of non-uniqueness of weak solutions as in the 2D incompressible Euler equation [8].

The aim of this paper is to construct some weak global solutions with a prescribed
behaviour. More precisely, given an initial data close to some ground state traveling wave
solution for the Schrödinger equation on the Heisenberg group, we want to construct a weak
global solution which stays close to the orbit of the traveling wave for all times. Combined
with an uniqueness result, this would lead to the orbital stability of this ground state traveling
wave.

1.2 Main results
We consider a family of traveling waves with speed β ∈ (−1, 1) under the form

uβ(t, x, y, s) =
√

1− βQβ(x, y, s+ βt).

The profile Qβ satisfies the following stationary hypoelliptic equation

−∆H1 + βDs

1− β
Qβ = |Qβ |2Qβ .
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Because of the scaling invariance, it would have been equivalent in the rest of the study to
define Qβ as

uβ(t, x, y, s) = Qβ

(
x√

1− β
,

y√
1− β

,
s+ βt

1− β

)
.

From [11], we know that as β tends to 1, the ground state solutions of speed β converge up
to symmetries in Ḣ1(H1) to some profile Q. Moreover, Q is solution to a limiting equation

DsQ = Π+
0 (|Q|2Q), (2)

for which the ground state solution is unique up to symmetries, equal to

Q(x, y, s) =
i
√

2

s+ i(x2 + y2) + i
.

The operator Π+
0 is an orthogonal projector onto a relevant space for our analysis denoted

by V +
0 . For more details, see the Notation part 2.
We first prove the conditional orbital stability of the ground state Q in the limiting

equation, and then focus on the conditional orbital stability of the ground states Qβ in the
Schrödinger equation on the Heisenberg group as β is close to 1.

Definition 1.1. Fix u ∈ Ḣ1(H1) and X = (s0, θ, α) ∈ R× T× R∗+. We denote by TXu the
element of Ḣ1(H1) satisfying

TXu(x, y, s) := eiθαu(αx, αy, α2(s− s0)), (x, y, s) ∈ H1.

We also define
d(u,M) = inf

X∈R×T×R∗
+

‖TXu−Q‖Ḣ1(H1),

as the distance of u to the orbitM of Q

M = {TXQ | X ∈ R× T× R∗+},

and
d(u,

√
1− βQβ) = inf

X∈R×T×R∗
+

‖TXu−
√

1− βQβ‖Ḣ1(H1),

as the distance of u√
1−β to the orbit Qβ of Qβ

Qβ = {TXQβ | X ∈ R× T× R∗+}.

Our first result is that the profile Q is conditionally orbitally stable for the evolution
problem linked to the limiting equation{

i∂tu = Π+
0 (|u|2u)

u(t = 0) = u0

. (3)

Theorem 1.2 (Conditional orbital stability of Q). For some c0 > 0 and r0 > 0 the following
holds. Let r ≤ r0 and u0 ∈ Ḣ1(H1) ∩ V +

0 such that

‖u0 −Q‖Ḣ1(H1)< r2. (4)

Then there exists a weak solution u ∈ C(R, Ḣ1(H1)) (with the weak topology) to equation (3)
such that for all t ∈ R,

d(u(t),M) ≤ c0r.

Using the links between the limiting equation and the Schrödinger equation, we deduce
our second result : the conditional orbital stability of the profiles Qβ for the Schrödinger
equation when β is close to 1 in the radial case.

Theorem 1.3 (Conditional orbital stability of Qβ). For some c0 > 0 and r0 > 0 the
following holds. Let r ∈ (0, r0). Then there exists β∗ ∈ (0, 1) such that if β ∈ (β∗, 1), and if
u0 ∈ Ḣ1(H1) is radial and satisfies
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• if u0 ∈ Ḣ1(H1) ∩ V +
0 :

‖u0 −
√

1− βQβ‖Ḣ1(H1)<
√

1− βr2

• in the general case :
‖u0 −

√
1− βQβ‖Ḣ1(H1)< (1− β)r, (5)

then there exists a weak radial solution u ∈ C(R, Ḣ1(H1)) (with the weak topology) to the
Schrödinger equation on the Heisenberg group (1){

i∂tu−∆H1u = |u|2u
u(t = 0) = u0

such that for all t ∈ R, u(t)√
1−β is close to the orbit of Qβ :

d
(
u(t),

√
1− βQβ

)
≤ c0

√
1− βr.

Note that, unlike the weak solutions discussed in the first part 1.1, the energy of the weak
solutions from Theorem 1.2 (resp. Theorem 1.3) is controlled, indeed, this energy is very close
to the one of the ground state Q (resp.

√
1− βQβ). Furthermore, these two theorems would

imply the orbital stability of Q and Qβ in the radial case in both situations if we had a
uniqueness result for the solutions.

The assumption required on a general initial condition for the Schrödinger equation (5)
is owing to the estimates on the component of the initial condition on the orthogonal of V +

0 .
In the assumptions of Theorem 1.2, this component is naturally zero, leading to a weaker
assumption (4) on the initial condition.

The key point in both proofs is the following local stability estimate for Q, which comes
from the invertibility of the linearized operator around Q for the limiting equation (2) on a
subspace of V +

0 of finite co-dimension.

Definition 1.4. For u ∈ Ḣ1(H1) ∩ V +
0 , we define

δ(u) :=
∣∣∣‖u‖2Ḣ1(H1)

−‖Q‖2
Ḣ1(H1)

∣∣∣+
∣∣∣‖u‖4L4(H1)−‖Q‖

4
L4(H1)

∣∣∣
= |P(u)− P(Q)|+|E(u)− E(Q)|.

Proposition 1.5. [11] There exist δ0 > 0 and C > 0 such that for all u ∈ Ḣ1(H1) ∩ V +
0 ,

if δ(u) ≤ δ0, then
d(u,M)2 ≤ Cδ(u).

In order to prove Theorem 1.2, we construct the weak solution for the limiting initial
value problem (3) as a limit of smooth functions. The approximating functions solve slightly
modified equations where we have cut frequencies, so that the Cauchy problem is globally
well-posed. We show that we can control their distance to the orbit of the ground state
Q using Proposition 1.5. Finally, we build modulation parameters which stay bounded on
finite time intervals for the approximate solutions, and through a compactness argument, we
control the distance of the weak solution to the orbit of Q when passing to the limit.

For Theorem 1.3, the idea for the construction is the same, however we only have at
our disposal the information on the limiting equation from Proposition 1.5. Therefore, we
need to take advantage of the fact that Qβ is close to Q when β is close to 1. In this spirit,
in order to tackle Theorem 1.3 for the speed β, we first introduce Cauchy problems for
the Schrödinger equation (1) with a parameter γ increasing from β to 1. We display some
continuity between the Cauchy problems, therefore it is possible to show their convergence
to a Cauchy problem for the limiting equation as γ tends to 1. In the proof, we combine this
strategy with the above method : we approximate by smooth functions the weak solutions
to the Cauchy problems with parameter γ by cutting frequencies. Finally, we are able to
get back to the problem with speed β by continuity and conclude in the same way as the
proof of Theorem 1.2, by constructing bounded modulation parameters for the approximate
solutions.
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1.3 Comparison with other equations
Concerning the focusing energy-critical Schrödinger equation on the Euclidean plane RN

i∂tu−∆u = |u|pc−1u,

where N ≥ 3 and pc = N+2
N−2 , there exists an explicit stationary solution

W (x) =
1

(1 + |x|2
N(N−2) )

N−2
2

.

The orbit {x 7→ CW (x+x0

λ ) | (C, x0, λ) ∈ R × R × R∗+} of W is the set of minimizers for
the Sobolev embedding Ḣ1(RN ) ↪→ L2∗

(RN ) (see the work of Talenti [17] and Aubin [1]).
The energy E(W ) = 1

2‖W‖Ḣ1(RN )−
1

pc+1‖W‖Lpc+1(RN ) and the Ḣ1 norm ‖W‖Ḣ1(RN ) play
an important role in the dynamical behaviour of the solutions. Kenig and Merle [10] proved
in the radial case that if N ∈ {3, 4, 5} and the initial condition u0 ∈ Ḣ1(RN ) satisfies
E(u0) < E(W ) and ‖u0‖Ḣ1(RN )< ‖W‖Ḣ1(RN ), then the solution is global and scatters in
Ḣ1(RN ), whereas if E(u0) < E(W ) and ‖u0‖Ḣ1(RN )> ‖W‖Ḣ1(RN ), then the solution must
blow up in finite time.

The situation is different for the Schrödinger equation on the Heisenberg group. Indeed,
from the equation satisfied Qβ , one can see that the traveling waves

uβ(t, x, y, s) =
√

1− βQβ(x, y, s+ βt)

have a vanishing energy as β tends to 1 :

E(uβ(t)) =
1

2
‖uβ(t)‖2

Ḣ1(H1)
−1

4
‖uβ(t)‖4L4(H1)∼ (1− β)

π2

2
→ 0,

therefore there exists solutions that do not scatter with arbitrary small energy.
A better parallel would be the mass-critical focusing half-wave equation on the real line

i∂tu+ |D|u = |u|2u, (t, x) ∈ R× R, (6)

where D = −i∂x, |̂D|f(ξ) = |ξ|f̂(ξ). The half-wave equation in one dimension also presents
some lack of dispersion, and admits traveling waves with speed β ∈ (−1, 1) (see Krieger,
Lenzmann and Raphaël [14])

u(t, x) = Qβ

(x+ βt

1− β

)
e−it,

where the profile Qβ is a solution to

|D|−βD
1− β

Qβ +Qβ = |Qβ |2Qβ .

The profiles Qβ in the half-wave equation converge [13] as β tends to 1 in H
1
2 (R) to a ground

state solution Q to some limiting equation

DQ+Q = Π(|Q|2Q), D = −i∂x.

