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Abstract. A graph database is a digraph whose arcs are labelled with
symbols from a fixed alphabet. A regular graph pattern (RGP) is a
digraph whose edges are labelled with regular expressions over the al-
phabet. RGPs model navigational queries for graph databases, more
precisely, conjunctive regular path queries. A match of a navigational
RGP query in the database is witnessed by a special navigational ho-
momorphism of the RGP to the database. We study the complexity of
deciding the existence of a homomorphism between two RGPs. Such
homomorphisms model a strong type of containment between two nav-
igational RGP queries. We show that this problem can be solved by an
EXPTIME algorithm (while general query containment in this context is
EXPSPACE-complete). We also study the problem for restricted RGPs
over a unary alphabet, that arise from some applications like XPath, and
prove that certain interesting cases are polynomial-time solvable.

Keywords: complexity · navigational homomorphism · regular graph pattern

1 Introduction

Graphs are a fundamental way to store and organize data. Most prominently,
graph database systems have been developed for three decades and are widely
used; recently, such systems have seen an increased interest both in academic
research and in industry [3]. A graph database can be seen as a directed graph
with arc-labels (possibly also vertex-labels). Various methods are used to re-
trieve data in such systems, see for example the very recently developed graph
query language G-CORE [2] for graph databases. Classically, matching queries
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in graph databases can be modeled as graph homomorphisms [16]. In this set-
ting, a query is itself a graph, and a match is modeled by a homomorphism of
the query to the database, that is, a vertex-mapping that preserves the graph
adjacencies and labels. Graph databases can be very large, thus it is important
to study the algorithmic complexity of such queries. In modern applications,
classic homomorphisms are often not powerful enough to model realistic graph
data queries. In recent years, navigational queries have been developed [3]. Such
queries are more powerful than classical queries, since they allow for non-local
pattern matching, by means of arbitrary paths or walks instead of arcs. Such
queries can also be modeled as a more general kind of homomorphism, called nav-
igational homomorphism (n-homomorphism for short). The most studied type
of navigational queries is the one of regular path queries, that is based on regular
expressions [3,10,17]. A conjunctive regular path query is modeled by a regular
graph pattern (RGP for short), that is, a digraph whose arcs are labelled by regu-
lar expressions, each representing a regular path query. The associated notion of
navigational homomorphism is called RGP homomorphism. The study of the al-
gorithmic complexity of RGP homomorphisms has been recently initiated in [19],
where the authors focused on homomorphisms of RGPs to graph databases. In
the present paper, we continue this study by focusing on conjunctive regular
path query containment, as modeled by the existence of a RGP homomorphism
between two queries.

We delay to the next section for formal definitions. We consider the following
decision problem

RGPHom
Input: Two RGPs P and Q.
Question: Does P admit an n-homomorphism to Q?

and its non-uniform version, defined as follows for a fixed RGP Q.

RGPHom(Q)
Input: A RGP P .
Question: Does P admit an n-homomorphism to Q?

The latter was introduced in [19] for the restricted case where Q is a graph
database (i.e. labels are letters rather than more complex regular expressions) –
which amounts to RGP evaluation – and showed that this class of problems fol-
lows a dichotomy between Ptime and NP-complete. Indeed they showed it to be
equivalent to the (classical) homomorphism problems a.k.a. the constraint sat-
isfaction problems [9], whose complexity delineation follows a dichotomy based
on specific algebraic properties of the template Q, as shown independently by
Bulatov [5] and Zhuk [22].

In this paper, we initiate the study of these problems in full generality, that
is when Q is not a graph database but any RGP. We cannot expect a Ptime/NP-
complete dichotomy in the style of the result of [19], since RGPHom(Q) is in
fact PSPACE-hard already for very simple cases, as it can model the problem of
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deciding the inclusion between regular languages. We detail these lower bounds
in Section 3.

We show in Section 4 that RGPHom is decidable by an EXPTIME algo-
rithm. This shows that n-homomorphism-based query containment is less ex-
pensive than general query containment, which, in the case of RGP queries, is
known to be EXPSPACE-complete [7,10].

