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We compare various notions of weak subsolutions to degenerate complex Monge-Ampère flows, showing that they all coincide. This allows us to show that the viscosity solution coincides with the envelope of pluripotential subsolutions.

Introduction

A viscosity approach for parabolic complex Monge-Ampère equations (both in local and global contexts) has been developed in [EGZ15, EGZ16, EGZ18, DLT19], while a pluripotential approach has been developed in [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF][START_REF] Guedj | Pluripotential Kähler-Ricci flows[END_REF], which allows to solve these equations with quite degenerate data. The goal of this paper is to compare these two notions, extending the dictionary established in the elliptic case (see [START_REF] Eyssidieux | Viscosity solutions to degenerate complex Monge-Ampère equations[END_REF][START_REF] Harvey | The equivalence of viscosity and distributional subsolutions for convex subequations-a strong Bellman principle[END_REF][START_REF] Guedj | Plurisubharmonic envelopes and supersolutions[END_REF]).

Let Ω be a smooth bounded strictly pseudoconvex domain of C n . We consider the parabolic complex Monge-Ampère flow in Ω T (1.1) (dd c ϕ t ) n = e φt+F (t,z,ϕ) g(z)dV (z).

Here

• T > 0 and Ω T =]0, T [×Ω with parabolic boundary

∂ 0 Ω T := {0} × Ω ∪ [0, T [×∂Ω.
• F : [0, T ] × Ω × R → R is a continuous function;

• dV denotes the euclidean volume form in C n ;

• 0 ≤ g is a continuous function on Ω; • (t, x) → ϕ(t, x) = ϕ t (x) is the unknown function and φt = ∂ t ϕ denotes the time derivative of ϕ. We assume throughout this article that h : ∂ 0 Ω T → R is a continuous Cauchy-Dirichlet boundary data, i.e.

• h is continuous on ∂ 0 Ω T , and • h 0 is a continuous plurisubharmonic function in Ω.

We first extend the definition of pluripotential subsolutions proposed in [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF]. This new definition applies to functions which are not necessarily locally Lipschitz in t, it thus allows us to consider (1.1) for less regular data.

We then show that these pluripotential parabolic subsolutions coincide with viscosity subsolutions: Theorem A. Assume ϕ ∈ P(Ω T ). The following are equivalent:

(i) ϕ is a viscosity subsolution to (1.1);

(ii) ϕ is a pluripotential subsolution to (1.1).

Here P(Ω T ) denotes the set of parabolic potentials, i.e. locally integrable upper semi-continuous functions ϕ in Ω T whose slices ϕ t = ϕ(t, •) are plurisubharmonic in Ω.

The pluripotential parabolic comparison principle [GLZ1, Theorem 6.5] then allows us to conclude that the envelope of pluripotential subsolutions is the unique viscosity solution to (1.1) :

Theorem B. Assume that g > 0 is positive almost everywhere in Ω. Then there is a unique viscosity solution to (1.1) with boundary value h which coincides with the envelope of all pluripotential subsolutions.

The techniques developed in the local context allow us to obtain analogous results in the compact setting, comparing viscosity and pluripotential notions for complex Monge-Ampère flows that contain the Kähler-Ricci flow as a particular case. These are briefly discussed in Section 5.

Acknowledgement. We thank the referee for useful comments which improve the presentation of the paper.

Pluripotential subsolutions

Let Ω be a smoothly bounded strongly pseudoconvex domain in C n . By this we mean there exists a smooth strictly plurisubharmonic function ρ in an open neighborhood of Ω such that Ω = {ρ < 0} and dρ = 0 on ∂Ω.

Definition 2.1. The set of parabolic potentials P(Ω T ) consists of upper semicontinuous functions u :

Ω T :=]0, T [×Ω -→ [-∞, +∞[ such that u ∈ L 1 loc (Ω T ) and ∀t ∈]0, T [, the slice u t : z → u(t, z) is plurisubharmonic in Ω.
Let us stress that -by comparison with [GLZ1]-we do not assume here that the family {u(•, z) ; z ∈ Ω} is locally uniformly Lipschitz in ]0, T [. We nevertheless use the same notation P(Ω T ) for the set of parabolic potentials, hoping that no confusion will arise.

A pluripotential subsolution is a parabolic potential ϕ that satisfies

(dd c ϕ) n ∧ dt ≥ e φt+F (t,z,ϕ) g(z)dV (z) ∧ dt
in the weak sense of (positive) measures in Ω T . We need to make sense of all these quantities. The LHS is defined as in [GLZ1] by using Bedford-Taylor's theory, the novelty here concerns mainly the RHS as we explain hereafter.