From Q, we recover a traveling wave solution to the cubic Szegő equation

i∂tu = Π(|u|2u) (7)

by setting u(t, x) = Q(x−t) e−it.Moreover, the linearized operator around Q is coercive [16],
and in particular, the Szegő profile is orbitally stable in the relevant space for Q

H
1
2
+(R) = {u ∈ H 1

2 (R) | Supp(û) ⊂ R+}.
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Theorem 1.6 (Orbital stability of Q for the Szegő equation). There exist ε0 > 0 and C > 0

such that for all solution u of the Szegő equation (7) with initial condition u0 ∈ H
1
2
+(R), if

‖u0 −Q‖
H

1
2 (R)
≤ ε0,

then
sup
t∈R

inf
(γ,y)∈T×R

‖e−iγu(t, · − y)−Q‖2
H

1
2 (R)
≤ C‖u0 −Q‖

H
1
2 (R)

.

Gérard, Lenzmann, Pocovnicu and Raphaël [13] deduced the invertibility of the linearized
operator for the half-wave equation around the profiles Qβ when β is close enough to 1, and
their estimates imply the orbital stability of theses profiles.

Theorem 1.7 (Orbital stability of Qβ for the half-wave equation). There exists β∗ ∈ (0, 1)
such that the following holds. Let β ∈ (β∗, 1). Then there exist ε0(β) > 0 and C(β) > 0 such
that for all solution u of the half-wave equation (6) with initial condition u0 ∈ H

1
2 (R), if

‖u0 −Qβ(
·

1− β
)‖
H

1
2 (R)
≤ ε0(β),

then

sup
t∈R

inf
(γ,y)∈T×R

‖e−iγu(t, · − y)−Qβ(
·

1− β
)‖2
H

1
2 (R)
≤ C‖u0 −Qβ(

·
1− β

)‖
H

1
2 (R)

.

In higher dimensions d ≥ 2, traveling waves for the half-wave equation on Rd

i∂tu+
√
−∆u = |u|p−1u, (t, x) ∈ R× Rd,

are also orbitally stable in the radial case for mass-subcritical non-linearities 1 < p < 1 + 2
n ,

but orbitally unstable in the mass-supercritical regime 1 + 2
n < p < 1 + 2

n−1 [5]. Moreover,
in the energy-critical and subcritical case, Bellazzini, Georgiev, Lenzmann and Visciglia [4]
proved that there can be no small data scattering in the energy space because of the existence
of traveling waves with arbitrary small energy.

As we will see in this paper, one cannot directly adapt the proofs for the half-wave
equation because we lack information on the Cauchy problem. A second complication arising
in comparison to the half-wave equation is the fact that only two conservation laws are
available (energy and momentum), because the masses of the ground states may be infinite
(this fact is easy to check for Q for instance). The method both for the Schrödinger equation
on the Heisenberg group and for its limiting system is the construction of some weak solutions
as a limit of smooth functions, and show that we can pass to the limit on their stability
properties.

The paper is organized as follows. We first prove the orbital stability of Q for the limiting
equation in Section 3. Then, we assess how close the solutions are to the limiting equation
as β tends to 1, in order to study the orbital stability of Qβ for the Schrödinger equation in
Section 4.

Acknowledgements The author is grateful to her PhD advisor P. Gérard for his gen-
erous advice and encouragement.

2 Notation

2.1 The Heisenberg group
Let us now recall some facts about the Heisenberg group. We use coordinates and identify
the Heisenberg group H1 with R3. The group multiplication is given by

(x, y, s) · (x′, y′, s′) = (x+ x′, y + y′, s+ s′ + 2(x′y − xy′)).

The Lie algebra of left-invariant vector fields on H1 is spanned by the vector fields X =
∂x + 2y∂s, Y = ∂y − 2x∂s and T = ∂s = 1

4 [Y,X]. The sub-Laplacian is defined as

L0 :=
1

4
(X2 + Y 2) =

1

4
(∂2
x + ∂2

y) + (x2 + y2)∂2
s + (y∂x − x∂y)∂s.
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When u is a radial function, the sub-Laplacian coincides with the operator

∆H1 :=
1

4
(∂2
x + ∂2

y) + (x2 + y2)∂2
s .

The space H1 is endowed with a smooth left invariant measure, the Haar measure, which
in the coordinate system (x, y, s) is the Lebesgue measure dλ3(x, y, s). Sobolev spaces of
positive order can then be constructed on H1 from powers of the operator −∆H1 , for example,
Ḣ1(H1) is the completion of the Schwarz space S (H1) for the norm

‖u‖Ḣ1(H1):= ‖(−∆H1)
1
2u‖L2(H1).

2.2 Decomposition along the Hermite functions
In order to study radial functions valued on the Heisenberg group H1, it is convenient to
use their decomposition along Hermite-type functions (see for example [15], Chapters 12 and
13). The Hermite functions

hm(x) =
1

π
1
4 2

m
2 (m! )

1
2

(−1)m e
x2

2 ∂mx ( e−x
2

), x ∈ R,m ∈ N,

form an orthonormal basis of L2(R). In L2(R2), the family of products of two Hermite
functions (hm(x)hp(y))m,p∈N diagonalizes the two-dimensional harmonic oscillator : for all
m, p ∈ N,

(−∆x,y + x2 + y2)hm(x)hp(y) = 2(m+ p+ 1)hm(x)hp(y).

Given u ∈ S (H1), we will denote by û its usual Fourier transform under the s variable,
with corresponding variable σ

û(x, y, σ) =
1√
2π

∫
R

e−isσu(x, y, s) ds.

For m, p ∈ N, set ĥm,p(x, y, σ) := hm(
√

2|σ|x)hp(
√

2|σ|y). Then the family (hm,p)m,p∈N
diagonalizes the sub-Laplacian in the following sense :

̂∆H1hm,p = −(m+ p+ 1)|σ|ĥm,p.

Let k ∈ {−1, 0, 1}, and denote by Ḣk(H1)∩ V ±n the subspace of Ḣk(H1) spanned by {hm,p |
m, p ∈ N,m+ p = n}. Some u±n ∈ Ḣk(H1) belongs to Ḣk(H1) ∩ V ±n if there exists a family
(f±m,p)m+p=n such that

û±n (x, y, σ) =
∑

m,p∈N;
m+p=n

f±m,p(σ)ĥm,p(x, y, σ)1σ≷0.

For u±n ∈ Ḣk(H1) ∩ V ±n , the Ḣk-norm of u±n writes

‖u±n ‖2Ḣk(H1)
=

∫
R±

((n+ 1)|σ|)k
∫
R2

|û±n (x, y, σ)|2 dxdy dσ

=
∑

m,p∈N;
m+p=n

∫
R±

((n+ 1)|σ|)k|f±m,p(σ)|2 dσ

2|σ|
.

Any function u ∈ Ḣk(H1) admits a decomposition along the orthogonal sum of the subspaces
Ḣk(H1)∩V ±n . Let us write u =

∑
±
∑
n∈N u

±
n where u±n ∈ Ḣk(H1)∩V ±n for all (n,±). Then

‖u‖2
Ḣk(H1)

=
∑
±

∑
n∈N
‖u±n ‖2Ḣk(H1)

.

For k = 0, we get an orthogonal decomposition of the space L2(H1), and denote by Π±n
the associated orthogonal projectors.
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The particular space Ḣk(H1)∩ V +
0 is spanned by a unique radial function h+

0 , satisfying

ĥ+
0 (x, y, σ) =

1√
π

e−(x2+y2)σ1σ≥0.

Set u ∈ Ḣk(H1) ∩ V +
0 , then there exists f such that

û(x, y, s) = f(σ)ĥ+
0 (x, y, σ),

and
‖u‖2

Ḣk(H1)
=

∫
R+

|f(σ)|2 dσ

2σ1−k .

3 Conditional orbital stability of the ground state Q in
the limiting equation
In this section, we prove Theorem 1.2 on the conditional orbital stability of the ground state
Q in the limiting equation (3){

i∂tu = Π+
0 (|u|2u)

u(t = 0) = u0 ∈ Ḣ1(H1) ∩ V +
0

, (t, x, y, s) ∈ R×H1.

For convenience, we replace in this part the elements u ∈ Ḣk(H1) ∩ V +
0 , k ∈ {−1, 0, 1} with

the corresponding holomorphic function on the complex upper half-plane Fu ∈ Ḣ
k
2 (C+) ∩

Hol(C+), defined as
Fu(s+ i(x2 + y2)) := u(x, y, s),

which transforms the Cauchy problem for u in a Cauchy problem for Fu written as{
i∂tu = P0(|u|2u)

u(t = 0) = u0 ∈ Ḣ
1
2 (C+) ∩Hol(C+)

, (t, z) ∈ R× C+, (8)

P0 being a Bergman projector. We recall such a correspondence in part 3.1. Then we
construct some smooth functions approximating a weak solution of equation (8) in part 3.2,
prove their weak convergence in part 3.3, and deduce from their distance to the orbit of Q
an upper bound on the distance of the weak limit to this orbit in part 3.4.

3.1 Weighted Bergman spaces

Recall that if u ∈ Ḣk(H1) ∩ V +
0 , then Fu ∈ Ḣ

k
2 (C+) ∩ Hol(C+), and the Fourier transform

of u along the s variable corresponds to a function in L2(R+, σ
k−1 dσ) : for some f ∈

L2(R+, σ
k−1 dσ),

Fu(z) =
1

π
√

2

∫ +∞

0

eizσf(σ) dσ

where

‖u‖2
Ḣk(H1)

= π‖Fu‖2
Ḣ
k
2 (C+)

= π‖(−i∂z)
k
2 Fu‖2L2(C+)=

1

2

∫ +∞

0

|f(σ)|2σk−1 dσ.

For k < 1, Fu belongs to the weighted Bergman space A2
1−k.

Definition 3.1 (Weighted Bergman spaces). Given k < 1, the weighted Bergman space
A2

1−k is the subspace of L2
1−k := L2(C+, Im(z)−k dλ(z)) composed of holomorphic functions

of the complex upper half-plane C+ :

A2
1−k :=

{
F ∈ Hol(C+) | ‖F‖2L2

1−k
:=

∫ +∞

0

∫
R
|F (s+ it)|2 ds

dt

tk
< +∞

}
.

Indeed, recall the Paley-Wiener theorem for Bergman spaces [7].

