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Abstract

This article analyzes how the selling mechanisms used by a data interme-

diary impact the optimal information structure sold to competing firms. We

analyze how take it or leave it offers, sequential bargaining, and auctions,

change the bargaining power between the data intermediary and competing

firms, impacting the price of information, and the amount of data collected

on the market for information. We highlight conflicting interests between

data intermediaries, data protection agencies and competition authorities,

and we discuss regulatory implications.
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1 Introduction

Big-tech companies such as Alphabet, Apple, Facebook, Amazon and Microsoft

are today the largest companies in the world with an aggregate market value of

more than 5 Trillion USD.1 They hold a dominant position in multiple sectors

of the digital economy such as online search, e-commerce, and social networks,

and are also active on multiple other markets (e.g. online advertising and pay-

ments). Their success is largely built upon the collection, use, sharing and sale

of huge amounts of consumer data. Acting as data intermediaries, they organize

a new market for information by selling information to firms seeking to improve

their business practices through better analysis of markets, forecasting trends,

and personalized ads, products, and prices (Varian, 1989; Bergemann et al., 2015;

Bergemann and Bonatti, 2019).

The promise of the digital revolution to improve the efficiency of markets has

recently given way to questionings by economists, data protection and competition

authorities (Crémer et al., 2019; Furman et al., 2019; Scott Morton et al., 2019;

Tirole, 2020). Recent market practices have indeed shown that data intermedi-

aries can refuse to grant firms access to data, to share or to sell data, and cause

important harms to companies and competition.2 Moreover, data intermediaries

can abuse of their market power without the consent of users to extensively collect,

use and merge data from various related services, which constitutes an exploitative

abuse of a dominant position under competition law.3 By regulating the data col-

lection practices of data intermediaries, data protection laws can therefore impact

competition.

The objective of this article is to investigate the important yet overlooked

two-way relationship between data protection laws and competition policies by

1Stock Market Warning: 6 Mega Stocks Dominate S&P 500’s $21.4 Trillion Cap; CCN, April
27, 2020.

2Facebook gave Lyft and others special access to user data; engadget, May 12th, 2018.
3The German competition authority (Bundeskartellamt) has prohibited Facebook from using

terms of service that force users to consent to the social media collecting personal data from third-
party websites and apps (including Facebook-owned services) and assigning them to Facebook
users. For more details, see Bundeskartellamt prohibits Facebook from combining user data from
different sources; Bonn, 7 February 2019.
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highlighting how the data collection and selling strategies of intermediaries cru-

cially depend on the mechanism through which information is sold. We consider

three such selling mechanisms that are used in practice and studied in the theoret-

ical literature – take it or leave it offers, sequential bargaining, and auctions –, and

show how different selling mechanisms influence the bargaining power between the

data intermediary and competing firms, the price of information, and the related

data collection strategies.

The study of selling mechanisms is a central topic in economics that goes back

to Rubinstein (1982) and Binmore et al. (1986) among many others. More re-

cently, empirical studies have revisited the question of optimal selling mechanisms.

Backus et al. (2018, 2019) and Backus et al. (2020) analyze online interactions be-

tween sellers and buyers of a good. They describe how market participants agree

on a price, and show how the final agreement depends on the selling environment.

Jindal and Newberry (2018) study in which case it is optimal for a seller to use

bargaining or fixed price to sell a good, and Milgrom and Tadelis (2018) analyze

how machine learning techniques can be used to improve mechanism design. We

contribute to this literature by comparing from a theoretical point of view how

different selling mechanisms used by a data intermediary impact data collection

and selling strategies.

The closest contributions to our article are related to a growing theoretical

literature that analyzes the selling strategies of data intermediaries. Bergemann

and Bonatti (2015) and Bergemann et al. (2018) study how a data intermediary

chooses the precision of information to maximize surplus extraction from firms.4

Bergemann et al. (2020) also examine the impact of collecting consumer data

on the signal sold by an intermediary to a single firm through take it or leave

it offers when there is a data externality. By adding competition between firms

purchasing information, we bring new insights on the competitive impact of in-

formation, and on the selling strategies of a data intermediary. Data collected

divides consumer demand into segments of arbitrary size. Thinner segments give

4A related literature studies consumer privacy concerns with exogenous information acqui-
sition (Shy and Stenbacka, 2016; Casadesus-Masanell and Hervas-Drane, 2015; Gal-Or et al.,
2018).
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more precise information but are more costly to collect. The intermediary sells

recombined partitions of the consumer demand to firms for price discrimination

purposes. In equilibrium the data intermediary does not sell all information col-

lected to firms, as it would increase the competitive effect of information: firms

fight more fiercely for consumers identified as belonging to their core segment.

A data intermediary collecting more information will have thinner segments, and

thus an increased precision of information. We will show how the mechanism

used by the data intermediary to sell information to firms will impact the price of

information, and data collection strategies.

We consider three selling mechanisms commonly used by data intermediaries to

sell consumer information. First, data intermediaries can sell information through

take it or leave it offers documented by Nielsen,5 and studied by Binmore et al.

(1986) and Bergemann and Bonatti (2019). Secondly, repeated interactions lead-

ing to sequential bargaining are implemented by data intermediaries like Face-

book.6 This selling mechanism has the advantage of increasing the bargaining

power of the data intermediary compared with take it or leave it offers. Indeed,

when selling information through sequential bargaining, a data intermediary may

exert a threat on the prospective buyer, as information may be sold to its competi-

tor. This increases the value of information, as shown by Rubinstein (1982) and

Sobel and Takahashi (1983). Finally, auctions are also extensively used in data

marketplaces (Sheehan and Yalif, 2001; O’kelley and Pritchard, 2009).7 Auctions

also allow intermediaries to exert a strong market power, and extract a large share

of surplus from an information buyer.8

The selling mechanism determines the price of information, which in turn drives

the data collection strategy of the intermediary. On the one hand, firms are ready

to pay more for high quality relevant data that will increase profits through better

consumer surplus extraction. On the other hand, without information a firm might

have to compete against a firm that has acquired information. Thus when deciding

5For more detail, see the Nielsen website https://www.nielsen.com/us/en/.
6Facebook blocks valuable ad data in privacy update to its marketing partner program,

AdAge, February 21 2020.
7First price Auction, Second price, and the Header-Bidding, Smartyads, February 2018.
8Vickrey (1961), Klemperer (1999), Jehiel and Moldovanu (2000), Figueroa and Skreta (2009)

among others analyze auction design.
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whether to purchase information or not, a firm may face a negative externality

depending on the selling mechanism, and this negative externality increases with

the precision of information. Indeed, consider a take it or leave it offer: the data

intermediary proposes information to a firm, and if the firm declines the offer, all

firms on the market remain uninformed. Now consider an auction with negative

externality: if the firm loses the auction, the data intermediary sells information

to the winning bidder. It is clear that the value of the threat in the take it or leave

it offer does not depend on the precision of information since no firm is informed.

In the auction mechanism, however, the value of the threat increases with the

precision of information: a firm makes lower profits when it has to compete with

a better informed competitor. A data intermediary thus may have interest to

collect more information with the auction mechanism where there is a negative

externality than with the take it or leave it mechanism. Thus, different selling

mechanisms will change how much information will be collected and sold to firms.

This article investigates this important issue.

By relating the data collection strategies to the mechanism used to sell con-

sumer information, we contribute to the literature on two points. First, we find

that the data intermediary always prefers to sell information through sequential

bargaining or through auctions, which is the worst case scenario for consumers,

as it minimizes their surplus and maximizes data collection. There are thus con-

flicting interests between data intermediaries, data protection agencies and com-

petition authorities, on how to design the market for information. By imposing a

data minimization principle, as it is enacted for instance in the European GDPR

(General Data Protection Regulation), we argue that a data protection agency

can lower the amount of consumer data collected by intermediaries and increase

consumer surplus.

Secondly, we show that the optimal strategy of the data intermediary is to sell

information to only one firm with auctions and sequential bargaining, and to two

firms with the take it or leave it mechanism. Thus, selling mechanisms will also

have an impact on competition through the number of firms that buy information.

This has strong implications for competition authorities that want all firms to have

equal access to information: both firms only purchase information and compete
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on a level playing field with take it or leave it offers. We show that a competition

authority can force data intermediaries to sell information to both firms on the

market by imposing a cap on the price of information.

The remainder of the article is organized as follows. We describe the model

in Section 2. We present in Section 3 the three selling mechanisms: take it or

leave it, sequential bargaining and auctions. We show in Section 4.1.1 that they

share similar properties. Additionally, we show that they belong to a broader

class of selling mechanisms, which we refer to as independent offers, in Section

4.1.2. In Section 4.2, we analyze how the price of information is related to the

amount of data collected. We examine whether it is more profitable for the data

intermediary to sell information to one or to both firms in Section 4.3. We extend

the model to second price auctions that do not belong to the class of independent

offers in Section 5. We show that nevertheless our main results hold. We discuss

regulatory implications, and how to use a data minimization principle and a price

cap as regulatory tools in Section 6. Section 7 concludes.

2 Model

We consider a model of competition à la Hotelling on the product market. Con-

sumers are assumed to be uniformly distributed on a unit line [0, 1]. They purchase

one product from two competing firms that are located at the two extremities of

the line, 0 and 1.9 The data intermediary collects and sells data that segment

consumers on the Hotelling line. A firm that acquires an information partition,

i.e. an informed firm, can set a price on each consumer segment. On the con-

trary, a firm that does not purchase consumer segments, i.e. that is uninformed,

cannot distinguish consumers, and sets a single price on the entire line. This

simple model of horizontal differentiation can be used to analyze the impact of

information acquisition on the profits of firms (Thisse and Vives, 1988).

9The marginal production costs are also normalized to zero.
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2.1 Consumers

Consumers buy one product at a price p1 from Firm 1 located at 0, or at a price

p2 from Firm 2 located at 1. A consumer located at x ∈ [0, 1] receives a utility V

from purchasing the product, but incurs a cost t > 0 of consuming a product that

does not perfectly fit his taste x. Therefore, buying from Firm 1 (resp. from Firm

2), incurs a cost tx (resp. t(1− x)). Consumers choose the product that gives the

highest level of utility:10

u(x) =


V − p1 − tx, if he buys from Firm 1,

V − p2 − t(1− x), if he buys from Firm 2.

2.2 Data intermediary

The data intermediary collects information on consumers that allows firms to dis-

tinguish consumer segments on the unit line. The data intermediary has therefore

to choose the optimal information partition to sell to firms to maximize its prof-

its.11

2.2.1 Collecting consumer data

We consider a data intermediary that collects k consumer segments at a cost c(k).12

The cost of collecting information encompasses various dimensions of the activity

of the data intermediary such as installing trackers, or storing and handling data

(see Varian (2018) for a detailed discussion on the structure of the costs associated

with data collection). The data collection cost c(.) captures the sum of the costs

associated with these activities.

10We assume that the market is covered, so that all consumers buy at least one product from
the firms. This assumption is common in the literature. See for instance Bounie et al. (2018) or
Montes et al. (2018).

11Previous research has assumed that the data intermediary sells all available information
(Montes et al., 2018). Bounie et al. (2018) show that this assumption is not valid.

12See Appendix A for a characterization of the cost function.
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Collecting data is costly for the intermediary but provides more information

on consumers. Data collected allows the intermediary to increase the value of

information, as a firm can now locate consumers more precisely. For instance, when

k = 2, information is coarse, and firms can only distinguish whether consumers

belong to [0, 1
2
] or to [1

2
, 1]. At the other extreme, when k converges to infinity,

the data intermediary knows the exact location of each consumer. Thus, 1
k

can be

interpreted as the precision of the information collected by the data intermediary.

The k segments of size 1
k

form a partition Pk, illustrated in Figure 1, that we refer

to as the reference partition.

Figure 1: Partition Pk

The data intermediary can recombine any segment of this partition, and we

will show that selling the reference partition is not optimal.

2.2.2 Selling information

In the baseline model we assume that the data intermediary sells information

to only one firm, say Firm 1, and study in Section 4.3 the case where the data

intermediary sells information to both firms. Three selling mechanisms can be used

by the data intermediary to sell information: take it or leave it (tol), sequential

bargaining (seq), and auctions (a).

Selling information consists for the data intermediary of selling any subset

of segments collected in the partition depicted in Figure 1. For instance, the

data intermediary can sell a partition starting with one segment of size 1
k
, and

another segment of size 2
k
, and so on. Thinner segments in the partition allow a

firm to extract more surplus from consumers. This is the rent extraction effect

that increases the value of information. It is easy to understand that selling

all consumer segments is not optimal for the data intermediary. Indeed, selling
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more consumer segments increases competition because Firm 1 has information on

consumers that are closer to Firm 2, and thus can lower prices for these consumers

(Thisse and Vives, 1988). For instance, if the data intermediary sells all consumer

segments, Firm 1 can set lower prices on consumer segments that are closest to

Firm 2. This is the competition effect that lowers the value of information.