In Section 5, we address the simpler case of a unary alphabet Σ = {a},
when all arcs are labelled either by “a” or “a+”. This includes not only all clas-
sic homomorphism problems and CSPs, but also queries over hierarchical data
reminiscent of SPARQL and XPath [8,15,18]. In particular, we give a simple
Ptime/NP-complete complexity dichotomy for the case of undirected (or sym-
metric) RGPs in the style of Hell and Nešetřil’s dichotomy for H-colouring [11].
Furthermore, we show that even for arbitrary (directed) RGPs the problem fol-
lows a dichotomy by relating it to (classical) homomorphism problems. Finally,
we focus on certain queries of interest. We relate the case of path templates that
have only “a” labels to an interesting (Ptime) scheduling problem. We extend
this result and show also that for all directed path RGP templates Q with arc
labels “a” or “a+”, RGPHom(Q) is in Ptime.

2 Preliminaries

Let Σ be a fixed countable alphabet. A graph database B = (DB , EB) over Σ
is an arc-labelled digraph, where DB is a finite digraph with vertex set V (DB)
and arc set A(DB), and EB : A(DB) → Σ is an arc-label function. We may
adapt the notion of graph homomorphism to graph databases following [16] and
view the existence of a homomorphism from a graph database Q = (DQ, EQ)
– which models a query – to B = (DB , EB) as the fact that the database B
matches the query Q. A homomorphism is a mapping f of V (DQ) to V (DB)
such that for every arc (x, y) in DQ, there is an arc (f(x), f(y)) in DB with
EQ(x, y) = EB(f(x), f(y)). If such a homomorphism exists, we note Q → B.
Every homomorphic image f(Q) of Q to B is a match of the query Q in B. In
this classic setting, queries and graph databases coincide and the existence of a
homomorphism between queries models query containment. Thus, the evaluation
problem (deciding whether a query Q has a match in a database B) and the
containment problem (deciding whether for two queries Q1 and Q2, for any
database B, if B matches Q1 then B matches Q2) both amount to the following
decision problem.

Hom
Input: Two arc-labelled digraphs G and H.
Question: Does G admit a homomorphism to H?

Hom is generally NP-complete, even when H is a small fixed graph (for
example a symmetric triangle, in which case Hom is equivalent to the graph 3-
colourability problem). To better understand the complexity of Hom, the follow-
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ing version, called the non-uniform homomorphism problem, has been studied
extensively. Here, H is a fixed arc-labelled digraph called the template.

Hom(H)
Input: An arc-labelled digraph G.
Question: Does G admit a homomorphism to H?

In a digraph D, a directed walk is a sequence of arcs of the digraph, such that
the head of each arc is the same vertex as the tail of the next arc. A directed path
is a directed walk where each vertex occurs in at most two arcs in the sequence.

Standard homomorphisms are not powerful enough to model all queries used
in modern graph database systems. In particular, a homomorphism of a query
Q to a database B can only match a subgraph of B that is no larger than the
query Q itself. To the contrary, navigational queries are types of queries where
we may allow arbitrarily large subgraphs of the database to match the query.
In this setting, we still model the query Q (for database B) as an arc-labelled
digraph, but the arcs are labelled with sets of words over the alphabet Σ, rather
than letters. Now, a match of Q in B is a vertex-mapping f from V (DQ) to
V (DB) such that for an arc (x, y) of Q labelled with a set E(x, y) of words,
there exists a directed walk (or path, depending on applications) Wxy in DB

from f(x) to f(y) such that the concatenation of labels of the arcs of Wxy is a
word of E(x, y).

Perhaps the most popular navigational queries are conjunctive regular path
queries, studied in many contexts [3,4,8,15,18,19]. These navigational queries
are based on regular languages: the labels on query arcs are regular expressions
over the alphabet Σ. The advantage of considering such queries is that regular
languages are a relatively simple yet powerful way of defining sets of words,
that is both well-understood and sufficiently expressive for many applications.
A conjunctive regular path query of this type has been called a regular graph
pattern (RGP).