8



Theorem 3.2 (Paley-Wiener). Let k < 1. Then for every f ∈ L2(R+, σ
k−1 dσ), the follow-

ing integral is absolutely convergent on C+

F (z) =
1√
2π

∫ +∞

0

eizσf(σ) dσ, (9)

and defines a function F ∈ A2
1−k which satisfies

‖F‖2L2
1−k

=
Γ(1− k)

21−k

∫ +∞

0

|f(σ)|2σk−1 dσ. (10)

Conversely, for every F ∈ A2
1−k, there exists f ∈ L2(R+, σ

k−1 dσ) such that (9) and (10)
hold.

For k = 1, Fu belongs to the Hardy space H2(C+).

Definition 3.3. The Hardy space H2(C+) space of holomorphic functions of the upper half-
plane C+ such that the following norm is finite :

‖F‖2H2(C+):= sup
t>0

∫
R
|F (s+ it)|2 ds < +∞.

Theorem 3.4 (Paley-Wiener). For every f ∈ L2(R+), the following integral is absolutely
convergent on C+

F (z) =
1√
2π

∫ +∞

0

eizσf(σ) dσ, (11)

and defines a function F in the Hardy space H2(C+) which satisfies

‖F‖2H2(C+)=

∫ +∞

0

|f(σ)|2 dσ. (12)

Conversely, for every F ∈ H2(C+), there exists f ∈ L2(R+) such that (11) and (12) hold.

In the following, we will work with the holomorphic representations, the solutions being
valued in the Hardy space H2(C+) = Ḣ

1
2 (C+) ∩Hol(C+).

3.2 Construction of approximate solutions
Given an initial data u0 ∈ H2(C+) = Ḣ

1
2 (C+) ∩Hol(C+) close enough to the ground state

Q(z) =

√
2

z + i
,

we want to construct a global solution to the Cauchy problem (8){
i∂tu = P0(|u|2u), (t, z) ∈ R× C+

u(t = 0) = u0

which stays close to Q (up to symmetries) for all times. The Bergman projection P0 from
L2(C+) to A2

1 writes (see eg [7])

P0(u)(z) = − 1

π

∫
R+

∫
R

1

(z − s+ it)2
u(s+ it) dsdt, z ∈ C+.

We approximate u by functions with higher regularity, satisfying equations for which we
can use a classical global well-posedness result.
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Construction of smoothing projectors P̃ε,M : For ε,M > 0, we define the projec-
tor P̃ε,M as follows. Write u ∈ Ḣk(C+)∩Hol(C+), k ≤ 1

2 (or u ∈ Hk(C+)∩Hol(C+), k ≥ 0)
as

u(z) =
1√
2π

∫ +∞

0

eizσf(σ) dσ,

then

P̃ε,M (u)(z) :=
1√
2π

∫ M

ε

eizσf(σ) dσ.

This projector cuts the high and low frequencies of u, in order to add some regularity on the
solutions. It defines a bounded projector from Ḣk(C+) ∩ Hol(C+) to itself for k ≤ 1

2 , and
from Hk(C+) ∩Hol(C+) to itself for k ≥ 0.

Construction of a sequence of approximate solutions (un)n : We consider
f ∈ L2(R+) such that for all z ∈ C+,

u0(z) =
1√
2π

∫ +∞

0

eizσf(σ) dσ,

which satisfies
‖u0‖2

Ḣ
1
2 (C+)

=
1

2
‖f‖2L2(R+).

Let us fix a sequence of positive numbers (εn)n going to zero, and consider the following
initial data belonging to H2(C+) ∩Hol(C+)

un0 (z) := P̃εn, 1
εn
u0(z) =

1√
2π

∫ 1/εn

εn

eizσf(σ) dσ.

We denote by H2
ε (C+)∩Hol(C+) the space of functions u ∈ H2(C+)∩Hol(C+) satisfying

P̃ε, 1ε (u) = u. On this space, the Ḣk-norms, k ≥ 0, are equivalent :

ε2k‖u‖2L2(C+)≤ ‖u‖
2
Ḣk(C+)

=
1

2

∫ 1/ε

ε

σ2k−1|f(σ)|2 dσ ≤ 1

ε2k
‖u‖2L2(C+).

Define the projection Pn0 as
Pn0 = P̃εn, 1

εn
◦ P0.

We consider the following Cauchy problem{
i∂tun = Pn0 (|un|2un)

un(t = 0) = un0
, (13)

which is globally well-posed in H2
εn(C+) ∩Hol(C+).

Proposition 3.5. Let un0 ∈ H2
εn(C+) ∩ Hol(C+). Then there exists a unique solution un ∈

C∞(R, H2
εn(C+) ∩Hol(C+)) of (13) in the distribution sense.

Proof. The local existence comes from the Cauchy-Lipschitz theory for PDEs. Indeed,
Hk(C+)∩Hol(C+) is an algebra as soon as k > 1, and in this case, P0 extends to a bounded
projector from Hk(C+)∩Hol(C+) to itself preserving Hk

εn(C+)∩Hol(C+), therefore Pn0 ex-
tends to a bounded projector from Hk(C+) ∩Hol(C+) onto Hk

εn(C+) ∩Hol(C+). Moreover,
the time of existence of the solution only depends on the norm of the initial data in H2(C+).
In order to prove that local solutions extend globally in time, it is now enough to show that
the H2-norm of the solution stays bounded. Thanks to the equivalence of the Ḣk-norms in
H2
εn(C+) ∩Hol(C+), this lies in the fact that equation (13) has conserved momentum

P(u) := (u,−iuz)L2(C+) = ‖u‖2
Ḣ

1
2 (C+)

.

10



The energy E(u) = ‖u‖4L4(C+) is also conserved.
We now show that un(t) is close to the orbit M of the ground state Q. Thanks to

Proposition 1.5, it is enough to focus on δ(un(t)). But using the conservation laws, we know
that for all t ∈ R,

δ(un(t)) = δ(un0 ).

Moreover, by construction of un0 , we know that ‖un0 − u0‖
Ḣ

1
2 (C+)

tends to 0 as n tends to
+∞, therefore δ(un0 ) tends to δ(u0). Assume that δ(u0) < δ0, then δ(un0 ) < δ0 after some
rank N . Thanks to Proposition 1.5, we deduce that for all n ≥ N and t ∈ R,

d(un(t),M)2 ≤ Cδ(un0 ). (14)

3.3 Weak convergence
In this part, we show that un has a weak limit u, which is a weak solution to equation (8).
In order to do so, we first prove that t 7→ ∂tun(t) is uniformly bounded in Ḣ−

1
2 (C+), then

use Ascoli’s theorem.
Because of the conservation of the momentum and the fact that P(un0 ) ≤ P(u0) for all

n ∈ N, we know that for all n ∈ N and t ∈ R,

‖un(t)‖
Ḣ

1
2 (C+)

≤ ‖u0‖
Ḣ

1
2 (C+)

.

Using the equation satisfied by un, we also know that

‖∂tun(t)‖
Ḣ− 1

2 (C+)
≤ ‖Pn0 (|un|2un)(t)‖

Ḣ− 1
2 (C+)

.

By the dual Sobolev embedding L
4
3 (C+) ↪→ Ḣ−

1
2 (C+) and the fact that P0 extends to a

bounded projector from Lp(C+) to itself as soon as 1 < p < +∞ (see for example [7]), we
can estimate

‖Pn0 (|un|2un)(t)‖
Ḣ− 1

2 (C+)
≤ ‖P0(|un|2un)(t)‖

Ḣ− 1
2 (C+)

≤ C‖P0(|un|2un)(t)‖
L

4
3 (C+)

≤ C ′‖|un|2un(t)‖
L

4
3 (C+)

≤ C ′‖un(t)‖3L4(C+).

Since un(t) is uniformly bounded in Ḣ
1
2 (C+) and therefore in L4(C+), we conclude that the

term ‖∂tun(t)‖
Ḣ− 1

2 (C+)
is also uniformly bounded.

We now prove that that up to a subsequence, (un)n converges in C([−T, T ], Ḣ
1
2 (C+) ∩

Hol(C+)) (with the weak topology) to a function u for all T > 0.
We know that Ḣ−

1
2 (C+)∩Hol(C+) is separable, since it is isometric to L2(R+). Moreover,

by cutting the Fourier function f at infinity, one can see that Ḣ−
1
2 (C+)∩Ḣ 1

2 (C+)∩Hol(C+)

is dense in Ḣ−
1
2 (C+) ∩ Hol(C+). We can therefore consider a countable sequence (ϕk)k in

Ḣ−
1
2 (C+) ∩ Ḣ 1

2 (C+) ∩ Hol(C+) such that every function in Ḣ−
1
2 (C+) ∩ Hol(C+) can be

approximated by a subsequence of (ϕk)k for the Ḣ−
1
2 -norm.

Fix k ∈ N. Since (t 7→ ∂tun(t))n and (t 7→ un(t))n are uniformly bounded in Ḣ−
1
2 (C+)

and in Ḣ
1
2 (C+) respectively, the sequence `n(·, ϕk) : t ∈ [−T, T ] 7→ (un(t), ϕk) is equicontin-

uous and equibounded : for all n and t,

|∂t`n(t, ϕk)|= |(∂tun(t), ϕk)|≤ ‖∂tun(t)‖
Ḣ− 1

2 (C+)
‖ϕk‖

Ḣ
1
2 (C+)

and
|`n(t, ϕk)|= |(un(t), ϕk)|≤ ‖un(t)‖

Ḣ
1
2 (C+)

‖ϕk‖
Ḣ− 1

2 (C+)
.

Applying Ascoli’s theorem, for every k ∈ N, there is a subsequence (np)p such that
(`np(·, ϕk))p converges in C([−T, T ],C) to some continuous function `(·, ϕk) as p tends to
+∞. By a diagonal argument, we can use the same subsequence for all k ∈ N. Using a
second diagonal argument on a sequence of times (Tn)n going to +∞, we can assume that
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for all k, there exists `(·, ϕk) ∈ C(R,C) such that for all T > 0, the sequence (`np(·, ϕk))p
converges in C([−T, T ],C) to `(·, ϕk)|[−T,T ].