We describe the optimal partition sold by the data intermediary with the three

selling mechanisms. Maximizing the profit of the data intermediary with these

optimal partitions is equivalent to maximizing the profits of Firm 1. Consider

partition P1 represented in Figure 2. Partition P1 divides the unit line into two

intervals: the first interval consists of j1 segments (with j1 an integer in [0, k]) of

size 1
k

on [0, j1
k

], that Firm 1 can price discriminate. We refer to this interval as the

share of identified consumers.13 The data intermediary does not sell information

on consumers in the second interval of size 1 − j1
k

, and firms charge a uniform

price on this second interval. We refer to this interval as the share of unidentified

consumers. The number of segments of identified consumers j1 depends on the

total number of segments on the market k. We denote by j1(k) the number of

segments as a function of k.

Proposition 1

For any selling mechanism l ∈ {tol, a, seq}, the optimal partition sold to Firm

1 divides the unit line into two intervals:

• The first interval consists of jl1 segments of size 1
k

on [0,
jl1
k

] where consumers

are identified.

• Consumers in the second interval of size 1− jl1
k

are unidentified.

Proof: see Appendix B.

The partition described in Proposition 1 is optimal as it balances the rent extrac-

tion effect of information while limiting the competitive effect of information. On

the one hand, by identifying consumers close to Firm 1, this partition allows Firm

1 to extract surplus from consumers who have a high willingness to pay. Indeed,

13Thus j1
k ∈ [0, 1].
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selling segments greater than 1
k

on [0, j1
k

] is not optimal as Firm 1 could always

extract more surplus by selling segments of size 1
k
. On the other hand, by keeping

consumers far away from Firm 1 unidentified, an optimal information partition

softens the competitive pressure due to information on Firm 2. In turn, Firm

2 will keep a relatively high price, and the competitive pressure on Firm 1 will

remain low. Any optimal partition must be similar to partition P1, and the op-

timization problem for the data intermediary boils down to choosing the number

of segments j1(k) in partition P1.

Figure 2: Selling partition P1 to Firm 1

2.3 Firms

A firm may decide to remain uninformed, and in this case it only knows that

consumers are uniformly distributed on the unit line. When Firm 1 acquires j1(k)

segments of information, it can price discriminate consumers on these segments.

Firms set prices in two stages.14 First, Firm 1 and Firm 2 simultaneously set

homogeneous prices p1 and p2 on the whole unit line. Secondly, Firm 1 sets a

personalized price on each consumer segment on [0, j1
k

], with p1i being the price on

the ith segment from the origin. Then consumers observe prices. When setting the

competitive price p1, Firm 1 already knows which consumers it can identify, and

14Sequential pricing decision avoids the nonexistence of Nash equilibrium in pure strategies,
and allows an informed firm to charge consumers a higher price. This practice is common in the
literature and is supported by managerial evidence. For instance, Acquisti and Varian (2005) use
sequential pricing to analyze intertemporal price discrimination with incomplete information on
consumer demand. Jentzsch et al. (2013) and Lam et al. (2020) also focus on sequential pricing
where a higher personalized price is charged to identified consumers after a firm sets a uniform
price. Sequential pricing is also common in business practices (see also, Fudenberg and Villas-
Boas (2006)). Recently, Amazon has been accused to show higher prices for Amazon Prime
subscribers, who pay an annual fee for unlimited shipping services, than for non-subscribers
(Lawsuit alleges Amazon charges Prime members for ”free” shipping, Consumer affairs, August
29 2017.). Thus Amazon first sets a uniform price, and then increases prices for high value
consumers who are better identified when they join the Prime program.
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thus charges p1 accordingly. Firm 2 has no information but can observe price p1 set

by Firm 1 on the competitive segment, and thus sets price p2 as a simultaneous

best response. Competition in homogeneous prices p1 and p2 is thus similar to

standard the Hotelling framework without information.

Using this setting, we denote by dθi the demand of Firm θ = {1, 2} on the

ith segment. Firm 1 is informed and maximizes the following profit function with

respect to p11, .., p1j1 , p1:

π1 =

j1+1∑
i=1

d1ip1i =

j1∑
i=1

1

k
p1i + d1p1.

Firm 2 is uninformed and maximizes π2 = d2p2 with respect to p2.

2.4 Timing

The data intermediary first collects data and sells partition P1 to Firm 1. Then

Firms 1 and 2 set homogeneous prices on the whole unit line. Finally, Firm 1 sets

personalized prices on the segments where it has information. Then consumers

see prices and buy the product.

• Stage 1: the data intermediary collects data on k consumer segments at cost

c(k).

• Stage 2: the data intermediary sells information partition P1 by choosing

the number of segments j1(k) to include in the partition.

• Stage 3: firms set prices p1 and p2 on the competitive segments.

• Stage 4: Firm 1 price discriminates consumers on whom it has information

by setting p1i, i ∈ [1, j1(k)].

We describe in Section 3 the three selling mechanisms that we analyze in

this article, and we show in Sections 4.1 and 4.2 how the data collection and

information selling strategies of the data intermediary are affected by the selling

mechanism.
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3 Selling mechanisms

The strategies of the firms and of the data intermediary critically depend on the

way information is sold, i.e. the selling mechanism, which influences the price of

information, and the incentive of data intermediary to collect information. We

analyze three mechanisms: take it or leave it, sequential bargaining, and auctions.

First, with the take it or leave it selling mechanism, the data intermediary proposes

an information partition to Firm 1. Following the offer, there is no possibility for

the data intermediary to sell information to Firm 2, even if Firm 1 discards the

offer. The second mechanism, sequential bargaining, allows the data intermediary

to propose information to Firm 2 if Firm 1 declines the offer, and so on until

one of the firms acquires information. The third selling mechanism is an auction

with negative externality where the data intermediary auctions simultaneously two

information partitions that are potentially different. Firm 1 and Firm 2 can bid

in the two auctions, however only the partition with the highest bid will be sold.

Thus a firm that remains uninformed will face an informed competitor, similarly

to sequential bargaining.

We focus on these three selling mechanisms for two main reasons. First, they

are extensively used by data intermediaries,15 and they have been widely studied

in the theoretical literature. Take it or leave it has been studied by Binmore et al.

(1986), and used by Admati and Pfleiderer (1986) and Bergemann and Bonatti

(2019) to model markets for information. Sequential games have been analyzed

for instance by Rubinstein (1982) or Sobel and Takahashi (1983). Auctions have

been studied by Vickrey (1961); Klemperer (1999); Jehiel and Moldovanu (2000);

Figueroa and Skreta (2009) among others, and used more recently by Montes

et al. (2018) and by Bounie et al. (2018) for the sale of consumer information.

Secondly, the three mechanisms cover a wide range of bargaining power of the

data intermediary. With the take it or leave it mechanism, the data intermediary

has a relatively low bargaining power, as if the negotiation fails, it does not sell

15Nielsen.;
Facebook blocks valuable ad data in privacy update to its marketing partner program, AdAge,
February 21 2020.;
First price Auction, Second price, and the Header-Bidding, Smartyads, February 2018.
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information and makes zero profits. With sequential bargaining, the data interme-

diary can negotiate with a firm’s competitor in case the negotiation fails. Thus it

can exert a threat on a prospective buyer, who may remain uninformed facing an

informed competitor if it does not buy information. The bargaining power of the

data intermediary is higher than with the take it or leave it mechanism. Finally,

the data intermediary can design an auction that penalizes the losing bidder, and

thus maximizes the price of information, allowing the intermediary to reach the

first best outcome. The data intermediary has the strongest bargaining power

with auctions among the three mechanisms that we consider in this article. In

the remainder of this section, we compute the price of information paid by Firm

1 with the three selling mechanisms.

We introduce further notations that simplify the presentation of the model. We

denote by π1(j1) the profit of Firm 1 when it has information on the j1 consumer

segments closest to its location (Firm 2 is uninformed). In the take it or leave

it mechanism, if Firm 1 declines the offer, Firm 2 is not informed either, and

both firms are uninformed. In this case, they set a single price on the unit line

and make profit π. In the sequential bargaining and auction formats, Firm 2 has

information when Firm 1 is uninformed. We denote by π̄1(j2) the profit of Firm 1

when Firm 2 has information on the j2 consumer segments closest to its location.

Finally, we define a couple of information partitions as the pair (j1, j2), where

j1 is the information proposed to Firm 1, and j2 is the information proposed to

Firm 2 (which can include the empty set in the take it or leave it for instance).

3.1 Take it or leave it

Take it or leave it offers characterize over the counter negotiations, which are used

by many information intermediaries such as Nielsen.16 They are also classically

used in theoretical models (Binmore et al., 1986), in particular for the sale of

information (Bergemann and Bonatti, 2019). Take it or leave it corresponds to

situations where the data intermediary has a low bargaining power: it includes all

mechanisms where there is no possibility for renegotiation, such as Nash bargaining

16Nielsen.
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with any level of bargaining power and menu pricing.

The data intermediary proposes information to Firm 1 that accepts or declines

the offer. If Firm 1 declines the offer, the data intermediary does not propose

information to Firm 2, and both Firm 1 and Firm 2 remain uninformed. This

selling mechanism rules out the possibility for the data intermediary to renegotiate

if no selling agreement is found, contrary to the sequential bargaining mechanism

that we describe in Section 3.2.

We focus our analysis on pure strategy Nash equilibrium where the data in-

termediary makes an offer to Firm 1 that consists of an information partition jtol1 ,

and a price of information ptol. Firm 1 can either accept the offer and make profits

π1(jtol1 )− ptol, or reject the offer and make profits π. The partitions are therefore

(jtol1 , ∅). Thus, the willingness to pay of Firm 1 for information is π1(jtol1 )−π. The

data intermediary sets the price of information to:

ptol(j
tol
1 ) = π1(jtol1 )− π. (1)

3.2 Sequential bargaining

Selling information through sequential bargaining extends take it or leave it: in

case the negotiation with Firm 1 fails, the data intermediary can now propose

information to Firm 2. This dynamic interaction thus introduces the ability for

the data intermediary to exert a threat on Firm 1. Such a threat is commonly

used by data intermediaries that leverage on the willingness to pay of firms by

interacting with their competitors.17 Considering sequential bargaining thus offers

insights on over the counter negotiations where data intermediaries have a stronger

bargaining power than with take it or leave it.

With the sequential bargaining mechanism, the data intermediary proposes

information to each firm sequentially, in a potentially infinite bargaining game.

There is no discount factor and the game stops when one firm acquires information.

17Facebook blocks valuable ad data in privacy update to its marketing partner program,
AdAge, February 21 2020.

14

https://adage.com/article/digital/facebook-blocks-valuable-ad-data-privacy-update-its-marketing-partner-program/2238451
https://adage.com/article/digital/facebook-blocks-valuable-ad-data-privacy-update-its-marketing-partner-program/2238451


At each stage, the data intermediary proposes information jseqθ to Firm θ and no

information to Firm −θ.

Firm 1 can acquire information jseq1 and make profits π1(jseq1 ), or decline the

offer, and the data intermediary proposes information jseq2 to Firm 2. If Firm 2

acquires information, the profits of Firm 1 are π̄1(jseq2 ). If Firm 2 declines the offer,

the two previous stages are repeated. The partitions are therefore (jseq1 , jseq2 ).

To compute the value of information with the sequential bargaining mech-

anism, we characterize the equilibrium of this game when a transaction takes

place. Suppose Firm 1 purchases information. The data intermediary will pro-

pose a price pseq(j
seq
1 ) of information that will be accepted by Firm 1 in equilibrium

(minus ε > 0). This price is the difference between the profit of Firm 1 when it

accepts the offer, and the profit of Firm 1 when it declines the offer. If Firm 1

accepts the offer it makes profits π1(jseq1 ). If Firm 1 declines the offer, the data

intermediary will propose a partition to Firm 2. This partition and its price will

be chosen such that Firm 2 will accept the offer, and thus constitute a credible

threat to Firm 1. It is clear that for these two partition to form a steady state

equilibrium of this infinitely repeated game, the two partitions must be symmetric.

Lemma 1

Partitions jseq1 proposed to Firm 1, and jseq2 proposed to Firm 2 are symmetric

with respect to 1
2
.

Proof: see Appendix C.

Thus, to find the equilibrium, it is enough to characterize jseq1 . We look for a

pure strategy Nash equilibrium in this infinitely repeated game with a stopping

time. Consider the equilibrium at the stopping time where Firm 1 purchases

information (without loss of generality), we show in Appendix C that the data

intermediary sets the price of information to:

pseq(j
seq
1 ) = π1(jseq1 )− π̄1(jseq2 ). (2)
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3.3 Auctions

Finally, the data intermediary can sell information through first price auctions in

which Firm 1 and Firm 2 bid for partitions proposed by the data intermediary.

