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In a previous paper we provided a probabilistic proof of the Conjecture and then, in another paper, we analysed two probabilistic methods for the proof comparing them by the Reliability Integral Theory and the SPQR Principle. Now we show a proof (non-probabilistic) using Flow Graphs and the SPQR Principle.

Introduction

In a previous paper [START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF] we provided a probabilistic proof of the Conjecture; later, after we saw the interesting paper [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF]; both the papers tried to prove the Hailstone Conjecture using Markov processes. In another paper [START_REF] Galetto | Syracuse_Collatz Conjecture: Comparison of two Markov approaches towards the proof[END_REF], we compared the two probabilistic methods using the Reliability Integral Theory [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] and the SPQR Principle [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF]. Any probabilistic method makes "probable" the proof, but it is not really a mathematical proof. To overcome such a drawback now we provide show a non-probabilistic proof using Flow Graphs and the SPQR Principle. A graph G is an orders couple G=(V, E) of two sets of items: V the set of "vertices" v k (1km) and the set E of "edges" e j (1jn). Any edge connects two vertices, say v s and v t , by an arrow from one vertex v s (1sm) to the other vertex v t (1tm) and it is indicated with the symbol e z =(v s ,v t ) [the ordered couple of the two vertices]. If the two vertices are actually one vertex the arrow leaves the vertex and re-enter into it. Let's remember the Syracuse_Collatz problem (also called the 3x+1 mapping, hailstone problem, ..). It was posed by L. Collatz in 1937, states that the system of the two difference equations, involving natural numbers, [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF] given the initial condition y 0 (any integer positive number) arrives after some (n is a number not known in advance) "continued" iterations to the value y n =1. It is considered a very difficult problem to be solved, in spite of its very simple definition; they say that Erdős commented that "mathematics is not yet ready for such problems". If we name "state of the system" the integer positive number generated by (1), we see that the problem is transformed into the following:

given any initial state y 0 the system makes a certain number n of transitions (n is a number not known in advance) and finally it ends into the state y n =1. Any state of the system is a vertex in the graph. The rules [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF] give the next state of the system i.e. the next vertex in the graph: the edge traversed at time k+1 which we name e k+1 is (y k , y k+1 ).

Numerical experiments confirmed the validity of the conjecture for extraordinarily large values of the starting integer y 0 : it always reached 1 for all numbers up to 5.48 10 18 . (Oliveira e Silva 2008)

The system (1) can be reduced to a non-linear difference equation, as the following one [START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF] The numbers y k+1 of the sequence [the state of the system] provided by the previous (Collatz) equations are sometimes named hailstone numbers. We can associate to any state of the system y k of the edge e k+1 =(y k , y k+1 ) traversed at time k+1 the index of the row of a matrix P and to state y k+1 the index of the column of the same matrix P; then we can describe the graph by the matrix P with entries 1 related to the arrow of the transition y k y k+1 for any edge e k+1 =(y k , y k+1 ). Then for any state of the system y k there is an infinite dimensional row vector u(k), with all entries u i (k)=0, but one entry u y (k)=1, related to the edge e k+1 =(y k , y k+1 ): it is a unit vector of vector space. The vector u(k) refers to the k-th iteration of a mapping T: the result of the mapping T to the vector u(k) is denoted u(k+1)=u(k)T. The vector u(k+1) is unit vector with all entries u j (k+1)=0, but one entry u y* (k+1)=1, where we have the subindexes y*y. The subindexes are according to (1): if u y (k)=1, then y=y k and the index y* of entry u y* (k+1)=1 of the vector u(k+1) has index y*=y k /2 IF y k is even, and y*=3y k +1 IF y k is odd. The mapping T [related to the graph G] is provided by an infinite-dimensional matrix P=[a ij ], named transition matrix (with infinite rows and columns); rows and columns are indexed by the natural numbers (states of the system) 1, 2, 3, 4, ..., n, n+1, ...; every a ij entry is 0, except ........ [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] where the indexes i and j are given by ( 1), for the arrows e k+1 =(y k , y k+1 ). Accordingly we have u(k+1)=u(k)P (4) In the figure 1 we show the transition matrix; the 3 by 3 matrix with rows and columns indexed by the numbers 1, 2, 4, is highlighted due to its importance:  when the system is in the state 1, the next transition is to state 4: 1  4  when the system is in the state 2, the next transition is to state 1: 2  1  when the system is in the state 4, the next transition is to state 2: 4  2 All this means that when the system enters one of those 3 states [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] it never leaves out of them, the system (or the process) circulates in the set [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] forever. It is a "periodic process".