By density, ` extends to a bounded linear map ` ∈ C(R, (Ḣ− 1
2 (C+) ∩ Hol(C+))∗) (with

the weak topology). Now, by duality, ` can be represented by u ∈ C(R, Ḣ 1
2 (C+)∩Hol(C+)) :

for all ϕ ∈ Ḣ− 1
2 (C+) ∩Hol(C+),

`(t, ϕ) = (u(t), ϕ).

To conclude, by construction, for all T > 0, the sequence (`np |[−T,T ])p converges weakly to
`|[−T,T ] in the space C([−T, T ], (Ḣ−

1
2 (C+) ∩ Hol(C+))∗), therefore (un)n converges weakly

to u in C([−T, T ], Ḣ
1
2 (C+) ∩ Hol(C+)). Passing to the limit, we conclude that u is a global

solution to the original equation (8) in the distribution sense.
We deduce that

d(u(t),M)2 = inf
X∈R×T×R∗

+

‖u(t)− TXQ‖2
Ḣ

1
2 (C+)

≤ inf
X∈R×T×R∗

+

lim inf
n→+∞

‖un(t)− TXQ‖2
Ḣ

1
2 (C+)

.

Since X is not compact, this inequality is not sufficient if we want to apply inequality (14)
to estimate d(u(t),M). In the following part, we construct a map t 7→ Xn(t), such that for
all t ∈ R, un(t) is close to TXn(t)Q and (Xn(t))n∈N stays bounded, then use a compactness
argument.

3.4 Modulation
Recall the notation. Fix u ∈ H2(C+) = Ḣ

1
2 (C+)∩Hol(C+), X = (s, θ, α) ∈ R×T×R∗+, we

denote by TXu the element of H2(C+) satisfying

TXu(z) := eiθαu(α2(z − s)), z ∈ C+.

We write X−1 = (−s,−θ, α−1) and

|X|:= |s|+|θ|+|log(α)|.

We have also defined

d(u,M) = inf
X=(s,θ,α)∈R×T×R∗

+

‖TXu−Q‖
Ḣ

1
2 (C+)

,

as the distance of u to the orbit of Q

M = {TXQ | X ∈ R× T× R∗+}.

We choose 0 < r < 1, and assume that ‖u0 − Q‖
Ḣ

1
2 (C+)

< r2. For n ≥ N large enough

and K > 0, the regularized initial data un0 satisfies δ(un0 ) < Kr2. Applying Proposition 1.5,
there exist c0 > 0 and r0 > 0 such that if 0 < r < r0, then d(un(t),M) < c0r for all t ∈ R.

We start from the observation that around time t = 0, one can choose Xn(t) = (0, 0, 1)
for all n ≥ N since ‖un0 −Q‖Ḣ 1

2 (C+)
< c0r. By continuity, we know that ‖un(t)−Q‖

Ḣ
1
2 (C+)

≤
(1 + ε)c0r on some small time interval, which can be taken independently of n. Indeed,

‖un(t)−Q‖2
Ḣ

1
2 (C+)

= ‖un(t)‖2
Ḣ

1
2 (C+)

+‖Q‖2
Ḣ

1
2 (C+)

−2(un(t), Q)
Ḣ

1
2 (C+)

= ‖un0‖2
Ḣ

1
2 (C+)

+‖Q‖2
Ḣ

1
2 (C+)

−2(un(t),−iQz)L2(C+),

therefore the derivative of ‖un(t)−Q‖2
Ḣ

1
2 (C+)

is bounded by

∣∣∣∣ d

dt
‖un(t)−Q‖2

Ḣ
1
2 (C+)

∣∣∣∣ =
∣∣2(∂tun(t),−iQz)L2(C+)

∣∣
≤ 2‖∂tun(t)‖

Ḣ− 1
2 (C+)

‖−iQz‖
Ḣ

1
2 (C+)

.
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But we have already seen that ‖∂tun(t)‖
Ḣ− 1

2 (C+)
is bounded independently of t and n,

therefore there exists K > 0 such that for n ≥ N and t ∈ R

‖un(t)−Q‖2
Ḣ

1
2 (C+)

≤ ‖un0 −Q‖2
Ḣ

1
2 (C+)

+K|t|

≤ (c0r)
2 +K|t|.

For fixed ε > 0, we conclude that ‖un(t)−Q‖
Ḣ

1
2 (C+)

≤ (1+ε)c0r as long as |t|≤ (1+ε)2−1
K (c0r)

2.

Set ε > 0 and t1 := (1+ε)2−1
K (c0r)

2. Assume that at time t0, there exists a bounded
sequence (X0

n)n in R × T × R∗+ such that for all n, ‖un(t0) − TX0
n
Q‖

Ḣ
1
2 (C+)

< c0r. By the
above method, one can show that ‖un(t) − TX0

n
Q‖

Ḣ
1
2 (C+)

≤ (1 + ε)c0r on [t0 − t1, t0 + t1].
Indeed, let vn := T(X0

n)−1un. The equation satisfied by un is not invariant by scaling, but
one can explicit which equation is satisfied by vn. Recall that if

u(z) =
1√
2π

∫ +∞

0

eizσf(σ) dσ,

then

P̃ε,Mu(z) =
1√
2π

∫ M

ε

eizσf(σ) dσ.

Write (X0
n) =: (s0

n, θ
0
n, α

0
n) and P̃n0 := P̃ εn

(α0
n)2

, 1
εn(α0

n)2
◦ P0, then vn = T(X0

n)−1un satisfies

i(vn)t = P̃n0 (|vn|2vn),

moreover ‖vn(t0)−Q‖
Ḣ

1
2 (C+)

< c0r. But we have the same inequalities as above

‖∂tvn(t)‖
Ḣ− 1

2 (C+)
≤ ‖P̃0(|vn|2vn)(t)‖

Ḣ− 1
2 (C+)

≤ C‖P̃0(|vn|2vn)(t)‖
L

4
3 (C+)

≤ C ′‖|vn|2vn(t)‖
L

4
3 (C+)

≤ C ′‖vn(t)‖3L4(C+).

Since ‖vn(t)‖L4(C+)= ‖un(t)‖L4(C+) is uniformly bounded by conservation of the L4-norm, we
conclude that ‖vn(t)−Q‖

Ḣ
1
2 (C+)

= ‖un(t)−TX0
n
Q‖

Ḣ
1
2 (C+)

≤ (1+ε)c0r as long as |t− t0|≤ t1.
We construct Xn as a piecewise C1 functional on R as follows. For k ∈ Z, Xn is constant

on [kt1, (k + 1)t1[, equal to some Xk
n ∈ R × T × R∗+ to be chosen. We first set X−1

n =
X0
n = (0, 0, 1). Then, at time tk = kt1, k ≥ 1, we use the fact that d(un(tk),M) < r

and choose Xk
n such that ‖un(tk) − TXknQ‖Ḣ 1

2 (C+)
< c0r. Then from the above paragraph,

‖un(t)−TXknQ‖Ḣ 1
2 (C+)

≤ (1 + ε)c0r on [tk, tk + t1]. We do a similar construction for negative
times. The map Xn satisfies

‖un(t)− TXn(t)Q‖Ḣ 1
2 (C+)

≤ (1 + ε)c0r, t ∈ R.

It remains to show that Xn is bounded independently of n on bounded intervals. In order
to do so, it is enough to control the gap between Xk−1

n and Xk
n. By construction, at time tk,

‖un(tk)− TXk−1
n

Q‖
Ḣ

1
2 (C+)

≤ (1 + ε)c0r

and
‖un(tk)− TXknQ‖Ḣ 1

2 (C+)
< c0r,

therefore
‖TXk−1

n
Q− TXknQ‖Ḣ 1

2 (C+)
≤ (2 + ε)c0r.

Using the following Lemma, we conclude that if r is chosen small enough, then there exists
a constant c1 > 0 such that for all n ≥ N and k ∈ Z,

|Xk−1
n (Xk

n)−1|≤ c1.
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Lemma 3.6. For some constants c1, r1 > 0, the following holds. Let X ∈ R× T×R∗+ such
that

‖TXQ−Q‖
Ḣ

1
2 (C+)

≤ r1.

Then
|X|≤ c1.

Proof. Thanks to the invariance of the Ḣ
1
2 -norm by symmetries, one can assume that X =

(s, θ, α) with α ≥ 1 up to exchanging X and X−1. We develop

‖TXQ−Q‖2
Ḣ

1
2 (C+)

= ‖TXQ‖2
Ḣ

1
2 (C+)

+‖Q‖2
Ḣ

1
2 (C+)

−2(TXQ,Q)
Ḣ

1
2 (C+)

= 2π − 2(TXQ,Q)
Ḣ

1
2 (C+)

.

Now, recall that

Q(z) =

√
2

z + i
=

1√
2π

∫ +∞

0

eizσf(σ) dσ

with
f(σ) = −2i

√
πe−σ,

and

‖Q‖2
Ḣ

1
2 (C+)

=
1

2

∫ +∞

0

|f(σ)|2 dσ = π.

With this notation, the function corresponding to TXQ is g(σ) = −2i
√
πeiθe−isσe−

σ
α2 1

α2 ,
therefore

‖TXQ−Q‖2
Ḣ

1
2 (C+)

= 2π − 4πRe
(∫ +∞

0

eiθe−isσe−
σ
α2

1

α2
e−σ dσ

)
= 2π − 4πRe

(
eiθ

α2
(
is+ 1

α2 + 1
)) .

Set α = 1 + β with β ≥ 0. We want to bound s and β. By assumption,∣∣∣∣∣Re
(

eiθ

is (1+β)2

2 + 1 + β + β2

2

)
− 1

∣∣∣∣∣ ≤ r2
1

2π
=: δ1.

Denote z := eiθ

is
(1+β)2

2 +1+β+ β2

2

. The fact |Re(z) − 1|≤ δ1 implies that |z|≥ Re(z) ≥ 1 − δ1,
and if δ1 < 1, that

1

|z|
=

∣∣∣∣is (1 + β)2

2
+ 1 + β +

β2

2

∣∣∣∣ ≤ 1

1− δ1
.