Auctions have three main benefits. First, using auctions allows the data interme-

diary to reach the maximal price of information. Thus, first price auctions can

be considered as a benchmark to characterize the first best scenario where the

data intermediary has the highest bargaining power.18 Secondly, auctions are well

designed when a seller wants to sell a unique product that is differently valued

by bidders. Thirdly, auctions are used more and more frequently by major data

intermediaries such as Google,19 and in data marketplaces (Sheehan and Yalif,

2001; O’kelley and Pritchard, 2009).

Selling information through auctions in our setup is challenging, as auctions

are traditionally used to reveal the willingness to pay of potential bidders. In

our model, both firms and the data intermediary know the willingness to pay of

all bidders. This raises an underbidding problem:20 the firm with the highest

willingness to pay knows the bid of the other firm. Thus, it can bid just above the

willingness to pay of its competitor and win the auction. The data intermediary

loses from this underbidding strategy as the firm with the highest willingness

to pay wins the auction even though it bids below its valuation. Nevertheless,

analyzing auctions is important as underbidding is more and more likely to occur

in markets for information where bidders acquire valuable information on other

bidders through repeated interactions, big data, and artificial intelligence.

In order to maximize the price of information, the data intermediary designs

two simultaneous auctions with a reserve price, and only the partition with the

highest bid will be sold. The reserve price will be such that Firm 1 does not

underbid. We are looking for a pure strategy Nash equilibrium. In auction 1, ja1 is

auctioned with a reserve price pa to avoid underbidding. The reference partition

18Several papers study auction design (Vickrey, 1961; Klemperer, 1999). Auctions are partic-
ularly well suited to the sale of information with negative externality (Jehiel and Moldovanu,
2000; Figueroa and Skreta, 2009).

19First price Auction, Second price, and the Header-Bidding, Smartyads, February 2018.
20These issues arise with auctions as they have been used in previous literature for the sale of

information (Braulin and Valletti, 2016; Montes et al., 2018).
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Pk that includes all k information segments is auctioned in auction 2, in order to

exert a maximal threat on Firm 1 and to maximize its willingness to pay for ja1 .

Participation of both firms is ensured as the data intermediary sets no reserve price

in auction 2. Consider the optimal strategies of Firm 1 and Firm 2. Firm 2 will

bid π2(k)− π̄2(k) in auction 2 since Firm 2 is at least as well off with partition Pk

as in a situation without information and facing Firm 1 informed with k. However,

Firm 2 will never bid above the reserve price ja1 . Consider now the optimal strategy

of Firm 1. Firm 1 can bid for partition Pk, pay a price π1(k) − π̄1(k), and make

profits π̄1(k). On the other hand, Firm 1 can also participate to the auction with

ja1 , win the auction by bidding the reserve price pa, and make profits π1(ja1 )− pa.
The data intermediary will set a reserve price pa = π1(ja1 ) − π̄1(k) − ε, where ε

is an arbitrary small positive number. Thus, π1(ja1 ) − pa > π̄1(k), and since only

one partition is sold, it will be ja1 . In equilibrium, Firm 1 bids pa for ja1 , and Firm

2 bids π2(k)− π̄2(k). The partitions are therefore (ja1 , k). The data intermediary

sets the price of information to:

pa(j
a
1 , k) = π1(ja1 )− π̄1(k). (3)

We have described how to implement auctions using this simultaneous auctions

set up, in order to reach the first best price for the data intermediary.21 Any selling

mechanism that allows the data intermediary to reach the first best price would

result in the same equilibrium, and will share the features of the equilibrium

partitions found in auctions.22

4 Characterization of the equilibrium

We solve the game by backward induction and we characterize the number of

consumer segments sold and collected by the data intermediary in Sections 4.1

21The price is maximized as, on the one hand, the profit of Firm 1 with information is the
highest possible. On the other hand, the partition sold to Firm 2 if Firm 1 remains uninformed
minimizes the profit of Firm 1.

22For instance, direct offers with this threat, or sequential bargaining with commitment to sell
the reference partition to a competitor, would lead to the same result.
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and 4.2. We then analyze in Section 4.3 whether it is more profitable for the

intermediary to sell information to one firm only or to both firms on the market.

4.1 Consumer identification

We characterize the number of consumer segments sold to Firm 1 for each of the

three selling mechanisms. We first establish that for a given value of k, i.e. the

same number of consumer segments collected, the number of consumer segments

sold by the data intermediary is the same for the three selling mechanisms (Propo-

sition 2). The three selling mechanisms have the property that the information

proposed to Firm 2 is independent of the information proposed to Firm 1. We

then show that take it or leave it, sequential bargaining and auctions belong to a

class of mechanisms that we refer to as independent offers, for which Theorem 1

generalizes Proposition 2.

4.1.1 Equivalence between selling mechanisms

We characterize in Proposition 2 the number of consumer segments sold to Firm

1 in equilibrium with the take it or leave it, sequential bargaining and auction

mechanisms.

Proposition 2

The number of consumer segments sold in equilibrium is:

jtol∗1 (k) = jseq∗1 (k) = jso∗1 (k) =
6k − 9

14
.

Proof: see Appendix D.

The proof of Proposition 2 is based on the independence of the choice of j1 and

j2. In other words, the information proposed to Firm 1 (j1) is independent of the

information proposed to Firm 2 (j2) if Firm 1 does not acquire information. With

the take it or leave it mechanism, Firm 1 has no information when it declines

the offer, and thus its outside option is independent of the information partition

proposed by the data intermediary to Firm 2. With the auction mechanism, when

18



Firm 1 does not acquire information, Firm 2 has information on all consumer

segments. Thus, the outside option of Firm 1 that is affected by the partition

proposed to Firm 2 is independent of the partition proposed to Firm 1. With

sequential bargaining, at each stage of the process, the firm which declines the

offer has no information, even though the competitor can acquire information at

the following stage. Here again, the outside option of Firm 1 is independent of the

information partition proposed by the data intermediary to Firm 1. Regardless

of the selling mechanism, when the outside option does not depend on j1, the

data intermediary simply maximizes the profit of Firm 1 with respect to j1. The

integer value of j1 that maximizes the profits of the data intermediary is chosen

by comparing π(|j1|) and π(|j1|+ 1): max(π(|j1|), π(|j1|+ 1)).

4.1.2 Independent offers

Using the intuition developed in the previous section, we can generalize Proposi-

tion 2 to a specific class of information partitions. The latter have the property

that the information sold to Firm 1 (j1) is independent of the information proposed

to Firm 2 (j2) if Firm 1 does not acquire information. Let j1(j2) : J0; kK→ J0; kK

be the number of consumer segments proposed to Firm 1 by the data intermediary

for a given k, as a simultaneous best response to j2, proposed to Firm 2. We define

j2(j1) similarly. Definition 1 characterizes independence between partitions j1 and

j2 using this notation. Theorem 1 then shows that for a given amount of data

collected k, selling mechanisms characterized by such independent offers lead to

the same number of consumer segments sold to Firm 1 (j∗1). Let (j1, j2) be the

couple of partitions proposed to Firm 1.

Definition 1 (Independent offers)

Partitions j1 and j2 are independent if:

∂j1(j2)

∂j2

=
∂j2(j1)

∂j1

= 0.

Definition 1 includes a large set of selling mechanisms such as various forms of

Nash and infinite sequential bargaining with discount factors, but also the three
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selling mechanisms studied in this article. For instance, with a Nash bargaining

selling mechanism, the data intermediary maximizes with respect to j1 a share of

the joint profits with Firm 1, and does not propose information to Firm 2 if the

negotiation breaks down.

It is straightforward to generalize Proposition 2 to Theorem 1, that shows

that for a given k, all selling mechanisms satisfying Definition 1 lead to the same

number of consumer segments sold by the data intermediary.

Theorem 1

Consider s and s′, two selling mechanisms that satisfy Definition 1:

∀ k, js∗1 (k) = js
′∗

1 (k).

Theorem 1 comes naturally from the independence of j1 and j2 in the price func-

tions in Eq. 1, 2 and 3. Nevertheless, this result is far from being trivial, as the

properties of take it or leave it, sequential bargaining, and auctions, are radically

different: their outside options cover a wide range of values from the absence of

threat on Firm 1 if it declines the offer in the take it or leave it, to the maximal

feasible threat reached in the benchmark scenario with first price auctions. The

fact that the data intermediary chooses the same number of segments with the

three selling mechanisms is a straightforward mathematical result, but is quite

powerful as it shows the equivalence of the selling strategies with selling mecha-

nisms that are at first glance unrelated. Thus, Theorem 1 opens the doors to new

theoretical approaches focusing on classes of mechanisms.

This equivalence does not hold in general as there are many selling mechanisms

that do not satisfy Definition 1, and for which the number of consumer segments

sold will be different. For instance, the data intermediary can simultaneously

auction symmetric partitions to Firm 1 and Firm 2. In this case the information

partition proposed to Firm 1 appears in its outside option if it does not acquire in-

formation: palt = π1(jalt1 )− π̄1(jalt1 ). Consequently, the number of segments chosen

by the data intermediary affects both the profit of Firm 1 and its outside option,

and will not maximize the profit of Firm 1. We characterize these mechanisms
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in Appendix D. Note that there are partitions that are symmetric in equilibrium

and that satisfy Theorem 1. For instance, with sequential bargaining, the optimal

partitions jseq1 and jseq2 are chosen independently, and symmetry is not imposed,

but is a result of the equilibrium.

Theorem 1 characterizes the properties of information partitions based on the

amount of information sold in equilibrium. It has theoretical and practical im-

plications. First, when offers are independent, the data intermediary maximizes

the profits of Firm 1. Thus, the joint profits of the data intermediary and Firm 1

are maximized. This collusive behavior benefits Firm 1 to the detriment of Firm

2. This is not necessarily the case with other types of contracts. For instance,

with second price auctions, which are equivalent to symmetric offers analyzed in

Section 5, the data intermediary maximizes the willingness to pay of the second

highest bidder, and the objectives of Firm 1 and of the data intermediary are not

aligned.

Secondly, Theorem 1 offers a convenient criterion to assess the impact of a

selling mechanism on the amount of information sold on the market. Two selling

mechanisms that belong to the class of partitions of Theorem 1 will always lead to

the same number of consumer segments sold to Firm 1. Thus a competition au-

thority can analyze the properties of the couple of partitions to determine whether

an action is required to limit the amount of information sold on a market.

To conclude, we have shown in this section that the number of consumer seg-

ments sold to Firm 1 does not vary with the three selling mechanisms satisfying

Definition 1.

4.2 Consumer data collection

We analyze in this section how the different selling mechanisms impact the profits

of the data intermediary, the number of consumer segments collected (k), and con-

sumer surplus. The amount of data collected depends on the value of information,

which is determined by the outside option that varies with the selling mechanism.

Even though the data intermediary sells the same information partitions to firms

with the different selling mechanisms, we will show that the number of segments
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collected in the first stage of the game changes with the selling mechanism,23 as

the outside option changes with different selling mechanisms.

The profit of the data intermediary Π ∈ {Πtol,Πseq,Πa} is given by the price

of information p ∈ {ptol, pseq, pa}, net of the cost of data collection c(k): Π(k) =

p(k)− c(k).24

We have established in Proposition 2 that the number of segments sold by the

data intermediary in the second stage of the model is the same for the three selling

mechanisms: j∗1(k) = 6k−9
14

. Thus, selling mechanisms will only impact the strate-

gies of the data intermediary through the number of consumer segments collected

k. Indeed, different selling mechanisms will lead to different prices for information,

and thus to different amounts of data collected by the data intermediary.

Proposition 3 compares the number of segments collected by the data inter-

mediary and consumer surplus with the three selling mechanisms.

Proposition 3

The number of consumer segments collected k and consumer surplus CS are

inversely correlated:

(a) kseq > ka > ktol,

(b) CStol > CSa > CSseq.

Proof: see Appendix E.

Proposition 3 shows that the number of consumer segments collected is minimized

with the take it or leave it mechanism. The optimal level of data collected depends

on the marginal gain from increasing information precision. The marginal gain

is the lowest in the take it or leave it mechanism since no firm is informed in

the outside option of Firm 1, and the profits of Firm 1 do not depend on the

precision of information if it remains uninformed. Thus, information collection is

minimized with this selling mechanism, the rent extraction effect is the lowest, and

consumer surplus is maximized. In sequential bargaining and auctions, an increase

23We assume that the cost of collecting data does not depend on the selling mechanism.
24We make the assumption that Π is concave and reaches a unique maximum on R+. See

Appendix A for a mathematical expression of this assumption.
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in the precision of information has two positive effects on the price of information.