2.1. Defining the LHS. The LHS can be defined by using Bedford-Taylor theory:

Lemma 2.2. If u ∈ P(Ω T ) ∩ L ∞ loc (Ω T ) then dt ∧ (dd c u t ) n is well-defined as a positive Borel measure in Ω T . Proof. Fix χ a test function in Ω T with support contained in J × D ⋐ Ω T .
We regularize u by taking sup convolution: for (t, z) ∈ J × D we set

u j (t, z) := sup{u(s, z) -j 2 (t -s) 2 ; s ∈]0, T [ }.
The functions u j decrease pointwise to u on J × D (by upper semicontinuity of u). Since t → u j is continuous, it follows from [GLZ1, Lemma 2.1] that the function

t → Ω χ(t, z)(dd c u j t ) n is continuous in t. It follows from [BT82] that lim j→+∞ Ω χ(t, z)(dd c u j t ) n = Ω χ(t, z)(dd c u t ) n .
Taking limits as j → +∞ we obtain that t → Ω χ(t, z)(dd c u t ) n is a bounded Borel measurable function in ]0, T [. The Chern-Levine-Nirenberg inequalities yield

Ω T χ(t, z)dt ∧ (dd c u t ) n ≤ C(J, D, u) sup Ω T |χ|,
where C(J, D, u) > 0 is a constant. It thus follows that the distribution dt ∧ (dd c u t ) n extends as a positive Borel measure in Ω T .

2.2. Defining the RHS. For each u ∈ P(Ω T ), we define g∂ t u as a distribution on Ω T by setting

g∂ t u, χ := - Ω T 0 ∂ t χ(t, z)u(t, z)g(z)dtdz,
for all test functions χ ∈ C ∞ (Ω T ) with compact support.

We now wish to interpret the RHS as a supremum of (signed) Radon measures, setting e φt+F (t,z,ϕ) g = g sup a>0 {a(∂ t ϕ + F (t, z, ϕ t (z)) -a log a + a} . This relies on the following observation: Lemma 2.3. Let T be a positive measure in an open set D ⊂ R N , f a bounded measurable function on D, and 0 ≤ g ∈ L p (D). If, for all a > 0,

T ≥ g(af + a -a log a)λ N ,
in the sense of measures, then T ≥ e f g in the sense of measures in D.

Here λ N denotes the Lebesgue measure in D.

Proof. We first assume that g ≥ b > 0 on D. Replacing T with T /g we can assume that g ≡ 1. We regularize T by using non-negative mollifiers, setting T ε := T ⋆ ρ ε . Then for all a > 0

T ε ≥ af ⋆ ρ ε + a -a log a,
pointwise on D. Taking the supremum over a > 0 we obtain

T ε ≥ e f ⋆ρε
pointwise on D. The inequality thus also holds in the sense of measures. Letting ε → 0 yields the conclusion.

We now remove the positivity condition on g. Since f is bounded, for each ε > 0 we can find c(ε) > 0, A > 0 such that, for all a ∈]0, A[,

T + ελ N ≥ (g + c(ε))(af -a log a + a)λ N ,
It follows from the first step and the fact that f is bounded (so that the supremum can be restricted to a ∈]0, A[) that

T + ελ N ≥ (g + c(ε))e f λ N
in the sense of measures on D. The conclusion follows by letting ε → 0. This analysis motivates the following :

Definition 2.4. Let u ∈ P(Ω T ) ∩ L ∞ loc (Ω T ).
Then u is a pluripotential subsolution to (1.1) if for all constants a > 0,

(dd c ϕ) n ∧ dt ≥ g(a(∂ t ϕ + F (t, z, ϕ t (z)) -a log a + a) dV (z) ∧ dt in the sense of distribution in Ω T . If u ∈ P(Ω T ) ∩ L ∞ loc (Ω T ) is locally uniformly semi-concave in t ∈]0, T [, then by Lemma 2.3 u is a pluripotential subsolution to (1.1) iff (dd c u t ) n ≥ e ∂ +
t u+F (t,z,ut) gdV, in the sense of Radon measures in Ω. Here ∂ + t is the right derivative defined pointwise in Ω T (thanks to the semi-concavity property of t → u(t, z)). The above definition thus coincides with the one given in [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF].

Decreasing limits of pluripotential subsolutions are again subsolutions as the following result shows: Lemma 2.5. Let (u j ) be a sequence of pluripotential subsolutions to (1.1) which decreases to u ∈ P(Ω T ) ∩ L ∞ loc (Ω T ). Then u is a pluripotential subsolution to (1.1).

Proof. It follows from [START_REF] Bedford | A new capacity for plurisubharmonic functions[END_REF] that the Radon measures (dd c u j ) n ∧ dt weakly converge to (dd c u) n ∧ dt. On the other hand for each a > 0

g(a(∂ t u j + F ) + a -a log a) → g(a(∂ t u + F ) + a -a log a)
in the weak sense of distributions in Ω T . This completes the proof.

Let us emphasize that in Definition 2.4 we do not ask subsolutions to be locally uniformly Lipschitz in t while the definition given in [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF] does assume this regularity. We observe below that the envelopes of subsolutions in both senses do coincide.

Proposition 2.6. Assume that the data (F, h, g, u 0 ) satisfy the assumption of [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF]. Let U be the upper envelope of pluripotential subsolutions to (1.1) in the sense of Definition 2.4, and Ũ be the envelope of subsolutions to (1.1) in the sense of [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF]. Then U = Ũ .

Proof. By definition we have Ũ ≤ U . Fix u a pluripotential subsolution to (1.1) in the sense of Definition 2.4. We regularize u by taking convolution (see [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF])

u ε (t, z) := R u(st, z)χ((s -1)/ε)ds,
where χ is a cut-off function. Then u ε -c(ε)(t + 1) is a pluripotential subsolution to (1.1) with data (F, h, g, u 0 ), where c(ε) → 0 as ε → 0. Hence

u ε -O(ε)(t + 1) ≤ Ũ . Letting ε → 0 we arrive at u ≤ Ũ , hence U ≤ Ũ .