On the one hand, taking the real part,

1 + β +
β2

2
≤ 1

1− δ1
.

Since β ∈ R+ 7→ 1 + β + β2

2 is strictly increasing and going to +∞ as β goes to +∞, there
exists some constant c > 0 such that β ≤ c, or in other terms 0 ≤ logα ≤ log(1 + c). On the
other hand, since β ≥ 0, the bound on the imaginary part implies that

|s|≤ 2

1− δ1
.

Using the Lemma, assume that 3c0r < r1 and fix t ∈ R. We now know that (Xn(t))n
takes values in a compact set : up to extraction, one can assume that (Xn(t))n converges to
someX(t). Moreover, for all t ∈ R and n ∈ N, ‖un(t)−TXn(t)Q‖Ḣ 1

2 (C+)
≤ (1+ε)c0r, therefore

passing to the weak limit n → +∞ we conclude that ‖u(t) − TX(t)Q‖Ḣ 1
2 (C+)

≤ (1 + ε)c0r.
Since ε > 0 can be taken arbitrarily small, we have proven the following reformulation of
Theorem 1.2.
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Theorem 3.7. For some c0 > 0 and r0 > 0, the following holds. Let r ≤ r0 and u0 ∈
Ḣ

1
2 (C+) ∩ Hol(C+) such that ‖u0 − Q‖

Ḣ
1
2 (C+)

< r2. Then there exists a weak solution u ∈

C(R, Ḣ 1
2 (C+) ∩Hol(C+)) (with the weak topology) to equation (8){

i∂tu = P0(|u|2u)

u(t = 0) = u0

, (t, z) ∈ R× C+

such that for all t ∈ R,
d(u(t),M) ≤ c0r.

4 Conditional orbital stability of the ground states Qβ in
the Schrödinger equation
We now consider the Schrödinger equation on the Heisenberg group (1){

i∂tu−∆H1u = |u|2u
u(t = 0) = u0

, (t, x, y, s) ∈ R×H1.

For β ∈ (β∗, 1), we are interested in solutions with initial data u0 ∈ Ḣ1(H1) satisfying

‖u0 −
√

1− βQβ‖Ḣ1(H1)< (1− β)r.

Let u be an eventual solution, and set

u(t, x, y, s) =
√

1− βU((1− β)t, x, y, s+ βt),

so that U is a solution to

i∂tU −
∆H1 + βDs

1− β
U = |U |2U, (t, x, y, s) ∈ R×H1. (15)

The initial data U0 satisfies

‖U0 −Qβ‖Ḣ1(H1)<
√

1− βr.

There are two relevant conserved quantities for this equation : the energy

Eβ(V ) :=
1

2
(−∆H1 + βDs

1− β
V, V )L2(H1) −

1

4
‖V ‖4L4(H1),

and the momentum
P(V ) := (DsV, V )L2(H1), V ∈ Ḣ1(H1).

Theorem 1.3 is equivalent to prove that if β is large, then one can construct a weak global
solution U to equation (15) which stays close to the orbit of Qβ for all times, which leads to
the following reformulation.

Theorem 4.1. For some constants c0 ∈ R∗+ and r0 ∈ R∗+, for all r ∈ (0, r0), there exists
β∗(r) ∈ (0, 1) such that the following holds. Let β ∈ (β∗(r), 1) and U0 ∈ Ḣ1(H1) satisfying

• if U0 ∈ Ḣ1(H1) ∩ V +
0 :

‖U0 −Qβ‖Ḣ1(H1)< r2

• in the general case :
‖U0 −Qβ‖Ḣ1(H1)<

√
1− βr.

Then there exists a global weak solution Uβ ∈ C(R, Ḣ1(H1)) (with the weak topology) to
equation (15) {

i∂tUβ −
∆H1+βDs

1−β Uβ = |Uβ |2Uβ
Uβ(t = 0) = U0

such that for all t ∈ R, Uβ(t) is close to the orbit Qβ = {TXQβ | X ∈ R× T× R∗+} of Qβ :

d(Uβ(t),Qβ) ≤ c0r.
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Comparing to the strategy deployed for the half-wave equation, the gap

δβ(V ) := |Eβ(V )− Eβ(Qβ)|+ |P(V )− P(Qβ)| , V ∈ Ḣ1(H1),

does not here directly control the distance of V to Qβ . Indeed, even the fact that δβ(V ) = 0
does not imply that V belongs to Qβ . This is due to the fact that we can only use two
conservation laws (energy and momentum) here, whereas an additional conservation laws
was available for the half-wave equation : the mass of the solution.

However, using that Qβ tends to Q as β tends to 1, one can instead show that the
component of the solution along the space V +

0 is close to Q and control the rest separately.
More precisely, decompose

U(t) = U+(t) +W (t),

where U+(t) ∈ Ḣ1(H1) ∩ V +
0 and W (t) ∈

⊕
(k,±) 6=(0,+) Ḣ

1(H1) ∩ V ±k . If we know that
W (t) is small enough, then δβ(U(t)) ≈ δ(U+(t)). This enables us to estimate the distance
d(U+(t),M) of U+(t) to the orbit of Q, and therefore the distance of U(t) to the orbit of
Qβ for β close to 1.

The plan of the proof is is as follows. Fix β ∈ (0, 1). We approximate the initial data
and the equation by smooth global functions (Uγ,n)γ∈[β,1),n∈N valued in H2(H1) in part 4.1.
We then decompose

Uγ,n(t) = U+
γ,n(t) +Wβ,n(t),

where U+
γ,n(t) ∈ Ḣ1(H1)∩ V +

0 and Wγ,n(t) ∈
⊕

(k,±)6=(0,+) Ḣ
1(H1)∩ V ±k . In part 4.2, we fix

n ∈ N, and study the limit γ → 1. We prove by using the conservation laws that Wγ,n(t)
stays small and that the gap δ(U+

γ,n(t)) is controlled as δ(U+
γ,n(t)) . r2 for γ ≥ β∗(n, t),

which leads to an upper bound

d(Uγ,n(t),M) < c0r, t ∈ R, γ ∈ [max(β∗(n, t), β), 1). (16)

Then, we show that the lower bound β∗(n, t) can be taken independently of n and t. Finally,
in part 4.3, we fix β ≥ β∗ and use the same method as for the limiting equation to find
an upper bound on the modulation parameters (Xβ,n(t))n∈N in order to pass to the limit
n→ +∞ in the above inequality (16).

4.1 Construction of approximate solutions

Construction of a sequence of smoothing projectors Π(n) : We define a se-
quence of projectors Π(n) close to identity, mapping elements of Ḣs(H1) (s = ±1) to smoother
functions, by cutting frequencies in the decomposition

Ḣs(H1) =
⊕
k∈N

⊕
±
Ḣs(H1) ∩ V ±k .

Using these projectors, we consider a sequence of equations approximating (15) for which
the Cauchy problem is globally well-posed.

Let u ∈ Ḣs(H1), s = ±1, which we decompose as a series of elements of Ḣs(H1) ∩ V ±k
for (k,±) ∈ (N,±). Write

u =

+∞∑
k=0

∑
±

Πk,±(u),

where for all (k,±) ∈ (N,±), Πk,±(u) ∈ Ḣs(H1) ∩ V ±k . Then

‖u‖2
Ḣs(H1)

=
∑
k∈N

∑
±

∫
R±

((k + 1)|σ|)s
∫
R2

|Π̂k,±(u)(x, y, σ)|2 dx dy dσ.

Let n ∈ N, we define Π(n)(u) as follows. We take the n-th partial sum and cut off the
frequencies |σ|→ 0 and |σ|→ +∞ :

Π̂(n)(u)(x, y, σ) :=

n∑
k=0

∑
±

Π̂k,±(u)(x, y, σ)1 1
n≤|σ|≤n

.
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Consequently,

‖Π(n)(u)‖2
Ḣs(H1)

=

n∑
k=0

∑
±

∫
{σ∈R±}∩{ 1

n≤|σ|≤n}
((k + 1)|σ|)s

∫
R2

|Π̂k,±(u)(x, y, σ)|2 dx dy dσ

converges to ‖u‖2
Ḣs(H1)

as n goes to +∞.

Moreover, if u ∈ Ḣ1(H1), then Π(n)(u) belongs to H2(H1). Indeed,

‖Π(n)(u)‖2H2(H1) =

n∑
k=0

∑
±

∫
{σ∈R±}∩{ 1

n≤|σ|≤n}
(1 + (k + 1)2|σ|2)

∫
R2

|Π̂k,±(u)(x, y, σ)|2 dxdy dσ,

but on the set { 1
n ≤ |σ|≤ n},

(1 + (k + 1)2|σ|2) ≤ n(n+ 2)(k + 1)|σ|,

therefore ‖Π(n)(u)‖H2(H1) is finite.

Construction of a sequence of approximate solutions (Uγ,n)γ∈[β,1),n∈N : Fix
β ∈ (0, 1), r > 0 and U0 ∈ Ḣ1(H1) such that

‖U0 −Qβ‖Ḣ1(H1)<
√

1− βr.

We want to construct a global solution to (15){
i∂tUβ −

∆H1+βDs
1−β Uβ = |Uβ |2Uβ

Uβ(t = 0) = U0

such that for all t ∈ R,
d(Uβ(t),Qβ) ≤ c0r.

By approximation, the idea would be to consider a sequence of equations{
i∂tUβ,n −

∆H1+βDs
1−β Uβ,n = Π(n)(|Uβ,n|2Uβ,n)

Uβ,n(t = 0) = Uβ,n0 = Π(n)(U0)
, n ∈ N, (17)

for which one can show that for all n large, there exists β∗(n) such that if β ≥ β∗(n), then

d(Uβ,n(t),Qβ) ≤ c0r, t ∈ R.