First, more precise information increases the profits of Firm 1 through a better

targeting of consumers which increases the rent extraction effect. Secondly, the

negative externality for an uninformed firm that faces an informed competitor in

stronger with more precise information. The data intermediary chooses the value

of k according to these two effects. As the profit functions of an informed firm

are equal in sequential bargaining and auctions (Proposition 2), the amount of

data collected (k) is only driven by the outside option. The marginal gain of more

precise information is higher with the sequential bargaining mechanism than with

auctions. Indeed, the marginal effect of more precise information on the outside

option is higher with sequential bargaining than with auctions where the outside

option is already the harshest, and thus is less sensitive to an increase of precision.

Thus information collection is maximized, and consumer surplus minimized with

sequential bargaining. Proposition 3 sharply contrasts with the existing literature

that argues that more information leads to higher consumer surplus due to the

competitive effect of information (Thisse and Vives, 1988; Stole, 2007). Here,

more information collected by the data intermediary allows firms to extract more

consumer surplus, while at the same time the data intermediary can reduce the

intensity of competition on the product market by selling an appropriate partition

to Firm 1. The data intermediary thus maximizes rent extraction and minimizes

the competitive effect of information.

Proposition 4 shows that the data intermediary prefers auctions, and that the

take it or leave it is the least profitable selling mechanism.

Proposition 4

The profits of the data intermediary are maximized with auctions and mini-

mized with the take it or leave it mechanism:

Πa > Πseq > Πtol.

Proof: see Appendix F.

With the auction selling mechanism, the data intermediary can maximize the

value of the threat of the outside option, and maximizes the willingness to pay of
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Firm 1. On the contrary, with the take it or leave it mechanism, both firms are

uninformed when a firm rejects the offer of the data intermediary, resulting in a

lower willingness to pay of firms for information.

4.3 Selling information to one or to two firms

We have focused our analysis on cases where the data intermediary sells informa-

tion to only one firm, and keeps the other firm uninformed. In this section, we

allow the data intermediary to sell information to both firms, and we compare

profits to find the optimal selling strategy. We first establish that profits for the

data intermediary are identical with the three selling mechanisms when selling

information to both firms. Next, we show that the data intermediary sells infor-

mation to both firms only with the take it or leave it mechanism, and to only one

firm with auctions and sequential bargaining. Finally, we compare the equilibrium

outcomes with the three selling mechanisms, acknowledging the fact that the data

intermediary only sells information to both firms with take it or leave it.

We show in Proposition 5 that profits are identical with the three selling mech-

anisms when the data intermediary sells information to both firms.

Proposition 5

The three selling mechanisms lead to the same profit for the data intermediary:

Πseq
both = Πa

both = Πtol
both = Πboth.

Proof: see Appendix G.

The data intermediary maximizes the sum of the prices of information paid by

each firm. Each price is the difference between the profit of a firm when both

firms are informed, and profits when a firm is uninformed facing an informed

competitor. The proof first establishes that the optimal partitions with the three

selling mechanisms are identical, and then that the outside option for each firm

is the same regardless of the selling mechanism. Hence, profits are identical with

the three selling mechanisms.
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We characterize in Proposition 6 whether the data intermediary sells informa-

tion to one or to both firms with the three selling mechanisms.

Proposition 6

The data intermediaries sells information:

• To Firm 1 only with auctions and sequential bargaining.

• To both firms with take it or leave it.

Proof: see Appendix H.

The intuition behind Proposition 6 is the following. For the auctions and the

sequential bargaining mechanisms, the data intermediary can leverage on the neg-

ative externality related to the threat of being uninformed, which increases the

willingness to pay of a prospective buyer. On the contrary, with the take it or

leave it mechanism, the data intermediary cannot threaten Firm 1 if it declines

the offer. Therefore the data intermediary prefers to sell information to both firms

using the take it or leave it mechanism, while it only sells information to one firm

in the auction and sequential bargaining mechanisms. Thus the selling mechanism

has an impact on the number of firms that are informed on a market, and thus on

the intensity of competition and on consumer surplus.

Accounting for the optimal selling strategy of the data broker, we rank profits

with the three selling mechanisms in Proposition 7.

Proposition 7

Πa > Πseq > Πtol
both = Πboth

Proof: see Appendix H.

The data intermediary can exert a threat on Firm 1 with auctions and sequential

bargaining, which increases its willingness to pay for information. Selling infor-

mation to both firms intensifies competition between firms, lowers their surplus,

and in turn lowers the price of information. Thus selling information to both firms

results in lower profit than selling information to Firm 1 only with auctions and
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sequential bargaining. On the contrary, when the data intermediary sells informa-

tion to only one firm with take it or leave it, surplus extraction is relatively low as

there is no threat on Firm 1 is it declines the offer: both firms remain uninformed.

Thus selling information to both firms is more profitable in this case.

The ranking of profits is identical to Proposition 4. However, as the data

intermediary sells information to both firms with take it or leave it, equilibrium

values are changed. We characterize in Proposition 8 the number of consumer

segments collected and sold when selling information to both firms in equilibrium,

as well as consumer surplus. We compare these values with equilibrium with

auctions and sequential bargaining. Similarly to Proposition 3, we show that

there is a negative relation between consumer surplus and the amount of data

collected.

Proposition 8

(a) jboth∗ =
6k − 9

22

(b) kseq > ka > kboth

(c) CSboth > CSa > CSseq.

Proof: see Appendix H.

Proposition 8 confirms the results obtained in Proposition 3. The number of

consumer segments collected when selling information to both firms with take it

or leave it is lower than with auctions and sequential bargaining, where the data

intermediary extracts a large share of profits from Firm 1 by preventing Firm 2

from acquiring information. The number of consumer segments sold to firms is

lower than, j∗1(k) = 6k−9
14

, when the data intermediary sells information to Firm 1

only. By selling fewer segments to both Firm 1 and Firm 2, the data intermediary

internalizes the competitive effect of information, which increases the profits of

firms, and their willingness to pay for information. When both firms are informed,

more consumers are identified and consumer surplus is higher.

All results of Sections 4.1 and 4.2 hold when the data intermediary chooses

whether to sell information to both firms. The take it or leave it mechanism
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is still optimal for consumers: the data intermediary chooses to sell information

to both firms, which minimizes the number of consumer segments collected, and

maximizes consumer surplus compared to the sequential bargaining and auction

mechanisms.

5 Second price auctions and symmetric offers

We consider in this section an alternative mechanism used to sell information

to firms: second price auctions. There are four main reasons that make second

price auctions an interesting mechanism to analyze. First, second price auctions

prevent underbidding from auction participants. Secondly, second price auctions

allow the data intermediary to extract surplus from firms, even when it has no

information about their willingness to pay. Indeed, in second price auctions, firms

compete fiercely for the acquisition of information. Thus, second price auctions are

useful when data intermediaries have a low bargaining power. Thirdly, focusing

on second price auctions will allow us to shed light on the ongoing debate in the

online ads industry, on the use of first or second price auctions.25 Finally, second

price auctions allows us to identify another class of selling mechanisms where

information partitions proposed to firms are perfectly correlated.

With second price auctions,26 the data intermediary auctions partitions ja21

and ja22 , and Firm 1 (the highest bidder) pays the price corresponding to the bid

of Firm 2 (the lowest bidder) for partition ja22 . We compare profits Πa2 , consumer

surplus CSa2 , and the amount of data collected ka2 with second price auctions,

with the outcomes of the three other selling mechanisms.

Proposition 9

The equilibrium with the second price auctions has the following properties:

25Google’s adoption of first-party auction creates migration headaches for buyers, Digiday,
March 8 2019.

26We focus on information partitions where the data intermediary sells to each firm all con-
sumer segments closest to its location, up to a cutoff point after which no consumer segment is
sold.
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(a) ja2∗1 = ja2∗2 =
4k − 3

6

(b) Πa > Πa2 > Πseq > Πtol
both

(c) kseq > ka > ka2 > ktolboth

(d) CStolboth > CSa2 > CSa > CSseq.

Proof: see Appendix I.

Introducing the possibility for the data intermediary to sell information with sec-

ond price auctions does not change the comparison between auctions and take

it or leave it. The take it or leave it mechanism still minimizes the number of

consumer segments collected and maximizes consumer surplus. The data inter-

mediary would prefer the first price auction mechanism as it leads to the highest

willingness to pay of Firm 1. Thus this result contributes to the debate on the

design of the optimal auctions for online advertisement: second price auctions re-

duce the amount of data collected, but first price auctions maximize the price of

information.

Comparing second price auctions with first price auctions, we see that the

amount of consumer data collected is higher, and consumer surplus lower with

first price auctions than with second price auctions. First price auctions are pre-

ferred by the data intermediary as they maximize its profits. Moreover, the data

intermediary auctions an information partition that is optimal for Firm 1 with

first price auction, while both firms have access to symmetric partitions with sec-

ond price auctions. Thus, second price auctions guarantee fair and equal access

to data, and ensures competition on a level playing field. For these reasons, sec-

ond price auctions are preferred by data protection agencies and by competition

authorities.

Finally, partitions proposed to Firms 1 and 2 in second price auctions are

symmetric. Consider second price auctions where the winning bidder, Firm 1, has

to pay the valuation of the second highest bidder, Firm 2. There are two cases to

consider in which the data intermediary auctions partitions with different numbers
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of segments. First, if Firm 1 is proposed more segments of information than Firm

2, ja2∗1 > ja2∗2 , the data intermediary can increase the willingness to pay of Firm

2 by increasing ja2∗2 . Secondly, if Firm 1 is proposed less segments of information

than Firm 2, the data intermediary can increase the willingness to pay of Firm 2

by increasing ja2∗1 , which will worsen its outside option. In both cases, the data

intermediary has interest to equalize the number of segments auctioned in both

partitions, and the equilibrium is reached when the two partitions are symmetric:

ja2∗1 = ja2∗2 .

To sum-up, we have identified another class of selling mechanism where par-

titions proposed to both firms are perfectly correlated and symmetric, and that

does not call into question the results established in the previous section.

6 Regulatory implications and policy guidelines

We analyze in this section the implications of our results for the regulation of the

market for consumer information. The data intermediary and regulators have con-

flicting views over which selling mechanism to use for two reasons. First, Proposi-

tions 3 and 4 show that the data intermediary prefers the auction mechanism that

maximizes its profits but leads to a lower consumer surplus than the take it or

leave it mechanism. However, a competition authority, concerned with consumer

surplus, and a data protection agency, concerned with the amount of consumer

data collected by the data intermediary, prefer the take it or leave it mechanism.

While enforcing a specific selling mechanism is a particularly hard task to do for

a regulator, we propose two regulatory tools that allow a regulator to reach the

market outcomes of a take it or leave it mechanism, therefore minimizing data

collection and maximizing consumer surplus. The first one is a data minimization

principle: data protection agencies may change the data collection strategy of a

data intermediary by setting a limit over the amount of data collected k. For

instance the European GDPR enforces a data minimization principle, purpose of

data processing, and informed consent (General Data Protection Regulation). The

second regulatory tool is a price cap that has been recently proposed by Rey and
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Tirole (2019).

Secondly, access to data is scrutinized by competition authorities who want to

guarantee a fair and equal access to information for firms. Market practices have

revealed that data intermediaries play a significant role in shaping competition,

which can cause important harms to other companies and to consumer welfare.

For instance, Facebook offered companies such as Netflix, Lyft, or Airbnb special

access to data, while denying its access to other companies such as Vine.27 A com-

petition authority may prefer a market situation where all market participants are

informed, while we have shown that a data intermediary prefers to sell information

to only one firm using first price auctions. We show in Section 6.2 that price caps

can force the data intermediary to sell information to both firms, and thus ensure

a fair and equal access to data.

6.1 Data minimization principle

A data protection agency can set a limit k̄ over the amount of consumer data

collected by a data intermediary. The aim of a data minimization principle is to

protect consumer privacy, by forcing firms to collect as few data as possible. This

regulatory tool, enacted for instance in the European General Data Protection

Regulation (General Data Protection Regulation), ignores the potential benefits

for consumers of customization of services and product with their data, which

appear in our model since consumer surplus is always higher when firms price dis-

criminate than in the standard Hotelling model without information. Proposition

10 provides the implications for market equilibrium of a change in the maximal

amount of consumer data that the intermediary can collect.

Proposition 10

• (a) The ranking of profits of Propositions 9 is independent of k.

• (b) Consumer surplus decreases with k.

27Facebook gave Lyft and others special access to user data; engadget, May 12th, 2018.
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Proof: See Appendix J.

Proposition 10 shows that reducing the amount of consumer information collected

by the data intermediary will increase consumer surplus. With less precise in-

formation, firms can identify consumers less precisely and there is less surplus

extraction from consumers. The results of Proposition 4 still hold, and the data

intermediary prefers to sell information through the auction mechanism. Indeed,

surplus extraction from Firm 1 depends on the threat of being uninformed, which

is the highest with auctions, and the lowest in the take it or leave it mechanism.