Viscosity vs pluripotential subsolutions

3.1. Viscosity concepts. We now recall the corresponding viscosity notions introduced in [START_REF] Eyssidieux | Weak solutions to degenerate complex Monge-Ampère flows I[END_REF].

Definition 3.1. Given u : Ω T → R an u.s.c. bounded function and (t 0 , x 0 ) ∈ X T , q is a differential test from above for u at (t 0 , x 0 ) if • q ∈ C 1,2 in a small neighborhood V 0 of (t 0 , x 0 ); • u ≤ q in V 0 and u(t 0 , x 0 ) = q(t 0 , x 0 ).
Definition 3.2. An u.s.c. bounded function u : Ω T → R is a viscosity subsolution to (1.1) if for all (t 0 , x 0 ) ∈ Ω T and all differential tests q from above, (dd c q t 0 (x 0 )) n ≥ e qt 0 (x 0 )+F (t 0 ,x 0 ,u(t 0 ,x 0 )) g(x 0 )dV (x 0 ).

Here are few basic facts about viscosity subsolutions:

• a C 1,2 -smooth function is a viscosity subsolution iff it is psh and a classical subsolution;

• if u 1 , u 2 are viscosity subsolutions, then so is max(u 1 , u 2 );

• if (u α ) α∈A is a family of subsolutions which is locally uniformly bounded from above , then ϕ := (sup{u α ; α ∈ A}) * is a subsolution; • If u is a subsolution to (1.1) g then it is also a subsolution to (1.1) f with g replaced by f , as long as 0 ≤ f ≤ g. • u is a subsolution to (1.1) with g ≡ 0 iff u t is psh for all t.

Definition 3.3. A bounded l.s.c. function u : Ω T → R is a viscosity supersolution to (1.1) if for all (t 0 , z 0 ) ∈ Ω T and all differential tests q from below, (dd c q t 0 (x 0 )) n

+ ≤ e qt 0 (x 0 )+F (t 0 ,x 0 ,u(t 0 ,x 0 )) g(x 0 )dV (x 0 ). Here, for a real (1, 1)-form α we define α + to be α if it is semipositive and 0 otherwise. Definition 3.4. A function u is a viscosity solution to (1.1) if it is both a viscosity subsolution and a viscosity supersolution to (1.1).

Note in particular that viscosity solutions are continuous functions. In viscosity theory it is convenient to define the notion of relaxed upper and lower limits of a family of functions. Let φ ǫ : (E, d) → R, ǫ > 0 be a family of locally uniformly bounded functions on a metric space (E, d). We set

φ(x) = lim inf * φ ǫ (x) := lim inf (ǫ,y)→(0,x) φ ǫ (y) φ(x) = lim sup * φ ǫ (x) := lim sup (ǫ,y)→(0,x) φ ǫ (y).
Observe that φ (resp. φ) is lower (resp. upper) semi-continuous on E and φ ≤ (lim inf ǫ→0 + φ ǫ ) * . If the family is constant and equal to φ, φ = φ * and φ = φ * correpond to the lower and upper semi-continuous regularisations of φ respectively.

Lemma 3.5. Assume that (F ǫ ) 0<ǫ<ǫ 0 is a family of continuous functions on ]0, T [×Ω × R which converges locally uniformly to F , and let (g ǫ ) 0<ǫ<ǫ 0 be a family of continuous non negative functions on Ω which converges uniformly to g. Assume that for any 0 < ǫ < ǫ 0 , u ǫ : Ω T -→ R is a viscosity subsolution (resp. supersolution) to the equation (1.1) for the data (F ǫ , g ǫ ). Then the function u (resp. u) is a viscosity subsolution (resp. supersolution) to the equation (1.1) for the data (F, g).

The proof below is essentially classical (see [START_REF] Droniou | Solutions de viscosité et solutions variationnelles pour EDP non linéaires[END_REF]) but we give a complete account for the reader's convenience.

Proof. We prove the statement for supersolutions. The dual arguments work for subsolutions.

Let q be a lower test function for u at ζ 0 := (t 0 , z 0 ) ∈]0, T [×Ω. Fix r > 0 such that D r := [t 0 -r, t 0 + r] × B(z 0 , r) ⊂ Ω. By definition there exists a sequence (ζ j ) j∈N in D r converging to ζ 0 and a sequence (ε j ) j∈N decreasing to 0 such that lim j→+∞ u ε j (ζ j ) = u(ζ 0 ).