The matrix P can be partitioned into 4 submatrices, written simply as where P11 and P22 are square matrices, given more explicitly by (notice that P11 refers to the states 1, 2, 4)

Notice that the submatrix P 11 is orthogonal: its inverse is its transpose = . It is important to notice that P 3 , the 3 rd power of the matrix P, is such that the submatrix [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF] is the identity matrix; when the system reaches the set 1, 2, 4 of the states it remains there forever. It follows that = = .

state 1 2 4 3 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ……………………………… 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 4 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ……………………………… 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ……………………………… 6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 8 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 10 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 12 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 18 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… 20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ……………………………… … 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 ……………………………… Figure 1. The transition matrix P [only a part is shown], related to the graph G

Generating function (z-transform) and graphs

Let's consider a function f(n), n=0, 1, 2, ….., . The generating function F(z), written as G[f(n)]=F(z), is the complex function given by

( ) = ( )
where z is the complex variable z=x+iy. [actually in some documents one finds that z n is z -n ]. For a finite sequence it is the "characteristic polynomial" of the equation f

(k)+f(k-1)+….+ f(1)+f(0)=0 One important property of F(z) is that G[f(n-k)]= z k F(z).
We can apply the z-transform to the graph of the Siracuse_Collatz sequence; we name n=0 the "starting time point" of the sequence which has y(0), a chosen integer number N, as the state of the system: let be y(0)=N; the initial state is related to the infinite row vector u N (0) of the matrix P. Since, according to (4), u(k+1)=u(k)P, we can find the generating transform [START_REF] Galetto | The SPQR («Semper Paratus ad Qualitatem et Rationem[END_REF] of the sequence y k (of the hailstone numbers). From ( 5) we derive [START_REF] Galetto | Syracuse_Collatz Conjecture: Comparison of two Markov approaches towards the proof[END_REF] We consider two superstates A and B of our system:  A comprises the states 1, 2, 4  B comprises all the other states 3, 5, 6, …… For such a "process" we can draw the diagram (figure 2), where the submatrices are the ones given before From figure 2 we can draw the flow graph, with the z-transform, of the process (figure 3) 

The flow graph solution

Let (z) the transform of the functional relationship (4). Let name the function  i,j (z) the transmission from the state i and the state j. For example, if i=5 and j=23, the transmission  5,23 (z) represent the infinite vector (sequence) of values  5,23 (0),  5,23 (1), …,  5,23 (n), …,  5,23 ()=0, 0, …, 0, …., 0, where we cannot tell if there can be a value 1 in the sequence; if i=5 and j=16, we know that  5,16 (0)=1 [see the matrix P], which means that the states 5 and 16 are connected at step 0; are they connected at some other step? We can partition the matrix (z)=[ i,j (z)] according the flow graph of figure 3 

where  A,A (z) is the transmission between the various states in the set A,  A,B (z) is the transmission from the various states of the set A to the set B,  B,A (z) is the transmission from the various states of the set B to the set A and  B,B (z) is the transmission between the various states z in the set B.

Let now consider the transmissions  i,j (z) with iB and jB; they collectively provide all the transitions of the Collatz process before entering the Collatz cycle A= [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] where it stays forever ("periodic process").

We consider the following flow graph 

Looking at the matrix P and its partition, it is clear that ,

which means  red,green (0),  red,green [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF], …,  red,green (n), …,  red,green ()=0, 0, …, 0, …., 0 (10) unless, at step 0, the states red and green are chosen to satisfy It follows that the process [Collatz] is such that it cannot stay in the set B forever. Therefore it enters, at some step, the Collatz cycle A= [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] ("periodic process"), where it stays forever. This is the "almost the same" result we found in the paper [START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF]; the only difference is that there we used the Stochastic Processes Theory, given in the books [START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] The process is probabilistically bound to enter the set S 1 =1, 2, 4 because the rectangular submatrix in the lower left corner has only one 1 entry [the other entries are all 0]. The "periodic process" circulating in the set S 1 =1, 2, 4 is ruled by the submatrix P 11 . The infinite set S 2 =3, 5, 6, 7, …. comprises all the other states. The transitions are given in figure 5. In this paper, on the contrary without using any probability argument, we found that the process [Collatz] is such that it cannot stay in the set B forever and it enters, at some step, the Collatz cycle A= [START_REF] Carletti | Quantifying the degree of average contraction of Collatz orbits[END_REF][START_REF] Galetto | Proof of the Syracuse_Collatz Conjecture[END_REF][START_REF] Galetto | Reliability and Maintenance, Scientific Methods, Practical Approach[END_REF] ("periodic process"), where it stays forever.

Conclusion

Having applied the SPQR («Semper Paratus ad Qualitatem et Rationem») Principle, the author thinks that his non_probabilistic method is able to show the proof of the Syracuse_Collatz Conjecture [he did probabilistically in a previous paper]. Flow graph theory provided us the means to solve the problem.

Figure 2 .

 2 Figure 2. The transition diagram related to the graph G
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 3 Figure 3. The flow graph (z-transform) related to the graph G

Figure 4 .

 4 Figure 4. The flow graph when we consider the transmissions from the read state to the green state, both in the same set B
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  Notice that S 1 is the superstate A and S 1 is the superstate B. Compare the figure 2 with figure5.

Figure 5 .

 5 Figure 5. The two disjoint sets S 1 and S 2

  related to Reliability Integral Theory[RIT]; using it one can find two vectors z 1 and z 2 defined, as follows,  z 1 is the vector of the (steady state) probabilities of entering into one of the states 1, 2, 4 [S 1 ], when there is a transition S 2 =3, 5, 6, ..., n, n+1, ....  S 1 =1, 2, 4.  z 2 is the vector of the (steady state) probabilities of entering into one of the states 3, 5, 6, ..., n, n+1, .... [S 2 ], when there is a transition from S 1 =1, 2, 4  S 2 =3, 5, 6, ..., n, n+1, ..... z 1 is by definition a three-dimensional row vector [0, 0, 1] related to the set S 1 ; see the figure2.The system enters into the set S 1 only through the state 4.