In the next section we show how a price cap can be used to force the data inter-

mediary to sell information to both firms, thus allowing fair competition between

firms.

6.2 Price cap

Setting a price cap is another tool for competition authorities to protect consumers

purchasing power (see recently Rey and Tirole (2019)). We analyze the impacts

of a price cap over the strategies of the data intermediary: by imposing a price

cap, a regulator can lower the profits of the data intermediary who will then sell

information to both firms. As a result, the amount k of consumer data collected

will change. We note p the highest price of information allowed by the regulator.

Proposition 11

• (a) Regardless of the selling mechanism, the amount of data collected by the

data intermediary decreases with the value of the price cap p.

• (b) The data intermediary will sell information to both firms if p ≤ 2pboth.

Proof: See Appendix K.

Proposition 11 (a) results from the log concavity of the price with respect to k,

meaning that the rent extraction effect is always stronger than the competition

effect that is internalized by the data intermediary. This relationship was noticed
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by Varian (2018), who shows that the performance of artificial intelligence algo-

rithms displays a decreasing return to scale with respect to the amount of data

used. Moreover, a price cap can also be of interest of data protection agencies

since the amount of data collected increases with the value of the cap. Proposi-

tion 11 (b) can be used by competition authorities to ensure a level playing field,

by setting the price cap such that the data intermediary sells information to both

firms. When the price cap is below 2pboth, the data intermediary sells (symmetric)

information to all firms, regardless of the selling mechanism. In other words, low-

ering the price cap reduces the amount of consumer data collected, and setting the

price cap below 2pboth increases market competition and consumer surplus, and

guarantees fair competition between firms.

7 Conclusion

The dominance of data intermediaries is today the source of intense debates be-

tween economists regarding the ability of competition authorities to protect con-

sumer welfare. Our article contributes to this debate by emphasizing how the

way data intermediaries sell information can harm consumer welfare by increasing

the amount of data collected, and by limiting competition between firms on the

markets. Our model of data intermediary that collects and sells consumer infor-

mation has therefore implications for competition policy, personal data protection

and emphasizes the interplay between both regulatory frameworks.

First, the selling mechanism can impact competition on markets by encour-

aging data intermediaries to offer firms differentiated access to data. Indeed, the

data intermediary prefers to sell information to only one firm with sequential bar-

gaining and auction but not with take it or leave it offers. Consumer surplus when

information is sold to only one firm, is lower than when both firms are informed.

More information on the market could be enforced by regulation to guarantee

a level playing field, for instance using price caps. Such regulatory tools are al-

ready used for essential patents in patent pools by requiring a fair, reasonable, and

non-discriminatory licensing clause (Lerner and Tirole, 2004; Layne-Farrar et al.,
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2007). These new insights can fuel the ongoing debate on competition policy in

a digital era, which is starting to acknowledge the strategic role of information

on competition. As Crémer et al. (2019) emphasize, data create a high barrier

to entry on a market, which encourages the emergence of dominant firms. The

strategic role of data has led the FTC and the European Commission, concerned

with potential anti-competitive practices, to increase their scrutiny of the activity

of big-tech companies and data brokers.28

Secondly, our results show that the price established on the market for infor-

mation will influence the amount of data collected, and thus how well consumer

privacy is protected. Indeed, the take it or leave it mechanism results in a lower

level of data collected compared to auction or sequential bargaining mechanisms.

The amount of consumer data collected in equilibrium is driven by the price of

information, which depends positively on the profit of the firm that purchases

information, and negatively on what happens if the firm declines the offer. The

data intermediary can then leverage out on this threat by increasing the precision

of information, i.e. by collecting more data, which will increase firms’ willingness

to pay for information. We find that the amount of consumer data collected is the

lowest with the take it or leave it mechanism, where the outside option does not

change with the data collection strategy. Information collection is maximized, and

consumer surplus minimized with sequential bargaining. These new results can

be of interest for data protection agencies concerned with the amount of personal

data collected by firms.

Finally, our model sheds light on the subtle interplay between data protection

regulations and competition policy. According to the economic literature, there is

a tradeoff between data protection and competition, as increasing the amount of

information on markets increases consumer surplus (Thisse and Vives, 1988) but

at the cost of consumer privacy. We challenge this view by showing that when

data intermediaries behave strategically, they internalize the negative competitive

effect of information so that more information on the market does not necessarily

28Congress, Enforcement Agencies Target Tech; Google, Facebook and Apple could face US
antitrust probes as regulators divide up tech territory; If you want to know what a US tech
crackdown may look like, check out what Europe did.
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increase consumer surplus. The three selling mechanisms that we have analyzed

– take it or leave it, sequential bargaining and first price auctions – are character-

ized by an inverse relationship between data collection (less privacy protection)

and consumer surplus: more data collected means less consumer surplus. Among

the three selling mechanisms, the take it or leave it mechanism is the only one to

achieve both goals of data protection agencies willing to minimize data collection,

and of competition authorities who want to maximize consumer surplus. Under-

standing the theoretical properties of selling mechanisms is therefore essential to

promote a competitive digital economy that preserves consumer data protection.
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A Mathematical assumptions

We denote by p ∈ {ptol, pseq, pa} the price of information, defined in Section 3 for
the three selling mechanisms. The cost function is defined such that:

∂2[p(k)−c(k)]
∂k2

< 0 and ∃! k∗ s.t. ∂[p(k)−c(k)]
∂k

= 0

∃! k∗ s.t. ∂Π
∂k

= 0 and Π(k∗) ≥ 0

c(0) = 0

These technical hypothesis are common in the literature. It allows profits to
be maximized in a unique point, which is usually true for linear and convex cost
functions. The cost of collecting information encompasses various dimensions of
the activity of the data intermediary such as installing trackers, or storing and
handling data. For instance Varian (2018) describes the various costs associated
with collecting and handling data.

B Optimal information partition

The data intermediary can choose any partition in the sigma-field P generated by
the elementary segments of size 1

k
, to sell to Firm 1 (without loss of generality).

There are three types of segments to consider:

• Segments A, where Firm 1 is in constrained monopoly;

• Segments B, where Firms 1 and 2 compete.

• Segments C, where Firms 1 makes zero profit.

We find the partition that maximizes the profits of Firm 1, we will see that it
maximizes the profit of the data intermediary. We drop superscript l when there
is no confusion. We proceed in three steps. In step 1 we analyze type A segments.
We show that it is optimal to sell a partition where type A segments are of size 1

k
.

In step 2, we show that all segments of type A are located closest to Firm 1. In
step 3 we analyze segments of type B and we show that it is always more profitable
to sell a union of such segments. Therefore, there is only one segment of type B,
located furthest away from Firm 1, and of size 1 − j

k
(with j an integer, j ≤ k).

Finally, we can discard segments of type C because information on consumers on
these segments does not increase profits.

Step 1: We analyze segments of type A where Firm 1 is in con-
strained monopoly, and show that reducing the size of segments to 1

k

is optimal.

Consider any segment I = [ i
k
, i+l
k

] of type A with l, i integers verifying i+ l ≤ k
and l ≥ 2, such that Firm 1 is in constrained monopoly on this segment. We show
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that dividing this segment into two sub-segments increases the profits of Firm 1.
Figure 3 shows on the left panel a partition with segment I of type A, and on the
right, a finer partition including segments I1 and I2, also of type A. We compare
profits in both situations and show that the finer segmentation is more profitable
for Firm 1. We write πA1 (P) and πAA1 (P′) the profits of Firm 1 on I with partitions
P and on I1 and I2 with partition P′.

Figure 3: Step 1: segments of type A

To prove this claim, we establish that the profit of Firm 1 is higher with a
finer partition P′ with two segments : I1 = [ i

k
, i+1
k

] and I2 = [ i+1
k
, i+l
k

] than with a
coarser partition P with I.

First, profits with the coarser partition is: πA1 (P) = p1id1 = p1i
l
k
. The demand

is l
k

as Firm 1 gets all consumers by assumption; p1i is such that the indifferent
consumer x is located at i+l

k
:

V−tx−p1i = V−t(1−x)−p2 =⇒ x =
p2 − p1i + t

2t
=
i+ l

k
=⇒ p1i = p2+t−2t

i+ l

k
,

with p2 the price charged by (uninformed) Firm 2. This price is only affected by
strategic interactions on the segments where firms compete, and therefore does
not depend on the pricing strategy of Firm 1 on type A segments.

We write the profit function for any p2, replacing p1i and d1:

πA1 (P) =
l

k
(t+ p2 −

2(l + i)t

k
).

Secondly, using a similar argument, we show that the profit on I1 ∪ I2 with
partition P′ is:

πAA1 (P′) =
1

k
(t+ p2 −

2(1 + i)t

k
) +

l − 1

k
(t+ p2 −

2(l + i)t

k
).

Comparing P and P′ shows that the profit of Firm 1 using the finer partition
increases by 2t

k2
(l − 1), which establishes the claim.

By repeating the previous argument, it is easy to show that the data interme-
diary will sell a partition of size l

k
with l segments of equal size 1

k
.
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Step 2: We show that all segments of type A are closest to Firm
1 (located at 0 on the unit line by convention).

Going from left to right on the Hotelling line, look for the first time where a
type B interval, J = [ i

k
; i+l
k

] of length l
k
, is followed by an interval I1 = [ i+l

k
, i+l+1

k
]

of type A, shown to be of size 1
k

in step 1. Consider a reordering of the overall
interval J ∪ I1 = [ i

k
, i+l+1

k
] in two intervals I ′1 = [ i

k
; i+1
k

] and J ′ = [ i+1
k
, i+l+1

k
]. We

show in this step that such a transformation increases the profits of Firm 1.

Figure 4: Step 2: relative position of type A and type B segments

The two cases are shown in Figure 4 and correspond respectively to the par-
titions P̃ and P̃′. The curved line represents the demand of Firm 1, which does
not cover type B segments. In partition P̃, a segment of type B of size l

k
, J , is

followed by a segment of type A of size 1
k
, I1. We show that segments of type A

are always located closest to Firm 1 by proving that it is always optimal to change
partition starting with segments of type B with a partition starting with segments
of type A like in partition P̃′. To show this claim, we compare the profits of the
informed firm with J, I1 under partition P̃ and with I ′1, J

′ under partition P̃′, and
we show that the latter is always higher than the former. The other segments of
the partition remain unchanged.

To compare the profits of the informed firm under both partition, we first
characterize type B segments. Segment J of type B is non null (has a size greater
than 1

k
), if the following restrictions imposed by the structure of the model, are

met: respectively positive demand and the existence of competition on segments
of type B. In order to characterize type A and type B segments, it is useful to
consider the following inequality:

∀ i, l ∈ N s.t. 0 ≤ i ≤ k − 1 and 1 ≤ l ≤ k − i− 1,

i

k
≤ p̃2 + t

2t
and

p̃2 + t

2t
− l

k
≤ i+ l

k
.

(4)

In particular, we use the relation that Eq. 4 draws between price p̃2 and
segments endpoint i

k
and i+l

k
to compare the profits of Firm 1 with P̃′ and with P̃.

Without loss of generality, we rewrite the notation of type A and B segments.
Segments of type A are of size 1

k
and are located at ui−1

k
, and segments of type B,
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are located at si
k

and are of size li
k
.29 There are h ∈ N segments of type A, of size

1
k
, where prices are noted p̃A1i. On each of these segments, the demand is 1

k
. There

are n ∈ N segments of type B, where prices are noted p̃B1i. We find the demand
for Firm 1 on these segments using the location of the indifferent consumer:

d1i = x− si
k

=
p̃2 − p̃B1i + t

2t
− si
k
.

We can rewrite profits of Firm 1 as the sum of two terms. The first term
represents the profits on segments of type A. The second term represents the
profits on segments of type B.

π1(P̃) =
h∑
i=1

p̃A1i
1

k
+

n∑
i=1

p̃B1i[
p̃2 − p̃B1i + t

2t
− si
k

].

Profits of Firm 2 are generated on segments of type B only, where the demand
for Firm 2 is:

d2i =
si + li
k
− x =

p̃B1i − p̃2 − t
2t

+
si + li
k

.

Profits of Firm 2 can be written therefore as:

π2(P̃) =
n∑
i=1

p̃2[
p̃B1i − p̃2 − t

2t
+
si + li
k

]. (5)

Firm 1 maximizes profits π1(P̃) with respect to p̃A1i and p̃B1i, and Firm 2 maxi-
mizes π2(P̃) with respect to p̃2, both profits are strictly concave.