In order to get a lower bound β∗(n) independent of n, we rather construct a set of initial
data (Uγ,n0 )γ∈[β,1),n∈N and equations{

i∂tUγ,n −
∆H1+γDs

1−γ Uγ,n = Π(n)(|Uγ,n|2Uγ,n)

Uγ,n(t = 0) = Uγ,n0 = Π(n)(Uγ0 )
, n ∈ N, γ ∈ [β, 1), (18)

then use a continuity argument.
For γ ∈ [β, 1), the initial data Uγ0 is defined as follows :

Uγ0 :=
1− γ
1− β

U0 +
γ − β
1− β

Q.

If U0 ∈ Ḣ1(H1) ∩ V +
0 , we choose Uγ0 constant equal to U0. However, in the general case, we

cannot use this choice because we need the initial data Uγ0 to go to Ḣ1(H1)∩ V +
0 as γ tends

to 1.

Lemma 4.2. For some constants C0 > 0, β∗(r) ∈ (0, 1) and N(r) ∈ N the following holds.
Assume that β ∈ (β∗(r), 1). Then for all n ≥ N(r) and γ ∈ [β, 1),

|Eγ(Uγ,n0 )− E(Q)|+ |P(Uγ,n0 )− P(Q)| < C0r
2.
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Proof. We use the following convergence rate of (Qβ)β to Q as β tends to 1 (proved in
Appendix 5) :

‖Qβ −Q‖Ḣ1(H1)= o(
√

1− β).

If U0 ∈ Ḣ1(H1) ∩ V +
0 and ‖U0 − Qβ‖Ḣ1(H1)< r2, we have chosen Uγ0 constant equal to

U0 and it is enough to use that ‖Π(n)(U0)− U0‖Ḣ1(H1)→ 0 as n→ +∞.
We now treat the case ‖U0 − Qβ‖Ḣ1(H1)<

√
1− βr. By convergence of Qβ to Q, there

exists β∗ = β∗(r) ∈ (0, 1) such that for all β ∈ (β∗, 1),

‖Qβ −Q‖Ḣ1(H1)<
√

1− βr.

We decompose
Qβ = Q+

β +Rβ

and
U0 = U+

0 +W0

where Q+
β , U

+
0 ∈ Ḣ1(H1) ∩ V +

0 and Rβ ,W0 ∈
⊕

(k,±)6=(0,+) Ḣ
1(H1) ∩ V ±k . In the same way,

we decompose Uγ0 as
Uγ0 = (Uγ0 )+ +W γ

0

and Uγ,n0 = Π(n)(Uγ0 ) as
Uγ,n0 = (Uγ,n0 )+ +W γ,n

0 ,

where (Uγ0 )+, (Uγ,n0 )+ ∈ Ḣ1(H1) ∩ V +
0 and W γ

0 ,W
γ,n
0 ∈

⊕
(k,±)6=(0,+) Ḣ

1(H1) ∩ V ±k .
Since

‖W0 −Rβ‖Ḣ1(H1)≤ ‖U0 −Qβ‖Ḣ1(H1)<
√

1− βr,

then W0 satisfies

‖W0‖Ḣ1(H1) ≤ ‖W0 −Rβ‖Ḣ1(H1)+‖Rβ‖Ḣ1(H1)

≤ 2
√

1− βr.

Therefore, W γ
0 = 1−γ

1−βW0 satisfies

‖W γ
0 ‖Ḣ1(H1)≤ 2

1− γ√
1− β

r,

which implies that for all n ∈ N,

‖W γ,n
0 ‖Ḣ1(H1)≤ 2

1− γ√
1− β

r.

In particular,∣∣∣∣(−∆H1 + γDs

1− γ
W γ,n

0 ,W γ,n
0 )L2(H1)

∣∣∣∣+
∣∣(DsW

γ,n
0 ,W γ,n

0 )L2(H1)

∣∣ ≤ 8
1− γ
1− β

r2 + 4
(1− γ)2

1− β
r2

≤ 12r2.

Given the form of the energy

Eγ(Uγ,n0 ) =
1

2
(−∆H1 + γDs

1− γ
W γ,n

0 ,W γ,n
0 )L2(H1) +

1

2
(Ds(U

γ,n
0 )+, (Uγ,n0 )+)L2(H1)

− 1

4
‖(Uγ,n0 )+ +W γ,n

0 ‖4L4(H1),

it is now enough to estimate ‖(Uγ,n0 )+ −Q‖Ḣ1(H1). But,

‖(Uγ,n0 )+ − (Uγ0 )+‖Ḣ1(H1) ≤
1− γ
1− β

‖Π(n)((U0)+)− U+
0 ‖Ḣ1(H1)+

γ − β
1− β

‖Π(n)(Q)−Q‖Ḣ1(H1)

≤ ‖Π(n)((U0)+)− U+
0 ‖Ḣ1(H1)+‖Π

(n)(Q)−Q‖Ḣ1(H1),
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which converges to zero as n goes to +∞ independently of γ. Moreover,

‖(Uγ0 )+ −Q‖Ḣ1(H1) =
1− γ
1− β

‖U+
0 −Q‖Ḣ1(H1)

≤ 1− γ
1− β

(‖U0 −Qβ‖Ḣ1(H1)+‖W0‖Ḣ1(H1)+‖Qβ −Q‖Ḣ1(H1))

≤ 1− γ
1− β

4
√

1− βr

≤ 4r2

for β ≥ β∗(r) large enough.
To conclude, there exists C0 > 0, r0 > 0 and N ∈ N such that for all n ≥ N , r ∈ (0, r0)

and γ ∈ [β, 1),
|Eγ(Uγ,n0 )− E(Q)|+ |P(Uγ,n0 )− P(Q)| < C0r

2.

From now on, we assume that β ≥ β∗(r) and n ≥ N(r).
As in Proposition 3.5 for the limiting equation, equation (18) admits a unique global

solution in H2
n(H1) := Π(n)(H2(H1)).

Proposition 4.3. Let Uγ,n0 ∈ H2
n(H1). Then there exists a unique Uγ,n ∈ C∞(R, H2

n(H1))
such that (18) is satisfied in the distribution sense.

Here again, in order to show that the local maximal solutions are global, we use the
conservation of the momentum

P(V ) = (DsV, V )L2(H1),

and the following inequality valid for V ∈ H2
n(H1) :

(DsV, V )L2(H1) ≤ ‖V ‖2H2(H1)≤ n(n2 + 2n+ 2)(DsV, V )L2(H1).

4.2 Limit γ → 1 for the n-th partial sum
In this part, we use the conservation of energy and momentum to recover an upper bound
on d(Uγ,n(t),M) for γ ≥ β∗(n, t) close to 1. Then, we prove that the lower bound for γ can
be chosen independently of n and t.

For t ∈ R, we decompose Uγ,n(t) as

Uγ,n(t) = U+
γ,n(t) +Wγ,n(t).

We show that U+
γ,n(t) ∈ Ḣ1(H1) ∩ V +

0 is the main part for which we control δ(U+
γ,n(t)), and

Wγ,n(t) ∈
⊕

(k,±) 6=(0,+) Ḣ
1(H1)∩V ±k is a remainder term which vanishes in the limit γ → 1.

First, since P(Uγ,n(t)) = (DsUγ,n(t), Uγ,n(t))L2(H1) is conserved, bounded by C0r
2+P(Q)

for all γ ∈ [β, 1) and equivalent to ‖Uγ,n(t)‖2
Ḣ1(H1)

in H2
n(H1), there exists some constant

C(n) > 0 such that for all t ∈ R and γ ∈ [β, 1),

‖Uγ,n(t)‖Ḣ1(H1)≤ C(n).

But such a bound on ‖Uγ,n(t)‖Ḣ1(H1) and the conservation of energy imply that Wγ,n(t)
must vanish as γ tends to 1.

Lemma 4.4. For some constant C1 > 0 the following holds. Assume that there exists C > 0
(possibly depending on n), t ∈ R and γ ∈ [β, 1) such that ‖Uγ,n(t)‖Ḣ1(H1)≤ C. Then

‖Wγ,n(t)‖Ḣ1(H1)≤ C1(1 + C2)
√

1− γ.

Proof. We use the conservation of energy

Eγ(Uγ,n(t)) =
1

2
(−∆H1 + γDs

1− γ
Wγ,n(t),Wγ,n(t))L2(H1) +

1

2
(DsU

+
γ,n(t), U+

γ,n(t))L2(H1)

− 1

4
‖Uγ,n(t)‖4L4(H1)
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and the fact that
|Eγ(Uγ,n0 )− E(Q)|< C0r

2.

Thanks to the embedding Ḣ1(H1) ↪→ L4(H1), we know that

‖Uγ,n(t)‖4L4(H1)≤ K
4‖Uγ,n(t)‖4

Ḣ1(H1)
= K4C4.

Moreover, recall the equivalence of norms

1

2
‖w‖2

Ḣ1(H1)
≤ (−(∆H1 + γDs)w,w)L2(H1) ≤ 2‖w‖2

Ḣ1(H1)
, w ∈

⊕
(k,±) 6=(0,+)

Ḣ1(H1) ∩ V ±k .

We conclude that

1

4(1− γ)
‖Wγ,n(t)‖2

Ḣ1(H1)
≤ E(Q) + C0r

2 +
1

4
K4C4.

This Lemma implies that for all t ∈ R and γ ∈ [β, 1),

‖Wγ,n(t)‖Ḣ1(H1)≤ C1(1 + C(n)2)
√

1− γ,

which vanishes as γ tends to 1.
Fix t ∈ R. Since γ ∈ [β, 1) 7→ Wγ,n(t) is continuous, we can define β0(n, t) ≥ β as the

minimal element in [β, 1) such that for all γ ∈ [β0(n, t), 1),

‖Wγ,n(t)‖Ḣ1(H1)≤ r
2.

Lemma 4.5. For t ∈ R, γ ∈ [β, 1) 7→Wγ,n(t) ∈ Ḣ1(H1) is continuous.