Fix δ > 0 and set

p(z) := q(t, z) -u ε j (t, z) -δ(|z -z 0 | 2 + (t -t 0 ) 2 ), z ∈ D r .
For each j ∈ N let w j := (t j , z j ) be a point in D r such that p(w j ) = max Dr p. We have

q(ζ j ) -u ε j (ζ j ) -δ|ζ j -ζ 0 | 2 = p(ζ j ) ≤ p(w j ) = q(w j ) -u ε j (w j ) -δ|w j -ζ 0 | 2 .
Taking a subsequence if necessary we can assume that w j → w 0 ∈ D r . Then letting j → +∞ and taking into account the fact that lim inf

j→+∞ u ε j (w j ) ≥ u(w 0 ), we obtain q(ζ 0 ) -u(ζ 0 ) ≤ q(w 0 ) -u(w 0 ) -δ|w 0 -ζ 0 | 2 .
This implies that ζ 0 = w 0 , since q is a lower test function for u at ζ 0 . Hence the sequence (w j ) converges to ζ 0 and then for j large enough w j is in the interior of D r . By definition of w j , it follows that for j large enough, the function q j (t, z)

:= q(t, z) -δ(|z -z 0 | 2 + (t -t 0 )
2 ) is a lower test function for u ε j at the point w j . Since u ε j is a supersolution to the equation (1.1) for the data (F ǫ j , g ǫ j ), it follows that at the point w j = (t j , z j ) we have (3.1) (dd c q -δβ) n + ≤ e ∂tq(t j ,z j )-2δ(t j -t 0 )+F ε j (t j ,z j ,q(t j ,z j )) g ε j (z j )dV, where β = dd c |z| 2 is the standard Kähler form on C n .

We want to prove that at ζ 0 = (t 0 , z 0 ) we have (dd c q) n + ≤ e ∂tq+F (t 0 ,z 0 ,q(t 0 ,z 0 )) g(z 0 )dV. If dd c q(z 0 ) has an eigenvalue ≤ 0 then (dd c q) n + (z 0 ) = 0 and the inequality is trivial. If dd c q(z 0 ) > 0 then letting j → +∞ and then δ → 0 in (3.1) we arrive at the desired inequality.

Comparison of subsolutions.

The main result of this note provides an identification between viscosity and pluripotential subsolutions:

Theorem 3.6. Let u ∈ P(Ω T ) ∩ L ∞ loc (Ω T ).
The following are equivalent: (i) u is a viscosity subsolution to (1.1); (ii) u is a pluripotential subsolution to (1.1).

The proof relies on corresponding results in the elliptic case, as well as on the parabolic comparison principle established in [GLZ1, Theorem 6.5].

Proof. We first prove (i) =⇒ (ii). Assume u is a viscosity subsolution to (1.1). Fix J 1 ⋐ J 2 ⋐]0, T [ compact subintervals. We are going to prove that u is a pluripotential subsolution to (1.1) in J 1 × Ω.

We regularize u by taking the sup-convolution with respect to the tvariable: for ε > 0 small enough we define

u ε (t, z) := sup u(t ′ , z) - 1 2ε 2 (t -t ′ ) 2 ; t ′ ∈ J 2 .
The function u ε is semi-convex in t ∈ J 1 , upper semicontinuous in z. We claim that (dd c u ε ) n ≥ e ∂tuε+Fε(t,z,uε) gdV, in the viscosity sense where

F ε (t, z, r) := inf {F (t + s, z, r) ; |s| ≤ Cε} ,
for a uniform constant C > 0 depending on sup J 2 ×Ω |u|. The argument is classical but we recall it for the reader's convenience. Let q be a differential test from above for u ε at (t 0 , z 0 ) ∈ J 1 × Ω and let s 0 ∈ J 2 be such that

u ε (t 0 , z 0 ) = u(s 0 , z 0 ) - 1 2ε 2 (s 0 -t 0 ) 2 . Then |t 0 -s 0 | ≤ Cε.
Consider the function q ε defined by q ε (t, z) := q(t + t 0 -s 0 ) + 1 2ε 2 (s 0 -t 0 ) 2 . Then q ε (s 0 , z 0 ) = u(s 0 , z 0 ), and for all (t, z) ∈ J 1 × Ω, q ε (t, z) ≥ u ε (t + t 0 -s 0 ) + 1 2ε 2 (s 0 -t 0 ) 2 ≥ u(t). In other words, q ε is a differential test from above for u at (s 0 , z 0 ). Hence (dd c q ε ) n (s 0 , z 0 ) ≥ e ∂tqε(s 0 ,z 0 )+F (s 0 ,z 0 ,qε(s 0 ,z 0 )) g(z 0 )dV.

Since F is increasing in r and q ε (s 0 , z 0 ) ≥ q(t 0 , z 0 ) we obtain (dd c q) n (t 0 , z 0 ) ≥ e ∂tq(t 0 ,z 0 )+F (s 0 ,z 0 ,q(t 0 ,z 0 )) g(z 0 )dV ≥ e ∂tq(t 0 ,z 0 )+Fε(t 0 ,z 0 ,q(t 0 ,z 0 )) g(z 0 )dV, as claimed.

Let ∂ - t u ε denote the left derivative in t of u ε . Since ∂ - t u ε + F ε is bounded, by considering u ε + δ|z| 2 and letting δ → 0, we can assume that g ≥ c > 0 is strictly positive in Ω. The function

(t, z) → G(t, z) = e ∂ - t uε(t,z)+Fε(t,z,uε(t,z)) g(z)
, is lower semicontinuous in Ω T . It can be approximated from below by a sequence of positive continuous functions (G j ). By definition of viscosity subsolutions (applied to u ε ) we have

(3.2) (dd c u ε ) n ≥ G j dV
in the parabolic viscosity sense. Since G j is continuous, we can thus invoke [EGZ15, Proposition 3.6] to conclude that (3.2) holds in the elliptic viscosity sense for each t ∈ J 1 fixed. It then follows from [EGZ11, Proposition 1.5] that (3.2) holds in the elliptic pluripotential sense for each t ∈ J 1 fixed. Now, [GLZ1, Proposition 3.2] ensures that u ε is a parabolic pluripotential subsolution to (1.1). Since u ε decreases to u, Lemma 2.5 insures that u is a pluripotential subsolution to (1.1).