Equilibrium prices are:

p̃A1i = t+ p̃2 − 2
uit

k

p̃B1i =
p̃2 + t

2
− sit

k
=
t

3
+

2t

3n
[
n∑
i=1

[
si
2k

+
li
k

]]− sit

k

p̃2 = − t
3

+
4t

3n

n∑
i=1

[
si
2k

+
li
k

].

(6)

We can now compare profits with P̃ and P̃′. When we move segments of type
B from the left of segments of type A to the right of segment of type A, it is
important to check that Firm 1 is still competing with Firm 2 on each segment
of type B, and that Firm 1 is still in constrained monopoly on segments of type
A. The second condition is met by the fact that price p̃2 is higher in P̃′ than in
P̃. The first condition is guaranteed by Eq. 4: p̃2+t

2t
− li

k
≤ si+li

k
for some segments

located at si of size li. By abuse of notation, let si denote the segment located at

29With ui and si integers below k.
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[ si
k
, si+li

k
], which corresponds to segments of type B that satisfy these condition.

Let s̃i denote the m segments (m ∈ [0, n− 1]) of type B with partition P̃ located

at [ s̃i
k
, s̃i+l̃i

k
] that do not meet these conditions, and therefore are type A segments

with partition P̃′.
Noting p̃′2 and p̃B

′
1i the prices with P̃′, we have:

p̃′2 =
4t

3(n−m)
[−n

4
+

n∑
i=1

[
si
2k

+
li
k

] +
m

4
+

1

2k
−

m∑
i=1

s̃i
2k

]

= p̃2 +
4t

3(n−m)
[
3mp̃2

4t
+

1

2k
+
m

4
−

m∑
i=1

s̃i
2k

],

for segments of type B where inequalities in Eq. 4 hold:

p̃B
′

1i = p̃1i +
1

2

4t

3(n−m)
[
3mp̃2

4t
+

1

2k
+
m

4
−

m∑
i=1

s̃i
2k

],

for segments of type B where inequalities in Eq. 4 do not hold:

p̃B
′

1i = p̃1i +
1

2

4t

3(n−m)
[
3mp̃2

4t
+

1

2k
+
m

4
−

m∑
i=1

s̃i
2k

]− t

k
.

Let us compare the profits between P̃ and P̃′. To compare profits that result
by reordering J, I1 into I ′1, J

′, that is, by moving the segment located at i+l
k

to
i
k

(A to B), we proceed in two steps. First we show that the profits of Firm 1

on [ i
k
, i+l+1

k
] are higher with P̃′ than with P̃, and that p̃2 increases as well; and

secondly we show that the profits of Firm 1 on type B segments are higher with
P̃′ than with P̃.

First we show that the profits of Firm 1 increase on [ i
k
, i+l+1

k
], that is, we show

that ∆π1 = π1(P̃′)− π1(P̃) ≥ 0 :

∆π1 =π1(P̃′)− π1(P̃)

=
1

k
[p̃′2 − 2

it

k
− p̃2 + 2

i+ l

k
t]

+ p̃B
′

1i [
p̃′2 − p̃B

′
1i + t

2t
− i+ 1

k
]− p̃B1i[

p̃2 − p̃B1i + t

2t
− i

k
].

By definition, s̃i verifies the inequalities in Eq. 4, thus s̃i
k
≤ p̃2+t

2t
, which allows

us to establish that 4t
3(n−m)

[3mp̃2
4t

+ 1
2k

+ m
4
−
∑m

i=1
s̃i
2k

] ≥ 2t
3nk

. It is then immediate
to show that:

∆π1 ≥
t

k
[1− 1

3n
][

2

k

3nl + 1

3n− 1
− p̃2

2t
− 1

2
− 1

6nk
+
i

k
+

1

2k
].

Also, by assumption, firms compete on J = [ i
k
, i+l
k

] with P̃, which implies that

inequalities in Eq. 4 hold, and in particular, p̃2+t
4t
− i

2k
≤ l

k
.
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Thus:

∆π1 ≥
t

k
[1− 1

3n
][

2

k

3nl + 1

3n− 1
− 2l

k
− 1

6nk
+

1

2k
] ≥ 0.

Profits on segment [ i
k
, i+l+1

k
] are higher with P̃′ than with P̃.

Second we consider the profits of Firm 1 on the rest of the unit line. We
write the reaction functions for the profits on each type of segments, knowing that
p̃′2 ≥ p̃2.

For segments of type A:

∂

∂p̃2

πA1i =
∂

∂p̃2

(
1

k
[t+ p̃2 − 2

uit

k
]) =

1

k
,

which means that a higher p̃2 increases the profits.
For segments of type B:

∂

∂p̃2

πB1i =
∂

∂p̃2

(p1i[
p̃2 − p̃B1i + t

2t
− si
k

]) =
∂

∂p̃2

(
1

2t
[
p̃2 + t

2
− sit

k
]2) =

1

2t
[
p̃2 + t

2
− sit

k
],

which is greater than 0 as p̃2+t
2
− sit

k
is the expression of the demand on this

segment, which is positive under Eq. 4.
Thus for any segment, the profits of Firm 1 increase with P̃′ compared to P̃.

Intermediary result 1: By iteration, we conclude that type A segments are
always at the left of type B segments.

Step 3: We now analyze segments of type B where firms compete.
Starting from any partition with at least two segments of type B, we
show that it is always more profitable to sell a coarser partition.

As there are only two possible types of segments (A and B) and that we have
shown that segments of type A are the closest to the firms, segment B is therefore
further away from the firm. We prove the claim of step 3 by showing that if
Firm 1 has a partition of two segments where it competes with Firm 2, a coarser
partition produces a higher profits. We compute the profits of the firm on all the
segments where firms compete, and compare the two situations described below
with partition P̂ and partition P̂′.

Figure 5: Step 3: demands of Firm 1 on segments of type B (dashed line)
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Figure 5 depicts partition P̂ on the left panel, and partition P̂′ on the right panel
(on each segment the dashed line represents the demand for Firm 1). Partition

P̂ divides the interval [ i
k
, 1] in two segments [ i

k
, i+l
k

] and [ i+l
k
, 1], whereas P̂′ only

includes segment [ i
k
, 1]. We compare the profits of the firm on the segments where

firms compete and we show that P̂′ induces higher profits for Firm 1. There are
three types of segments to consider:

1. segments of type A that with partition P̂ that remain of type A with partition
P̂′.

2. segments of type B with partition P̂ that are of type A with partition P̂′.

3. segments of type B with partition P̂ that remain of type B with partition
P̂′.

1. Profits always increase on segments that are of type A with partitions P̂ and
P̂′. Indeed, we will show that p̂′2 with partition P̂′ is higher than p̂2 with partition

P̂, and thus the profits of Firm 1 on type A segments increase.
2. There are m segments which were type B in partition P̂ are no longer

necessarily of type B in partition P̂ (and are therefore of type A).

3. There are n+1−m segments of type B with partition P̂ that remain of type
B with partition P̂′. We compute prices and profits on these n+ 1 +m segments.

We proved in step 2 that prices can be written as:

p̂2 = − t
3

+
4t

3(n+ 1)

n+1∑
i=1

[
si
2k

+
li
k

],

p̂B1i =
p̂2 + t

2
− sit

k

=
t

3
+

2t

3(n+ 1)

n+1∑
i=1

[
si
2k

+
li
k

]− sit

k
.

Let p̂B1s and p̂B1s+l be the prices on the last two segments when the partition is

P̂.

p̂B1s =
p̂2 + t

2
− st

k
,

p̂B1s+l =
p̂2 + t

2
− s+ l

k
t,

p̂′2 is the price set by Firm 2 with partition P̂′, and p̂B
′

1s is the price set by Firm

1 on the last segment of partition P̂′.
Inequalities in Eq. 4 might not hold as price p̂2 varies depending on the par-

tition acquired by Firm 1. This implies that segments which are of type B with
partition P̂ are then of type A with partition P̂′. This is due to the fact that the
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coarser the partition, the higher p̂2. We note s̃i the m segments where it is the
case. We then have:

p̂′2 =
4t

3(n−m)
[−n−m

4
+

n∑
i=1

[
si
2k

+
li
k

]−
m∑
i=1

s̃i
2k

]

=
4t

3(n−m)
[−n+ 1

4
+

n+1∑
i=1

[
si
2k

+
li
k

] +
m+ 1

4
−

m∑
i=1

s̃i
2k
− s+ l

2k
]

= p̂2 +
4t

3(n−m)
[
3(m+ 1)p̂2

4t
+
m+ 1

4
−

m∑
i=1

s̃i
2k
− s+ l

2k
]

≥ p̂2 +
4t

3(n−m)
[

3

4t
p̂2 +

mp̂2

2t
+

1

4
− s+ l

2k
],

p̂B
′

1s =
p̂2 + t

2
− st

k
,

π1(P̂) =
n∑

i=1,si 6=s̃i

p1i[
p̂2 + t

4t
− si

2k
] +

m∑
i=1

p̂B1i[
p̂2 + t

4t
− s̃i

2k
] + p̂B1s+l[

p̂2 + t

4t
− s+ l

2k
]

π1(P̂′) =
n∑

i=1,si 6=s̃i

p̂B
′

1i [
p̂′2 + t

4t
− si

2k
] +

m∑
i=1

l̃i
k

[p̂′2 + t− 2t
s̃i + l̃i
k

].

We compare the profits of Firm 1 in both cases in order to show that P̂′ induces
higher profits:

∆π1 = π1(P̂′)− π1(P̂)

=
n∑

i=1,si 6=s̃i

p̂B
′

1i [
p̂′2 + t

4t
− si

2k
]−

n∑
i=1,si 6=s̃i

p̂B1i[
p̂2 + t

4t
− si

2k
]

+
m∑
i=1

l̃i
k

[p̂′2 + t− 2t
s̃i + l̃i
k

]−
m∑
i=1

p̂B1i[
p̂2 + t

4t
− s̃i

2k
]− p̂B1s+l[

p̂2 + t

4t
− s+ l

2k
]

=
t

2

n∑
i=1,si 6=s̃i

[
p̂′2 + t

2t
− si
k

]2 − t

2

n∑
i=1,si 6=s̃i

[
p̂2 + t

2t
− si
k

]2

+
t

2

m∑
i=1

l̃i
k

[2
p̂′2 + t

t
− 4

s̃i + l̃i
k

]− t

2

m∑
i=1

[
p̂2 + t

2t
− s̃i

2k
]2 − t

2
[
p̂2 + t

2t
− s+ l

k
]2.
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We consider the terms separately. First,

t

2

n∑
i=1,si 6=s̃i

[
p̂′2 + t

2t
− si
k

]2 − t

2

n∑
i=1,si 6=s̃i

[
p̂2 + t

2t
− si
k

]2

=
t

2

n∑
i=1,si 6=s̃i

[[
2

3(n−m)
[

3

4t
p̂2 +

mp̂2

2t
+

1

4
− s+ l

2k
]]2

+ [
p̂2 + t

2t
− si
k

][
4

3(n−m)
[

3

4t
p̂2 +

mp̂2

2t
+

1

4
− s+ l

2k
]]]

≥ t
2

[
p̂2 + t

2t
− s+ l

k
]
4

3
[

3

4t
p̂2 +

mp̂2

2t
+

1

4
− s+ l

2k
].

Secondly, on segments of type B with partition P̂ that are of type A with
partition P̂′:

t

2

m∑
i=1

l̃i
k

[2
p̂′2 + t

t
− 4

s̃i + l̃i
k

]− t

2

m∑
i=1

[
p̂2 + t

2t
− s̃i

2k
]2.

On these m segments, inequalities in Eq. 4 hold for price p̂′2 but not for p̂2.
Thus we can rank prices according to s̃i and l̃i:

s̃i + l̃i
k
≥ p̂2 + t

2t
− l̃i
k

and
p̂′2 + t

2t
− l̃i
k
≥ s̃i + l̃i

k
.

thus:

2
l̃i
k
≥ p̂2 + t

2t
− s̃i
k

and
p̂′2 + t

2t
− 2

l̃i
k
≥ s̃i
k
.

By replacing s̃i by its upper bound value and then l̃i by its lower bound value
we obtain:

t

2

m∑
i=1

l̃i
k

[2
p̂′2 + t

t
− 4

s̃i + l̃i
k

]− t

2

m∑
i=1

[
p̂2 + t

2t
− s̃i

2k
]2 ≥ 0.

Getting back to the profits difference, we obtain:

∆π1 ≥
t

2
[
p̂2 + t

2t
− s+ l

k
]
4

3
[

3

4t
p̂2 +

mp̂2

2t
+

1

4
− s+ l

2k
]− t

2
[
p̂2 + t

2t
− s+ l

k
]2

≥ t

2
[
p̂2 + t

2t
− s+ l

k
][
p̂2

2t
+
s+ l

3k
− 1

6
].