Proof. Fix t ∈ R. We show that γ ∈ [β, 1) 7→ Uγ,n(t) ∈ Ḣ1(H1) is continuous. Let γ1, γ2 ∈
[β, 1) and set R := Uγ1,n − Uγ2,n. Then R is a solution to

i∂tR−
∆H1 + γ1Ds

1− γ1
R−

(
∆H1 + γ1Ds

1− γ1
− ∆H1 + γ2Ds

1− γ2

)
Uγ2,n

= Π(n)(|Uγ1,n|2Uγ1,n)−Π(n)(|Uγ2,n|2Uγ2,n).

We bound ‖∂tR(t)‖Ḣ1(H1), which is equivalent to controlling ‖∂tR(t)‖Ḣ−1(H1) since ∂tR(t) ∈
Π(n)(Ḣ1(H1)). We treat each term in the equation separately.

First,

‖−∆H1 + γ1Ds

1− γ1
R(t)‖Ḣ−1(H1) ≤

2

1− γ1
‖−∆H1R(t)‖Ḣ−1(H1)

≤ 2

1− γ1
‖R(t)‖Ḣ1(H1).

Then,

‖
(∆H1 + γ1Ds

1− γ1
−∆H1 + γ2Ds

1− γ2

)
Uγ2,n(t)‖Ḣ−1(H1)

≤ |γ2 − γ1|
(1− γ1)(1− γ2)

(
‖−∆H1Uγ2,n(t)‖Ḣ−1(H1)+‖DsUγ2,n(t)‖Ḣ−1(H1)

)
≤ |γ2 − γ1|

(1− γ1)(1− γ2)
2C(n).

Finally, there exists C ′(n) > 0 such that

‖Π(n)(|Uγ1,n|2Uγ1,n(t))−Π(n)(|Uγ2,n|2Uγ2,n(t))‖Ḣ−1(H1)≤ C
′(n)‖R(t)‖Ḣ1(H1).
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We define f(t) := ‖R(t)‖2
Ḣ1(H1)

for t ∈ R. Then there exists some constant C ′′(n) > 0

such that

f ′(t) ≤ 2‖∂tR(t)‖Ḣ1(H1)‖R(t)‖Ḣ1(H1)

≤ C ′′(n)‖∂tR(t)‖Ḣ−1(H1)‖R(t)‖Ḣ1(H1)

≤ C ′′(n)

(( 2

1− γ1
+ C ′(n)

)
‖R(t)‖2

Ḣ1(H1)
+

|γ2 − γ1|
(1− γ1)(1− γ2)

2C(n)‖R(t)‖Ḣ1(H1)

)
≤ C ′′(n)

(( 2

1− γ1
+ C ′(n) +

|γ2 − γ1|
(1− γ1)(1− γ2)

C(n)
)
‖R(t)‖2

Ḣ1(H1)
+

|γ2 − γ1|
(1− γ1)(1− γ2)

C(n)

)
.

Therefore, f(t) satisfies a Gronwall-type inequality

f(t)′ ≤ K1(n)f(t) +K2(n)
|γ2 − γ1|

(1− γ1)(1− γ2)

with
K1(n) = C ′′(n)

(
2

1− γ1
+ C ′(n) +

|γ2 − γ1|
(1− γ1)(1− γ2)

C(n)

)
,

and
K2(n) = C ′′(n)C(n).

This inequality implies that for all t ∈ R,

f(t) ≤ f(0)eK1(n)|t| +
K2(n)

K1(n)

|γ2 − γ1|
(1− γ1)(1− γ2)

(eK1(n)|t| − 1)

with
f(0) = ‖Π(n)(Uγ10 − U

γ2
0 )‖2

Ḣ1(H1)
.

Fix t ∈ R and γ1 ∈ [β, 1), we see that if γ2 tends to γ1, then f(t) tends to 0.

Assume now that β < β0(n, t) =: β0. We find an upper bound for β0 in [β, 1) independent
on n and t. The continuity of γ 7→Wγ,n(t) implies that

‖Wβ0,n(t)‖Ḣ1(H1)= r2.

The component of Uβ,n(t) along V +
0 is bounded by

‖U+
β,n(t)‖2

Ḣ1(H1)
≤ P(Uβ,n(t))

≤ P(Q) + C0r
2,

therefore
‖Uβ0,n(t)‖Ḣ1(H1)≤ r

2 + (P(Q) + C0r
2)

1
2 ,

where C := r2 +(P(Q)+C0r
2)

1
2 does not depend on n or t anymore. Lemma 4.4 now implies

‖Wβ0,n(t)‖Ḣ1(H1)≤ C1(1 + C2)
√

1− β0.

We conclude that
r2 ≤ C1(1 + C2)

√
1− β0,

which means

β0 ≤ 1−
(

r2

C1(1 + C2)

)2

=: β∗(r),

therefore β < β∗(r). Taking the converse, we have proven that if β ≥ β∗(r), then β0 = β.

Lemma 4.6. There exists some constant β∗(r) ∈ (0, 1) such that if β ≥ β∗(r), then the
solution Uβ,n to equation (17){

i∂tUβ,n −
∆H1+βDs

1−β Uβ,n = Π(n)(|Uβ,n|2Uβ,n)

Uβ,n(t = 0) = Un0 = Π(n)(U0)
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satisfies for all t ∈ R
‖Wβ,n(t)‖Ḣ1(H1)≤ r

2

and
‖U+

β,n(t)‖Ḣ1(H1)≤ (P(Q) + C0r
2)

1
2 .

We now show that Uβ,n(t) is close to the orbitM of Q for t ∈ R and β ≥ β∗(r).
Proposition 4.7. There exist r0 > 0 and c0 > 0 such that if r < r0 and β ≥ β∗(r), then
for all t ∈ R,

d(Uβ,n(t),M) < c0r.

Proof. Fix t ∈ R. It only remains to estimate δ(U+
β,n(t)) and apply Proposition 1.5.

On the one hand, since (DsWβ,n(t),Wβ,n(t))L2(H1) ≤ ‖Wβ,n(t)‖2
Ḣ1(H1)

≤ r2, the conser-
vation of momentum leads to

|(DsU
+
β,n(t), U+

β,n(t))L2(H1) − (DsQ,Q)L2(H1)|≤ (C0 + 1)r2. (19)

On the other hand, we estimate |‖U+
β,n(t)‖4L4(H1)−‖Q‖

4
L4(H1)| via the conservation of en-

ergy. We know that

|‖Uβ,n(t)‖4L4(H1)−‖U
+
β,n(t)‖4L4(H1)|≤ ‖Wβ,n(t)‖L4(H1)(‖Uβ,n(t)‖L4(H1)+‖U+

β,n(t)‖L4(H1))
3.

Since ‖Uβ,n(t)‖Ḣ1(H1) is bounded thanks to Lemma 4.6, there exists C1 > 0 such that

|‖Uβ,n(t)‖4L4(H1)−‖U
+
β,n(t)‖4L4(H1)|≤ C1‖Wβ,n(t)‖Ḣ1(H1)≤ C1r

2. (20)

Therefore, from (19) and (20), we get

Eβ(Uβ,n(t))

=
1

2
(−∆H1 + βDs

1− β
Wβ,n(t),Wβ,n(t))L2(H1) +

1

2
(DsU

+
β,n(t), U+

β,n(t))L2(H1) −
1

4
‖Uβ,n(t)‖4L4(H1)

≥ 1

2
(DsQ,Q)L2(H1) −

1

4
‖U+

β,n(t)‖4L4(H1)−(
C0 + 1

2
+
C1

4
)r2.

However,

Eβ(Uβ,n(t)) = Eβ(Un0 ) ≤ 1

2
(DsQ,Q)L2(H1) −

1

4
‖Q‖4L4(H1)+C0r

2,

therefore
1

4
‖U+

β,n(t)‖4L4(H1)≥
1

4
‖Q‖4L4(H1)−(

3C0 + 1

2
+
C1

4
)r2.

For the reverse inequality, recall the link between Q and the best constant in the embed-
ding Ḣ1(H1) ∩ V +

0 ↪→ L4(H1) : if

inf
u∈Ḣ1(H1)∩V +

0

(Dsu, u)2
L2(H1)

‖u‖4L4(H1)

= I+,

then
(DsQ,Q)L2(H1) = ‖Q‖4L4(H1)= I+ = π2.

This leads to

‖U+
β,n(t)‖4L4(H1) ≤

1

I+
(DsU

+
β,n(t), U+

β,n(t))2
L2(H1)

≤ 1

I+
((DsQ,Q)L2(H1) + (C0 + 1)r2)2

≤ 1

I+
(I+ + (C0 + 1)r2)2

≤ ‖Q‖4L4(H1)+
1

I+
(2I+(C0 + 1) + (C0 + 1)2r2)r2.

In the end, we have proven that if r ≤ 1, then for some constant C2 > 0,

δ(U+
β,n(t)) ≤ C2r

2,

and Proposition 1.5 immediately implies that for r small enough,

d(U+
β,n(t),M)2 ≤ CC2r

2.

Since ‖Wβ,n(t)‖Ḣ1(H1)≤ r2, we get the Proposition.
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4.3 Weak convergence
We now know that if β ≥ β∗(r), then for all n ≥ N and t ∈ R,

d(Uβ,n(t),M) < c0r. (21)

The aim is now to pass to the limit n→ +∞ in equation (17){
i∂tUβ,n −

∆H1+βDs
1−β Uβ,n = Π(n)(|Uβ,n|2Uβ,n)

Uβ,n(t = 0) = Un0 = Π(n)(U0)

and in inequality (21) in order to get a weak solution Uβ to equation (15){
i∂tUβ −

∆H1+βDs
1−β Uβ = |Uβ |2Uβ

Uβ(t = 0) = U0

which satisfies
d(Uβ(t),M) ≤ c0r, t ∈ R.

The method is identical to parts 3.3 and 3.4 for the limiting equation : we use a uniform
bound on ‖∂tUβ,n(t)‖Ḣ−1(H1). Thanks to Ascoli’s theorem, the sequence (Uβ,n)n∈N admits
a weak limit Uβ which is a weak solution to (15). Then, we construct bounded modulation
parameters Xβ,n(t) in order to control the distance between Uβ andM.