We now prove (ii) =⇒ (i). Assume that u is a pluripotential subsolution to (1.1). Fix (t 0 , z 0 ) ∈ Ω T and q a differential test from above defined in a neighborhood J × U ⋐]0, T [×Ω of (t 0 , z 0 ). We need to prove that (3.3) (dd c q) n (t 0 , z 0 ) ≥ e ∂tq(t 0 ,z 0 )+F (t 0 ,z 0 ,q(t 0 ,z 0 )) g(z 0 )dV.

It follows from [START_REF] Eyssidieux | Viscosity solutions to degenerate complex Monge-Ampère equations[END_REF] that dd c q is semipositive at (t 0 , z 0 ). If g(z 0 ) = 0 the inequality follows from the elliptic theory (see [START_REF] Eyssidieux | Viscosity solutions to degenerate complex Monge-Ampère equations[END_REF]). Since g is continuous up to shrinking U , we can assume that g > 0 in U . Assume by contradiction that (3.3) does not hold. Then, by continuity the functions involved, there exists ε, r, δ > 0 small enough such that (dd c q + εdd c |z| 2 ) n < e ∂tq(t,z)+F (t,z,q(t,z))-δ g(z)dV holds in the classical sense in [t 0 -r, t 0 + r] × B(z 0 , r). Consider the function

v(t, z) := q(t, z) + γ(|z -z 0 | 2 -r 2 + t 0 -t), for (t, z) ∈ [t 0 -r, t 0 ] × B(z 0 , r).
For γ small enough one can check that (dd c v) n ≤ e ∂tq(t,z)+F (t,z,q(t,z))-δ g(z)dV ≤ e ∂tv+F (t,z,v+γr 2 +γ(t-t 0 ))+γ-δ g(z)dV ≤ e ∂tv+F (t,z,v) g(z)dV, hence v is a supersolution to (1.1) in ]t 0 -r, t 0 [×B(z 0 , r). We next compare v and u on the parabolic boundary of ]t 0 -r, t 0 [×B(z 0 , r). For all z ∈ B(z 0 , r) we have

v(t 0 -r, z) ≥ q(t 0 -r, z) + γ(r -r 2 ) ≥ q(t 0 -r, z) ≥ u(t 0 -r, z), if r < 1. For all t ∈ [t 0 -r, t 0 ], ζ ∈ ∂B(z 0 , r) we have v(t, ζ) = q(t, ζ) + γ(t 0 -t) ≥ u(t, ζ).
If u is locally uniformly Lipschitz in t, it follows from [GLZ1, Theorem 6.5] that u ≤ v in [t 0 -r, t 0 ] × B(z 0 , r). This yields a contradiction as v(t 0 , z 0 ) = q(t 0 , z 0 ) -γr 2 < u(t 0 , z 0 ).

We finally remove the Lipschitz assumption on u. For each ε > 0 we define u ε by

u ε (t, z) := R u(st, z)χ((s -1)/ε)ds,
where χ is a cut-off function. Let F j be a family of smooth functions which increases to F . Then u is a pluripotential subsolution to (1.1) with data F j . Arguing as in [GLZ1, Theorem 6.5] we can show that u ε -c(ε)(t + 1) is a pluripotential subsolution to (1.1) (with data F j ) which is locally uniformly Lipschitz. Hence, we can apply the first step to show that u ε -c(ε)(t + 1) is a viscosity subsolution to (1.1) with data F j . Thanks to Lemma 3.5 we can let ε → 0 and then j → +∞ to conclude the proof.

Viscosity vs pluripotential (super)solutions

The notion of pluripotential supersolutions has been introduced in [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF]. In case u ∈ P(Ω T )∩L ∞ loc (Ω T ) is locally uniformly semiconcave, it is a pluripotential supersolution to (1.1) if

(dd c u) n ∧ dt ≤ e ∂ - t u+F (t,z,u) gdV ∧ dt, in the sense of Radon measures in Ω T .
As in the viscosity setting, a pluripotential solution is a parabolic potential which is both a subsolution and a supersolution. The proof relies on the parabolic pluripotential comparison principle [GLZ1, Theorem 6.5] which requires the extra semi-concavity hypothesis.