(7)

The first bracket of Equation 7 is positive given Eq. 4. The second bracket is
positive if p̂2

2t
+ s+l

3k
≥ 1

6
. A necessary condition for this result to hold is p̂2 ≥ 1

6
.

We now show that p̂2 ≥ t
2

We show in Equation 6 that p̂2 = − t
3

+ 4t
3(n+1)

∑n+1
i=1 [ si

2k
+ li

k
]. We now show

that p2 is minimal when the data intermediary sells the reference partition Pref to
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Firm 1, which consists of segments of size 1
k
. Indeed, it is immediate to see that,

p2 always decreases when P becomes finer. It is thus immediate that p2 is minimal
with the reference partition and p2 ≥ t

2
30. And as this price is greater than 1

6
, the

second bracket of Equation 7 is positive. This proves that ∆π1 ≥ 0.
We have just established that it is always more profitable for the data interme-

diary to sell a partition with one segment of type B than to sell a partition with
several segments of type B.

The profits of Firm 1 are minimized when Firm 2 acquires Pref .

This claim is straightforward to establish, as we have shown in step 3 that the
price set by an uninformed Firm is minimized when its competitor acquires the
reference partition. Thus, demand and profit are also minimized for this partition
and the data intermediary sells Pref to Firm 2.

Conclusion

These three steps prove that the optimal partition includes two intervals, as
illustrated in Figure 2. The first interval is composed of j segments of size 1

k

located at [0, j
k
], and the second interval is composed of unidentified consumers,

and is located at [ j
k
, 1]. �

C Proof of Lemma 1 and Equation 2

We propose a candidate equilibrium function. We consider jseq1 = jseq2 described in
Section 2.2.2, that maximize respectively the profit of Firm 1 and Firm 2 and that
are symmetric. We show that pseq = π1(jseq1 )− π̄1(jseq2 ) is an equilibrium. As only
the data intermediary has a non binary choice, uniqueness will result naturally.

We write V1 the value function of Firm 1 in stage 1 to determine its willingness
to pay:


V1 + π1(jseq1 )− pseq if Firm 1 accepts the offer,

π̄1(jseq2 ) if Firm 1 declines the offer and Firm 2 accepts the offer,

V1 if Firm 2 declines the offer.

Thus, the overall value of Firm 1 is:

V1 + π1(jseq1 )− pseq − π̄1(jseq2 )− V1 = π1(jseq1 )− pseq − π̄1(jseq2 )

Thus:

30As shown in Liu and Serfes (2004).
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pseq = π1(jseq1 )− π̄1(jseq2 )

The data intermediary has no interest in deviating from this price, as lowering
pseq would decrease its profits, and increasing pseq would have Firm 1 rejecting the
offer. Thus pseq = π1(jseq1 )− π̄1(jseq2 ) is the unique equilibrium of this game.

Moreover, the data intermediary has no interest in deviating from partitions
jseq1 = jseq2 . Indeed, consider j1 6= jseq1 . Necessarily, π1(j1) ≤ π1(jseq1 ) as jseq1 is
profit maximizing for Firm 1. This lowers the price of information sold to Firm
1, and thus decreases the profit of the data intermediary. Similarly, consider
j2 6= jseq2 . For the same reason, proposing such partition is not optimal for the
data intermediary when making an offer to Firm 2. Thus it cannot constitute
a credible threat on Firm 1 when deciding to acquire information or not as it is
not subgame perfect. Thus the partitions used to derive the price of information
under sequential bargaining are jseq1 and jseq2 , and are symmetric. �

D Proof of Proposition 2

We prove that the optimal partition in equilibrium does not depend on the selling
mechanism.

The prices of information under the three selling mechanisms are:

pa(P1,P2) = πI,NI1 (P1, ∅)− πNI,I1 (∅,Pref )

ptol = πI,NI1 (P1, ∅)− πNI,NI1

pseq = πI,NI1 (P1, ∅)− πNI,I1 (∅,P2)

It is immediate to see that in each mechanism, the data intermediary chooses
P1 in order to maximize the profits of Firm 1. Thus, the optimal information
partition in equilibrium P∗1 does not depend on the selling mechanism.

We compute prices and profits in equilibrium when Firm 1 owns the optimal
partition on [0, j

k
], that includes j segments of size 1

k
, and no information on

consumers on [ j
k
, 1]. We write in step 1 prices and demands, in step 2 we give the

profits, and solve for prices and profits in equilibrium in step 3.

Step 1: prices and demands.

Segments of identified consumers are of size 1
k
, and the last one is located

at j−1
k

. Firm 1 sets a price p1i for each segment i = 1, .., j and where it is in
constrained monopoly: d1i = 1

k
. Prices on each segment are determined by the

indifferent consumer of each segment located at its right extremity, i
k
:31

31Assume it is not the case. Then, either p1i is higher and the indifferent consumer is at the
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V − t i
k
− p1i = V − t(1− i

k
)− p2 =⇒ i

k
= p2−p1i+t

2t
=⇒ p1i = p2 + t− 2t i

k
.

On the rest of the unit line Firm 1 sets a price p1 and competes with Firm 2.
Firm 2 sets a unique price p2 for all consumers on the segment [0, 1]. We note d1

the demand for Firm 1 on this segment, which is determined by the indifferent
consumer:

V − tx−p1 = V − t(1−x)−p2 =⇒ x = p2−p1+t
2t

and d1 = x− j
k

= p2−p1+t
2t
− j

k
.

Firm 2 sets p2 and the demand, d2, is found similarly to d1, and d2 = 1 −
p2−p1+t

2t
= p1−p2+t

2t
.

Step 2: profits.

The profits of both firms can be written as follows:

π1 =

j∑
i=1

d1ip1i + d1p1 =

j∑
i=1

1

k
(p2 + t− 2t

i

k
) + (

p2 − p1 + t

2t
− j

k
)p1,

π2 = d2p2 =
p1 − p2 + t

2t
p2.

Step 3: prices, demands and profits in equilibrium.

We solve prices and profits in equilibrium. First order conditions on πθ with
respect to pθ give us p1 = t[1− 4

3
j
k
] and p2 = t[1− 2

3
j
k
]. By replacing these values

in profits and demands we deduce that: p1i = 2t[1 − i
k
− 1

3
j
k
], d1 = 1

2
− 2

3
j
k

and

d2 = 1
2
− 1

3
j
k
.

Profits are:32

π∗1 =

j∑
i=1

2t

k
[1− i

k
− 1

3

j

k
] +

t

2
(1− 4

3

j

k
)2

=
t

2
+

2jt

3k
− 7t

9

j2

k2
− tj

k2

π∗2 =
t

2
+

2t

9

j2

k2
− 2

3

jt

k
.

(8)

Thus, first order conditions on π1 gives us

j∗1(k) =
6k − 9

14
.

Characterization of selling mechanisms that do not satisfy Defini-
tion 1

left of i
k , which is in contradiction with the fact that we deal with type A segments, or p1i is

lower and as the demand remain constant, the profits are not maximized.
32For p1i ≥ 0 =⇒ j

k ≤
3
4 . Profits are equal whatever j

k ≥
3
4 .
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The price of information can be written:

p(j1, j2) = π1(j1)− π̄1(j2).

Consider j1 and j2 such that there exists two functions f : j2 = f(j1) and g:
j1 = g(j2). (for the sake of simplicity we restrict our discussion to functions that
are continuous and differentiable).

We can write the price of information in two ways:

p(j1) = π1(j1)− π̄1(f(j1)).

p(j2) = π1(g(j2))− π̄1(j2).

Thus, solving for the optimal values of j1 we have:

∂p(j1)

∂j1

=
∂π1(j1)

∂j1

− ∂π̄1(f(j1))

∂f(j1)

∂f(j1)

∂j1

= 0.

Solving for the optimal values of j1 will thus accounts for functions f that
depends on the selling mechanism, and thus characterize the relation between j1

and j2. Solving for the optimal value of j2 depends on the selling mechanism
considered.

The three selling mechanisms belong to a class for which

∂f(j1)

∂j1

=
∂g(j2)

∂j2

= 0

Example of selling mechanisms that do not satisfy Definition 1 and
yet that lead to the same number of consumer segments sold

There exists however selling mechanisms that do not satisfy Definition 1 and
that lead to the same optimal value of j∗1(k). Consider a selling mechanism in
which j∗1(k) = 6k−9

14
. We will prove that it does not necessarily satisfies Definition

1, that is, there exists j1 and j2 that are not independent. The price of information
can be written:

p(j1, j2) = π1(j1)− π̄1(j2).

Consider j1 and j2 such that there exists a function f : j2 = f(j1). (for the
sake of simplicity we restrict our discussion to continuous and differentiable).

We can write the price of information:

p(j1) = π1(j1)− π̄1(f(j1)).

Thus, solving for the optimal value of j1 we have:

∂p(j1)

∂j1

=
∂π1(j1)

∂j1

− ∂π̄1(f(j1))

∂f(j1)

∂f(j1)

∂j1

= 0.
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As this selling mechanism verifies j∗1(k) = 6k−9
14

, we have:

∂π1(j1)

∂j1

∣∣∣∣
j1= 6k−9

14

=
∂π̄1(f(j1))

∂f(j1)

∣∣∣∣
j1= 6k−9

14

∂f(j1)

∂j1

∣∣∣∣
j1= 6k−9

14

= 0.

Thus, either

∂π̄1(f(j1))

∂f(j1)

∣∣∣∣
j1= 6k−9

14

= 0

or

∂f(j1)

∂j1

∣∣∣∣
j1= 6k−9

14

= 0.

Necessarily, ∂π̄1(f(j1))
∂f(j1)

∣∣∣
j1= 6k−9

14

6= 0 as this function has no interior solution.

Thus ∂f(j1)
∂j1

∣∣∣
j1= 6k−9

14

= 0.

For instance, the data intermediary can commit to selling j2(j1) = f(j1) =

− j21
2

+ j1
6k−9

14
, and the number of segments sold in equilibrium is j∗1(k) = 6k−9

14
. �

E Proof of Proposition 3

Data collection

We compare the first derivative of the profits of the data intermediary in the
different mechanisms in order to compare the optimal amounts of data collected
in equilibrium.

∂p∗a
∂k

=
(19k − 11)t

28k3
,

∂p∗tol
∂k

=
(6k − 9)t

14k3
,

∂p∗seq
∂k

=
(72k − 45)t

98k3
.

Comparing the derivatives gives us:

∂p∗seq
∂k

>
∂p∗a
∂k

>
∂p∗tol
∂k

.

From the convexity of the cost function, it is straightforward that:

kseq > ka > ktol
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Consumer surplus

Prices when the data intermediary sells j segments of information to Firm 1
are provided in Appendix D:

• Firm 1 captures all demand on each segment i = 1, .., j, and:

p1i = 2t[1− i

k
− 1

3

j

k
].

• Firms compete on the segment of unidentified consumers, and the prices are:

p1 = t[1− 4

3

j

k
], and p2 = t[1− 2

3

j

k
].

We need to compute demands in order to find consumer surplus. On the j
segments of size 1

k
where Firm 1 has information, it is a monopolist and demand

is 1
k

on each segment.
On the segment of unidentified consumers, where firms compete, the indifferent

consumer is characterized by

x̃ =
p2 − p1 + t

2t
+
j

k
=⇒ x̃ =

4

3

j

k

As j∗ = 6k−9
14

, x̃∗ = 4k−12
7k

.
We can write consumer surplus in equilibrium:
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CS(k) =

j∗∑
i=1

[

∫ 1
k

0

V − 2t[1− 1

3

j

k
] +

t

k
+
it

k
− txdx]

+

∫ 1
2

+ j∗
3k

j∗
k

V − t[1− 4

3

j∗

k
]− txdx+

∫ 1
2
− j∗

3k

0

V − t[1− 2

3

j∗

k
]− txdx

=

j∗−1∑
i=0

1

k
[V − 2t[1− 1

3

j∗

k
] +

t

k
+
it

k
]− j∗t

2k2

+ V [1− j∗

k
]− [

1

2
− 2j∗

3k
][t− 4

3

j∗t

k
]− t

2
[
1

4
− 8

9

j∗2

k2
+
j∗

3k
]

− [
1

2
− j∗

3k
][t− 2

3

j∗t

k
]− t

2
[
1

2
− 1

3

j∗

k
]2

=
j∗

k
[V − 2t[1− 1

3

j∗

k
] +

t

k
] +

j∗(j∗ − 1)t

k2
− j∗t

2k2

+ V [1− j∗

k
]− t

2
[1 +

16j∗2

9k2
− 8j∗

3k
]− t

2
[
1

4
− 8

9

j∗2

k2
+
j∗

3k
]

− t

2
[1 +

4

9

j∗2

k2
− 4j∗

3k
]− t

2
[
1

4
− 1

3

j∗

k
+
j∗2

9k2
]

= V − 2j∗t

k
− j∗t

2k2
+

2j∗2t

3k2

− 5t

4
+ 2t

j∗

k
− 13t

18

j∗2

k2

= V − 5t

4
− j∗t

2k2
− 7j∗2t

18k2

= −(170k2 − 144k − 9)t− 56V k2

56k2

(9)

Consider now the first degree derivative of consumer surplus with respect to k:

∂CS(k)

∂k
= − 9t

28k3

This is always negative for k ≥ 0, and thus consumer surplus decreases with
information precision. �

F Proof of Proposition 4

We compare the profits of the data intermediary in the different selling mecha-
nisms. The profits of the firms depending on the information partition are the
following:
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• Profits without information are those in the standard Hotelling competition
model:

πNI,NI =
t

2
.