Lemma 4.8. There exists cβ > 0 such that for all n ≥ N , t ∈ R and X ∈ R× T× R∗+,

‖∂t(TXUβ,n)(t)‖Ḣ−1(H1)≤ cβ .

Proof. We know from Lemma 4.6 that there exists some constant C1 > 0 such that for all
n ≥ N and t ∈ R,

‖Uβ,n(t)‖Ḣ1(H1)≤ C1.

Set Vβ,n := TXUβ,n. By symmetry invariance, Vβ,n satisfies that for all n ≥ N and t ∈ R,

‖Vβ,n(t)‖Ḣ1(H1)≤ C1.

Moreover, Vβ,n is a solution to some equation{
i∂tVβ,n −

∆H1+βDs
1−β Vβ,n = Π̃(n)(|Vβ,n|2Vβ,n)

Vβ,n(t = 0) = V n0 = Π̃(n)(U0)
.

The projector Π̃(n) is defined as follows. Write X = (s, θ, α). For u ∈ Ḣ−1(H1), we decom-
pose

u =
∑
k∈N

∑
±

Πk,±(u)

with Πk,±(u) ∈ Ḣ−1(H1) ∩ V ±k for (k,±) ∈ N× {±}. Then

˜̂Π(n)(u)(x, y, σ) =

n∑
k=0

∑
±

Π̂k,±(u)(x, y, σ)1α2

n ≤|σ|≤α2n
.

Thanks to the fact that Π̃(n) is a projector and the embeddings L
4
3 (H1) ↪→ Ḣ−1(H1) and

Ḣ1(H1) ↪→ L4(H1),

‖∂tVβ,n(t)‖Ḣ−1(H1) ≤
1

1− β
‖−(∆H1 + βDs)Vβ,n‖Ḣ−1(H1)+‖Π̃

(n)(|Vβ,n|2Vβ,n)‖Ḣ−1(H1)

≤ 2

1− β
‖−∆H1Vβ,n‖Ḣ−1(H1)+‖|Vβ,n|

2Vβ,n‖Ḣ−1(H1)

≤ 2

1− β
‖Vβ,n‖Ḣ1(H1)+K1‖|Vβ,n|2Vβ,n‖

L
4
3 (H1)

≤ 2

1− β
‖Vβ,n‖Ḣ1(H1)+K2‖Vβ,n‖3Ḣ1(H1)

≤ 2C1

1− β
+K2C

3
1 .
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We deduce the weak convergence of (Uβ,n)n∈N, for which the proof is identical to part
3.3 and based on Ascoli’s theorem.

Lemma 4.9. Up to a subsequence, (Uβ,n)n converges weakly to a solution Uβ ∈ C(R, Ḣ1(H1))
(with the weak topology) to (15){

i∂tUβ −
∆H1+βDs

1−β Uβ = |Uβ |2Uβ
Uβ(t = 0) = U0

.

Moreover, one can see that for all X ∈ R×T×R∗+ and t0, t ∈ R, setting Vβ,n := TX−1Uβ,n,∣∣∣∣ d

dt
‖Uβ,n(t)− TXQ‖2Ḣ1(H1)

∣∣∣∣ =

∣∣∣∣ d

dt
‖Vβ,n(t)−Q‖2

Ḣ1(H1)

∣∣∣∣
=
∣∣2(∂tVβ,n(t), DsQ)L2(H1)

∣∣
≤ 2‖∂tVβ,n(t)‖Ḣ−1(H1)‖DsQ‖Ḣ1(H1),

which implies that for some constant cβ > 0, for all t0, t ∈ R,

‖Uβ,n(t)− TXQ‖2Ḣ1(H1)
≤ ‖Uβ,n(t0)− TXQ‖2Ḣ1(H1)

+cβ |t− t0|.

Set ε ∈ (0, 1) and define t1 := (1+ε)2−1
cβ

(c0r)
2. Note that t1 may depend on β, but this

is not important because in this part the varying parameter is n whereas β is fixed. The
construction of Xβ,n as a piecewise constant functional is now the same as for the limiting
system. For k ∈ Z, Xβ,n is constant on [kt1, (k+ 1)t1[, equal to some Xk

β,n ∈ R×T×R∗+ to
be chosen. We first set X−1

β,n = X0
β,n = (0, 0, 1). Then, at time tk = kt1, k ≥ 1, we use the

fact that d(Uβ,n(tk),M) < c0r and choose Xk
β,n such that ‖Uβ,n(tk)− TXkβ,nQ‖Ḣ1(H1)< c0r.

By definition of t1, for all k ≥ 0 ad t ∈ [tk, tk + t1], ‖Uβ,n(t) − TXkβ,nQ‖Ḣ1(H1)≤ (1 + ε)c0r.
We do a similar construction for negative times. The map Xβ,n satisfies

‖Uβ,n(t)− TXβ,n(t)Q‖Ḣ1(H1)≤ (1 + ε)c0r, t ∈ R. (22)

It remains to show that Xβ,n is bounded independently of n on bounded intervals. In
order to do so, it is enough to control the gap between Xk−1

β,n and Xk
β,n. By construction, at

time tk,
‖Uβ,n(tk)− TXk−1

β,n
Q‖Ḣ1(H1)≤ (1 + ε)c0r

and
‖Uβ,n(tk)− TXkβ,nQ‖Ḣ1(H1)< c0r,

therefore
‖TXk−1

n
Q− TXknQ‖Ḣ1(H1)≤ (2 + ε)c0r.

Using Lemma 3.6, we conclude that if r ≤ r0 is small enough (for example if 3c0r0 ≤
√
πr1),

then
|Xk−1

n (Xk
n)−1|≤ c1.

Now, for fixed t ∈ R, the sequence (Xβ,n(t))n∈N is bounded, therefore up to extraction,
this sequence converges to some Xβ(t) ∈ R×T×R∗+, and passing to the weak limit in (22),

‖Uβ(t)− TXβ(t)Q‖Ḣ1(H1)≤ (1 + ε)c0r.

5 Appendix : Rate of convergence of Qβ to Q

In order to conclude the proof of Theorem 4.1, it only remains to make precise

δβ(Q) = |Eβ(Qβ)− E(Q)|+|P(Qβ)− P(Q)|,

which vanishes as β tends to 1.
Decompose

Qβ = Q+
β +Rβ ,

where Q+
β ∈ Ḣ1(H1) ∩ V +

0 and Rβ ∈
⊕

(k,±) 6=(0,+) Ḣ
1(H1) ∩ V ±k . We improve the bound

from [11]
δ(Q+

β ) + ‖Rβ‖Ḣ1(H1)= O((1− β)
1
2 ).
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Proposition 5.1. Let ε > 0. Then as β tends to 1,

δ(Q+
β ) + ‖Rβ‖Ḣ1(H1)= O((1− β)2−ε),

which implies that
‖Qβ −Q‖Ḣ1(H1)= O((1− β)1− ε2 ).

Proof. Assume that we have proven that

δ(Q+
β ) + ‖Rβ‖Ḣ1(H1)= O((1− β)γ)

for some exponent γ > 0 (for example we already know that it is true for γ = 1
2 ), and

therefore
‖Qβ −Q‖Ḣ1(H1)= O((1− β)

γ
2 ).

We increase the exponent γ by showing that actually

δ(Q+
β ) + ‖Rβ‖Ḣ1(H1)= O((1− β)1+ γ

2 ).

Indeed, since Rβ ∈
⊕

(k,±)6=(0,+) Ḣ
1(H1) ∩ V ±k , the norms ‖Rβ‖Ḣ1(H1) and ‖−(∆H1 +

βDs)Rβ‖Ḣ−1(H1) are equivalent

‖Rβ‖Ḣ1(H1) ≤ 2‖−(∆H1 + βDs)Rβ‖Ḣ−1(H1).

Projecting the equation satisfied by Qβ

−∆H1 + βDs

1− β
Qβ = |Qβ |2Qβ

on
⊕

(k,±)6=(0,+) Ḣ
1(H1) ∩ V ±k , we deduce that

‖Rβ‖Ḣ1(H1) ≤ 2(1− β)‖(Id−Π0,+)(|Qβ |2Qβ)‖Ḣ−1(H1).

Since |Q|2Q = DsQ ∈ Ḣ−1(H1) ∩ V +
0 , one can make this term appear inside the right term

of the inequality :

‖Rβ‖Ḣ1(H1) ≤ 2(1− β)‖(Id−Π0,+)(|Qβ |2Qβ − |Q|2Q)‖Ḣ−1(H1)

≤ 2K(1− β)‖(Id−Π0,+)(|Qβ |2Qβ − |Q|2Q)‖
L

4
3 (H1)

.

Now, since (Id − Π0,+) defines a bounded operator on L
4
3 (H1), there exist C1, C2 > 0 such

that

‖Rβ‖Ḣ1(H1) ≤ C1(1− β)‖|Qβ |2Qβ − |Q|2Q‖
L

4
3 (H1)

≤ C2(1− β)‖Qβ −Q‖Ḣ1(H1)(‖Qβ‖Ḣ1(H1)+‖Q‖Ḣ1(H1))
2.

But since (Qβ)β is bounded in Ḣ1(H1), we get that for some C3 > 0,

‖Rβ‖Ḣ1(H1) ≤ C3(1− β)‖Qβ −Q‖Ḣ1(H1)

= O((1− β)1+ γ
2 ).

Therefore,

|‖Q+
β ‖

2
Ḣ1(H1)

−‖Qβ‖2Ḣ1(H1)
| ≤ 2‖Rβ‖Ḣ1(H1)(‖Rβ‖Ḣ1(H1)+‖Qβ‖Ḣ1(H1))

= O((1− β)1+ γ
2 )

and

|‖Q+
β ‖

4
L4(H1)−‖Qβ‖

4
L4(H1)| . ‖Rβ‖L4(H1)(‖Rβ‖L4(H1)+‖Qβ‖L4(H1))

3

= O((1− β)1+ γ
2 ),

which means that
δ(Q+

β ) = O((1− β)1+ γ
2 ).

It now remains to consider the sequence γn+1 = 1 + γn
2 , γ0 = 1

2 , which is convergent to 2.
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