Proof. We can assume that g > 0. Fix (t 0 , z 0 ) ∈ Ω T and let q be a differntial test from below for v at (t 0 , z 0 ), defined in J × U ⋐ Ω T . We want to prove that (4.1) (dd c q) n + (t 0 , z 0 ) ≤ e ∂tq(t 0 ,z 0 )+F (t 0 ,z 0 ,q(t 0 ,z 0 )) g(z 0 )dV. Assume, by contradiction, that it is not the case. Then dd c q t 0 (z 0 ) is semipositive and there is a constant δ > 0 such that (dd c q t 0 (z 0 )) n > e ∂tq(t 0 ,z 0 )+F (t 0 ,z 0 ,q(t 0 ,z 0 ))+2δ g(z 0 )dV (z 0 ). Since g > 0 and the data is continuous, we can find r ∈]0, 1[ so small that (dd c q -εdd c |z| 2 ) n ≥ e ∂tq(t,z)+F (t,z,q(t,z))+δ g(z)dV (z) holds in the classical sense in [t 0 -r, t 0 + r] × B(z 0 , r). Consider the function

u(t, z) := q(t, z) -γ(|z -z 0 | 2 -r 2 + t 0 -t), for (t, z) ∈ [t 0 -r, t 0 ] × B(z 0 , r).
For γ small enough one can check that (dd c u) n ≥ e ∂tq(t,z)+F (t,z,q(t,z))+δ g(z)dV ≥ e ∂tu-γ+F (t,z,u-γr 2 +γ(t 0 -t))-δ g(z)dV ≥ e ∂tu+F (t,z,u) g(z)dV, hence u is a subsolution to (1.1) in ]t 0 -r, t 0 [×B(z 0 , r). We next compare v and u on the parabolic boundary of ]t 0 -r, t 0 [×B(z 0 , r). For all z ∈ B(z 0 , r) we have

u(t 0 -r, z) ≤ q(t 0 -r, z) + γ(r 2 -r) ≤ q(t 0 -r, z) ≤ v(t 0 -r, z), since r < 1. For all t ∈ [t 0 -r, t 0 ], ζ ∈ ∂B(z 0 , r) we have u(t, ζ) = q(t, ζ) -γ(t 0 -t) ≤ v(t, ζ).
Since v is locally uniformly semi-concave, we can invoke [GLZ1, Theorem 6.5] to conclude that u ≤ v in [t 0 -r, t 0 ]×B(z 0 , r). This yields a contradiction since u(t 0 , z 0 ) = q(t 0 , z 0 ) + γr 2 > v(t 0 , z 0 ).

In the reverse direction we have the following observation: Theorem 4.2. Let v be a viscosity supersolution to (1.1) and assume that v is locally uniformly semi-concave in t ∈]0, T [. Then P (v) is a pluripotential supersolution to (1.1).

Here P (v)(t, z) = P (v t )(z) is the slice plurisubharmonic envelope of v: for each t fixed, we set P (v t )(z) := sup{w(z); w ≤ v t and w plurisubharmonic in Ω}, i.e. P (v) t := P (v t ) is the largest psh function lying below v t .

Proof. We first observe that t → P (v)(t, z) is locally uniformly semi-concave. This follows from the fact that v → P (v) is increasing and concave: assume for simplicity that t → v(t, z) is uniformly concave, then

v t+s + v t-s 2 ≤ v t ⇒ P (v t+s ) + P (v t-s ) 2 ≤ P v t+s + v t-s 2 ≤ P (v t ).
Fix U ⋐ Ω and S ∈]0, T [. Let v ε denote the inf-convolution of v. Then v ε increases pointwise to v and P (v ε ) ↑ P (v) as ε ↓ 0. Since ∂ t P (v ε ) converges a.e. to ∂ t P (v) (see [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF]), it suffices to prove that each P (v ε ) is a pluripotential supersolution to (1.1). We can thus assume that v is continuous in Ω T .

The Corollary 4.4. Assume that F j → F locally uniformly in Ω T × R. Let h j be a sequence of parabolic boundary data converging locally uniformly to a parabolic boundary datum h on ∂ 0 Ω. Let φ j be the unique viscosity solution to the Cauchy Dirichlet problem for the data (F j , g, h j ). Then (φ j ) j∈N converges locally uniformly in Ω T to a continuous function φ which is the unique viscosity solution to the Cauchy-Dirichlet problem of the equation (1.1) for the data (F, g, h).

E = {(t, z) ∈ Ω T , ∂ + t v(t, z) = ∂ - t v(t, z) & ∂ + t P (v)(t, z) = ∂ - t P (v)(t, z)}. Then Ω T \ E has zero Lebesgue measure. If (t, z) ∈ E ∩ {P (v t ) = v t } then ∂ - t P (v)(t, z) = ∂ - t v(t, z). Therefore, (dd c P (v)) n ∧ dt ≤ e ∂tP
Proof. By the viscosity comparison principle (Lemma 4.3) we have for j, k ∈ N, for any 0 < S < T , sup

ΩS |φ j -φ k | ≤ sup ∂ 0 Ω S |h j -h k | + S F j -F k ΩS ×L ,
where L ⊂ R is a compact set containing the values of φ j , j ∈ N, on the compact set ΩS . It follows that (φ j ) is a Cauchy sequence for the norm of the uniform convergence on each ΩS . Then the sequence has a limit which is a continuous function φ : [0, T [× Ω. By Lemma 3.5, the function φ is a solution to the equation (1.1) for the data (F, g, h). Set

α j := sup ∂ 0 Ω S |h j -h k | + S F j -F k ΩS ×L .
Then α j → 0 and for j >> 1 we have

φ j -α j ≤ φ ≤ φ j + α j ,
in Ω S . From this inequality it follows that the boundary values of φ coincide with h on ∂ 0 Ω S . Letting S → T , we see that φ is the unique solution to the equation (1.1) for the data (F, g, h).