• Profit of Firm 1 with j segments of information is:

π∗1 =
t

2
+

2jt

3k
− 7t

9

j2

k2
− tj

k2

• When plugging the optimal number of consumer segments j∗1(k) = 6k−9
14

we
obtain:

πI,NI(j∗1 , ∅) =
(18k2 − 12k + 9)t

28k2
.

• Similarly, the profit of uninformed Firm 1 when facing Firm 2 informed with
j segments of information is:

π∗ =
t

2
+

2t

9

j2

k2
− 2

3

jt

k

• When plugging the optimal number of consumer segments j∗1(k) = 6k−9
14

we
obtain:

πNI,I(∅, j∗1) =
(25k2 + 30k + 9)t

98k2
.

• Finally, the profit of an uninformed firm facing a competitor informed with
k information segments is provided in Liu and Serfes (2004):

πNI,I(∅,Pref ) =
(k2 + 2k + 1)t

8k2
.

Profits of the data intermediary under the three selling mechanisms are found
directly from these values:

p∗a = πI,NI(j∗1 , ∅)− πNI,I(∅,Pref ) =
(29k2 − 38k + 11)t

56k2

p∗tol = πI,NI(j∗1 , ∅)− πNI,NI =
(4k2 − 12k + 9)t

28k2

pseq = πI,NI(j∗1 , ∅)− πNI,I(∅, j∗1) =
(76k2 − 144k + 45)t

196k2
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Direct comparison of the profits provides the ranking of Proposition 4. �

G Proof of Proposition 5

We focus on information partitions where the data intermediary sells to each firm
all consumer segments closest to its location, up to a cutoff point after which no
consumer segment is sold. Equivalently, we could directly assume that the optimal
partition has the same structure than when the data intermediary sells information
to only one firm. We show that the three selling mechanisms are equivalent when
the data intermediary sells information to both firms.

Under the auction mechanism, the data intermediary simultaneously auctions
partitions jboth1 customized for Firm 1 in auction 1, and jboth2 customized for Firm
2 in auction 2. Firm 1 (Firm 2) can bid in the two auctions but is only interested
in partition jboth1 (jboth2 ). Since both firms are guaranteed to obtain their preferred
partition, they will underbid in both auctions from their true valuation. To avoid
underbidding, the data intermediary respectively sets reserve prices w1 and w2

that correspond to the willingness to pay of Firm 1 for jboth1 and of Firm 2 for
jboth2 . Since partition jboth2 is optimal for Firm 2, Firm 1 will not bid above w2

in the auction for jboth2 and similarly Firm 2 will not bid above w1 in the auction
for jboth2 . Thus, the subgame perfect equilibrium is characterized by the following
strategies: Firm 1 bids the reserve price w1 for jboth1 , and Firm 2 bids the reserve
price w2 for jboth2 . We will show in Appendix H that in equilibrium partitions are
symmetric: j1 = j2. The data intermediary will set in the two auctions reserve
prices equal to the willingness to pay of each firm pboth = w1 = w2.

Under sequential bargaining, the problem is simplified by the fact that there is
no discount factor, and no first mover advantage since the data intermediary sells
to both firms. Thus the data intermediary has no incentive to favour one firm
instead of the other, and will choose identical partitions. In this situation, the
data intermediary proposes to Firm 1 partition jboth1 at price pboth, and to Firm 2
partition jboth2 at price pboth. Thus, in equilibrium, both firms purchase information
at price pboth.

Under the take it or leave it mechanism, the data intermediary proposes to
each firm jboth1 segments of information at price pboth. Let π̄1(jboth1 ) denote the
profit of Firm 1 without information but facing Firm 2 informed with jboth1 . The
only subgame perfect equilibrium is a situation in which both firms purchase
information at price pboth = π1(jboth1 )−π̄1(jboth1 ) (firms have no incentives to deviate
from this equilibrium since, by doing so, they would become uninformed but facing
an informed competitor). Thus the profit of the data intermediary when selling
information to both firms is Πboth(k) = 2pboth − c(k). �
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H Proofs of Propositions 6, 7, and 8

We characterize the equilibrium profits, information partitions and surplus when
the data intermediary sells information to Firm 1 and to Firm 2. We write in step
1 prices and demands, in step 2 we give the profits, and solve for prices and profits
in equilibrium in step 3.

Step 1: prices and demands.

Firm θ = 1, 2 sets a price pθi for each segment of size 1
k
, and a unique price pθ

on the rest of the unit line. The demand for Firm θ on type A segments is dθi = 1
k
.

The corresponding prices are computed using the indifferent consumer located on
the right extremity of the segment, i

k
. For Firm 1:

V − t i
k
− p1i = V − t(1− i

k
)− p2

=⇒ i

k
=
p2 − p1i + t

2t

=⇒ p1i = p2 + t− 2t
i

k
.

p2 is the price set by Firm 2 on interval [0, j
′

k
] where it cannot identify con-

sumers. Prices set by Firm 2 on segments in interval [ j
′

k
, 1] are:

p2i = p1 + t− 2t
i

k
.

Let denote d1 the demand for Firm 1 (resp. d2 the demand for Firm 2) where
firms compete. d1 is found in a similar way as when information is sold to one
firm, which gives us d1 = p2−p1+t

2t
− j

k
(resp. d2 = 1− j′

k
− p2−p1+t

2t
).

Step 2: profits of the firms.

The profits of the firms are:

π1 =

j∑
i=1

d1ip1i + d1p1 =

j∑
i=1

1

k
(p2 + t− 2t

i

k
) + (

p2 − p1 + t

2t
− j

k
)p1,

π2 =

j′∑
i=1

d2ip2i + d2p2 =

j∑
i=1

1

k
(p1 + t− 2t

i

k
) + (

p1 − p2 + t

2t
− j′

k
)p2.

Step 3: prices, demands and profits in equilibrium.

We now compute the optimal prices and demands, using first order conditions
on πθ with respect to pθ. Prices in equilibrium are:
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p1 = t[1− 2

3

j′

k
− 4

3

j

k
],

p2 = t[1− 2

3

j

k
− 4

3

j′

k
].

Replacing these values in the above demands and prices gives:

p1i = 2t− 4

3

j′t

k
− 2

3

jt

k
− 2

it

k
,

p2i = 2t− 4

3

jt

k
− 2

3

j′t

k
− 2

it

k
.

and

d1 =
1

2
− 2

3

j

k
− 1

3

j′

k
,

d2 =
4

3

j′

k
− 1

2
− 1

3

j

k
.

Profits are:

π∗1 =

j∑
i=1

2t

k
[1− i

k
− 1

3

j

k
− 2

3

j′

k
] + (

1

2
− 2

3

j

k
− 1

3

j′

k
)t[1− 2

3

j′

k
− 4

3

j

k
]

=
t

2
− 7

9

j2t

k2
+

2

9

j′2t

k2
− 4

9

jj′t

k2
+

2

3

jt

k
− 2

3

j′t

k
− jt

k2
.

π∗2 =

j′∑
i=1

2t

k
[1− i

k
− 1

3

j′

k
− 2

3

j

k
] + (

1

2
− 2

3

j′

k
− 1

3

j

k
)t[1− 2

3

j

k
− 4

3

j′

k
]

=
t

2
− 7

9

j′2t

k2
+

2

9

j2t

k2
− 4

9

jj′t

k2
+

2

3

j′t

k
− 2

3

jt

k
− j′t

k2
.

The data intermediary maximizes the following profit function:

Π2(j, j′) = (πI,I1 (j, j′)− πNI,I1 (∅, j′)) + (πI,I2 (j, j′)− πNI,I2 (∅, j))

= −7

9

j′2t

k2
− 4

9

jj′t

k2
+

2

3

j′t

k
− j′t

k2
− 7

9

j2t

k2
− 4

9

jj′t

k2
+

2

3

jt

k
− jt

k2
.

At this stage, straightforward FOCs with respect to j and j′ confirm that, in
equilibrium, j = j′. The fact that the solution is a maximum is directly found
using the determinant of the Hessian matrix.

The profits of the data intermediary when both firms are informed are:

Π2(j) = 2w2 = 2[
2jt

3k
− 11j2t

9k2
− jt

k2
].
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FOC on j leads to j∗2 = 6k−9
22

and:

Π∗2 =
2t

11
− 6t

11k
+

9t

22k2
.

Πboth(k) =
2t

11
− 6t

11k
+

9t

22k2
− c(k),

and the first-degree derivative of the profit function with respect to k is:

(6k − 9)

11k3
− c′(k).

Finally, consumer surplus in this case is

(445k2 + 216k + 36)t+ 484V k2

484k2
.

Straightforward comparisons with the values in Appendix F lead to the rank-
ings in Proposition 7. �

I Proof of Proposition 9

We characterize the equilibrium under second price auctions.
The willingness to pay of firms when the data intermediary auctions informa-

tion ja21 to Firm 1 and ja22 to Firm 2 are: π1(ja21 )− π̄1(ja22 ),

π2(ja22 )− π̄2(ja21 )

We show that in equilibrium ja21 = ja22 .
Assume π1(ja21 )−π̄1(ja22 ) > π2(ja22 )−π̄2(ja21 ) (the other case is solved similarly).

• Either ja21 > ja22 , and π2(ja22 )− π̄2(ja21 ) increases when ja22 increases.

• Or ja21 < ja22 , and π2(ja22 )− π̄2(ja21 ) increases when ja21 increases

Thus the data intermediary chooses ja21 = ja22 .
This implies that

pa2 = −((3jalt21 − 4ja21 )k + 3ja21 )t

3k

FOC on pa2 with respect to ja21 gives us:

jalt∗1 =
4k − 3

6
,

p∗a2 =
4t

9
− 2t

3k
+

t

9k2
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and

∂p∗a2
∂k

=
(6k − 2)t

9k3
.

The equality of profits, surplus, and optimal data collection, as well as their
relative value with other selling mechanisms is then straightforward.

We can now derive profits, consumer surplus and data collection in equilibrium.
The price of information can be written

pa2 = π1(ja21 )− π̄1(ja21 ).

FOC on pa2 with respect to ja21 gives us:

4k − 3

6
,

p∗a2 =
4t

9
− 2t

3k
+

t

9k2

and

∂p∗a2
∂k

=
(6k − 2)t

9k3
.

The ranking of profits, surplus, and optimal data collection is then straight-
forward. �

J Proof of Proposition 10

See the proofs of Propositions 4 and 3.

K Proof of Proposition 11

We prove that data collection decreases when the price cap decreases. Consider a
binding price cap. Then the profits of the data intermediary are:

Π(k) = p− c(k)

The optimal value of k is such that p(k∗) = p. Indeed, if k > k∗, then costs
increase but the price of information does not change as the price cap is binding.

If k < k∗ profits are below the constrained optimal as the data intermediary
can increase Π by increasing k.

As p(k) increases in k (see Appendix E), the lower the p the lower the k.
Consider now a binding price cap p.
If p ∈ [pa, pseq[, the data intermediary uses auction as it is the only selling

mechanism allowing to reach the highest price possible, p.
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If p ∈ [pseq, ptol[, auction and sequential bargaining both allow to set the highest
price possible, and the data intermediary will chose either mechanism indifferently.

If p ≤ 2pboth then selling information to both firms is always more profitable
because twice the maximal value of p can always be sold.

59


	Introduction
	Model
	Consumers
	Data intermediary
	Collecting consumer data
	Selling information

	Firms
	Timing

	Selling mechanisms
	Take it or leave it
	Sequential bargaining
	Auctions

	Characterization of the equilibrium
	Consumer identification
	Equivalence between selling mechanisms
	Independent offers

	Consumer data collection
	Selling information to one or to two firms

	Second price auctions and symmetric offers
	Regulatory implications and policy guidelines
	Data minimization principle
	Price cap

	Conclusion
	Mathematical assumptions
	Optimal information partition
	Proof of Lemma 1 and Equation 2
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Proof of Proposition 5
	Proofs of Propositions 6, 7, and 8
	Proof of Proposition 9
	Proof of Proposition 10
	Proof of Proposition 11