Viscosity vs pluripotential solutions.

If h does not depend on t, it was shown in [START_REF] Eyssidieux | Weak solutions to degenerate complex Monge-Ampère flows I[END_REF] that there exists a unique viscosity solution to (1.1) with boundary value h. This is the Perron envelope of all viscosity subsolutions with boundary value h.

This result has been recently extended by Do-Le-Tô [START_REF] Hoang-Son | Viscosity solutions to parabolic complex Monge-Ampère equations[END_REF] to boundary data that are time-dependent. Combining viscosity and pluripotential techniques we provide an alternative proof of this existence result:

Theorem 4.5. The Perron envelope of viscosity subsolutions to (1.1) with boundary value h is the unique viscosity solution to (1.1) with boundary value h. It coincides with the envelope of all pluripotential subsolutions to (1.1) with boundary value h.

Proof. We first assume that the data (h, F ) satisfiy the assumptions of [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF]. Let U be the envelope of all pluripotential subsolutions to (1.1) with boundary value h, and V be the Perron envelope of viscosity subsolutions to (1.1) with boundary value h. Theorem 3.6 ensures that U = V . By Proposition 2.6 and [GLZ1], U ∈ C(Ω T ) is a pluripotential solution to (1.1) which is locally uniformly semi-concave. It then follows from Theorem 4.1 that U is a viscosity supersolution to (1.1), hence U is a viscosity solution to (1.1). Lemma 4.3 ensures that U is the unique viscosity solution to (1.1) with boundary value h.

We now treat the general case. Let (h j , F j ) be approximants of (h, F ) which satisfy the assumptions in [START_REF] Guedj | The pluripotential Cauchy-Dirichlet problem for complex Monge-Ampère flows[END_REF], and let U j be the envelope of pluripotential subsolutions to (1.1) with data (h j , F j ). Then U j is a pluripotential solution to (1.1) which is locally uniformly semiconcave. The previous step ensures that U j is a viscosity solution to (1.1) with data (h j , F j ). By stability of viscosity solutions (see Lemma 4.3), U j uniformly converges to U and U = h on ∂ 0 Ω T . By Corollary 4.4, U is a solution to the equation (1.1) in Ω T . Hence U is a solution to the Cauchy-Dirichlet problem for (1.1) in Ω T with boundary values h.

Uniqueness follows from the viscosity comparison principle in Lemma 4.3 (see [EGZ15, Theorem B]).

Compact Kähler manifolds

The techniques developed in the local context allow us to obtain analogous results in the compact setting.

We consider the following complex Monge-Ampère flow (5.1) (ω t + dd c ϕ t ) n = e φt+F (t,x,ϕt) gdV, where X is a compact Kähler manifold of dimension n and (1) X T :=]0, T [×X with T > 0;

(2) 0 < g is a continuous function on X;

(3) t → ω(t, x) is a smooth family of closed semi-positive (1, 1)-forms such that θ(x) ≤ ω t (x) ≤ Θ, where θ is a closed semi-positive big form, and Θ is a Kähler form;

To obtain the other bound we fix ρ ∈ PSH(X, θ) ∩ L ∞ (X), sup X ρ = 0, such that (θ + dd c ρ) n = 2 n e c 1 gdV, for some constant c 1 ∈ R. The existence of ρ follows from [START_REF] Eyssidieux | Singular Kähler-Einstein metrics[END_REF]. Let ψ ≤ 0 be a θ-psh function which is smooth in Ω and satisfies θ + dd c ψ ≥ 2c 0 Θ, for some positive fixed constant c 0 . Set for j ∈ N, W j := (1 -λ j )U j + λ j ρ + ψ 2 , with λ j := 2 -j 2 -j + c 0 .

Given this choice of λ j , a direct computation shows that ω t + dd c W j ≥ (1 -λ j )(ω t + dd c U j t ) + λ j (ω t + dd c ((ρ + ψ)/2)) ≥ (1 -λ j )(ω j t + dd c U j t ) + λ j (θ + dd c ρ)/2 ≥ 0. Hence, applying [GLZ2, Lemma 3.15] we obtain (ω t + dd c W j ) n ≥ e (1-λ j )(∂tU j t +F j (t,x,U j ))+λ j c 1 gdV ≥ e ∂tW j +F (t,x,W j )-ε ′ (j) gdV, in the weak sense on Ω, where ε ′ (j) → 0. It thus follows that W j -ε(j)t is a pluripotential subsolution to the equation (5.1) on Ω T with datum (F, ω). Observe that W j is not bounded on X. Since, for C large enough u := ρ + nt log t -Ct -C is a bounded pluripotential subsolution to the equation (5.1) in X T with datum (F, ω), it follows that W j := sup{W j -ε(j)t, u} is a bounded subsolution to the (5.1) on X T . Since W j (t, x) ≤ U j (t, x) + ε ′′ j where ε ′′ j → 0, and lim t→0 U j (t, x) = ϕ 0 (x) for any x ∈ X, it follows that (5.3) W j -ε ′′ j ≤ U, in X T . From (5.2) and (5.3) we conclude that U j locally uniformly converges to U on X T .

The uniqueness follows from [START_REF] Dat | Convergence of the weak Kähler-Ricci flow on manifolds of general type[END_REF].

4. 1 .

 1 Comparison of supersolutions. Theorem 4.1. Assume v ∈ P(Ω T )∩C(Ω T ) is a pluripotential supersolution to (1.1) which is locally uniformly semi-concave in t ∈]0, T [. Then v is a viscosity supersolution to (1.1).

  (v)+F (t,z,P (v)) gdV (z) ∧ dt holds in the pluripotential sense in Ω T . 4.2. Viscosity comparison principle. The following stability estimate follows directly from the viscosity comparison principle established in [EGZ15, Theorem B]. Lemma 4.3. Assume u is a bounded viscosity subsolution to (1.1) with data F and v is a bounded viscosity supersolution to (1.1) with data G. Thensup Ω T (u -v) ≤ sup ∂ 0 Ω T (u * -v * ) + + T (G -F ) + , where (F -G) + := max [0,T ]× Ω×[-C 0 ,+C 0 ] (F -G) + and C 0 > 0 is a uniform bound on |u| and |v| in Ω T . Proof. Set M 1 := sup ∂ 0 Ω T (u * -v * ) + , M 2 := (G -F ) + , and ũ := u -M 1 -M 2 t. Then ũ * ≤ v * on ∂ 0 Ω T .It follows directly from the definition of viscosity subsolutions that ũ is a viscosity subsolution to (1.1) with data G since F + (G -F ) + ≥ G. It thus follows from [EGZ15, Theorem B] that ũ ≤ v, giving the desired estimate.

  left derivative ∂ - t v is upper semicontinuous in Ω T . It follows from [EGZ15, Proposition 3.6] that, for all t ∈]0, T [, the inequality (dd c v t ) n + ≤ e ∂ - t v+F (t,•,vt) gdV holds in the viscosity sense in Ω. It thus follows from [GLZ17] that P (v t ) satisfies (dd c P (v t )) n ≤ e ∂ - t v+F (y,•,P (vt)) gdV in the pluripotential sense. Set

(4) (t, x, r) → F (t, x, r) is continuous in [0, T [×X × R, increasing in r;

(5) ϕ : [0, T [×X → R is the unknown function, with ϕ t := ϕ(t, •). Let ϕ 0 be a bounded ω 0 -psh function on X which is continuous in Ω, the ample locus of {θ}.

Definition 5.1. The set P(X T , ω t ) of parabolic potentials consists of functions u :

Definition 5.2. A parabolic potential u ∈ P(X T , ω t )∩L ∞ (X T ) is a pluripotential subsolution to (5.1) if for all constant a > 0,

) is locally uniformly Lipschitz in t then our definition coincides with that of [START_REF] Guedj | Pluripotential Kähler-Ricci flows[END_REF].

Theorem 5.3. Let U (respectively V ) be the envelope of all pluripotential (respectively viscosity) subsolutions u to (5.1) such that lim sup t→0 u t ≤ ϕ 0 . Then U = V is the unique viscosity solution to (5.1) starting from ϕ 0 .

The last condition in the theorem means that lim t→0 + U t = ϕ 0 locally uniformly in Ω := Amp({θ}), the ample locus of the class {θ}.

Proof. The equivalence of pluripotential and viscosity subsolutions for a given parabolic potential u ∈ P(X T ) ∩ L ∞ (X T ) follows from Theorem 3.6, since being a pluripotential (resp. viscosity) subsolution is a local property. It follows in particular that U = V on X T .

We approximate F uniformly by a sequence of data F j which satisfy the assumptions in [START_REF] Guedj | Pluripotential Kähler-Ricci flows[END_REF] (one can e.g. take the convolution with a smoothing kernel in t, r). We approximate ω t by ω j t := ω t + 2 -j Θ. Then ω j also satisfies the assumptions in [START_REF] Guedj | Pluripotential Kähler-Ricci flows[END_REF]. Let U j be the envelope of pluripotential subsolutions to (1.1) with data (F j , ω j , ϕ 0 ). By [START_REF] Guedj | Pluripotential Kähler-Ricci flows[END_REF] and the proof of Proposition 2.6, U j is locally uniformly semi-concave in t, lim t→0 + U j t = ϕ 0 , for all j, and U j is a pluripotential solution to (1.1) with data (F j , ω j ). By continuity of ϕ 0 in Ω and [GLZ2, Proposition 2.2], we infer that U j t locally uniformly converges to ϕ 0 in Ω.

The proof of Theorem 4.1 shows that U j is a viscosity solution to (5.1) in Ω. We now prove that U j locally uniformly converges to U on Ω T . If we can do this then U ∈ C(Ω T ) is a viscosity solution to (5.1) (thanks to Lemma 3.5), and lim t→0 + U t = ϕ 0 locally uniformly in Ω.

In the arguments below we use ε(j) to denote various positive constants which tend to 0 as j → +∞.

Since ω ≤ ω j , the function U -ε(j)t is a pluripotential subsolution to (5.1) with datum (F j , ω j ), hence (5.2) U -ε(j)t ≤ U j .