For a fixed countable alphabet Σ, we denote by RegExp(Σ) the set of regular
expressions over alphabet Σ, with the symbols + (union), ∗ (Kleene star), and
· (concatenation; sometimes this symbol is omitted). Moreover, for a regular
expression X, as a notation we let X+ := X ·X∗. For any regular expression X
in RegExp(Σ), we denote by L(X) the regular language defined by X. We will
use the following decision problems for regular languages.

Regular Language Inclusion
Input: Two regular expressions E1 and E2 (over the same alphabet).
Question: Is L(E1) ⊆ L(E2)?

Regular Language Universality
Input: A regular expression E over alphabet Σ.
Question: Is L(E) = Σ∗?
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Note that Regular Language Universality is the special case of Reg-
ular Language Inclusion where E1 = Σ∗ and E2 = E. The following are
classic results.

Theorem 1 ([1,21]). Regular Language Universality and Regular Lan-
guage Inclusion are PSPACE-complete.

A RGP P over an alphabet Σ is a pair (DP , EP ), where DP is a digraph
with vertex set V (DP ) and arc set A(DP ) and EP : A(DP )→ RegExp(Σ) is an
arc-label function. Given a directed walk W = a1,2 . . . ak−1,k in a RGP P , the
label EP (W ) of W is the regular expression over Σ formed by the concatenation
EP (a1,2) . . . EP (ak−1,k).

A sub-RGP P ′ of P is induced by a subset V (DP ′) of V (DP ) where A(DP ′)
is A(DP ) ∩ V (DP ′) × V (DP ′) and the arc label function EP ′ is the restriction
of EP to A(DP ′).

Given two RGPs P and Q over alphabet Σ, a navigational homomorphism
(n-homomorphism for short) of P to Q is a mapping f of V (DP ) to V (DQ) such
that for each arc (x, y) in DP , there is a directed walk W in Q from f(x) to f(y)
such that the language L(EQ(W )) is contained in the language L(EP (x, y)).

When such an n-homomorphism exists, we write P
n−→ Q. It is not hard to see

that
n−→ is transitive.

This definition also applies to graph databases and amounts in fact to RGP
query evaluation when Q is a graph database and P an RGP.

A digraph D is called a core if it has no homomorphism to a proper sub-
digraph of itself; in other words, every endomorphism is an automorphism. Sim-
ilarly we define the notion of a navigational core (n-core for short): a RGP P
is an n-core if it has no n-homomorphism to a proper sub-RGP of itself. When
studying the problem RGPHom(Q), we may always assume that Q is an n-core,
since RGPHom(Q) has the same complexity as RGPHom(CQ), where CQ is a
sub-RGP of Q that is an n-core. Unfortunately, it is coNP-complete to decide
whether a graph is a core [12] (thus deciding whether a RGP is an n-core is
coNP-hard, even if it is a graph database).

With respect to classic digraph homomorphisms, any digraph has (up to
isomorphism) a unique minimal subgraph to which it admits a homomorphism,
called the core. This is not the case for n-cores of RGPs and n-homomorphisms.
For example, any two RGPs each consisting of a unique directed cycle with all arc
labels equal to “a+” have an n-homomorphism to each other. Thus, if we identify
one vertex of two such cycles of different lengths, we obtain a RGP P with two
minimal sub-RGPs of P (the two cycles) to which P has an n-homomorphism,
thus these two are non-isomorphic n-cores of P .5

5 There exist more complicated examples where, furthermore, the two non-isomorphic
n-cores have the same size.
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3 Lower Bounds

The next proposition is proved by a very simple reduction from Regular Lan-
guage Inclusion to RGPHom for two RGPs each having a single arc.

Proposition 1. RGPHom is PSPACE-hard.

As witnessed by the simplicity of the reduction given in Proposition 1, the
PSPACE-hardness of RGPHom is inherently caused by the hardness of the
underlying regular language problem. This phenomenon arises also in the non-
uniform case for a very simple template.

Proposition 2. Let Σ be a fixed alphabet of size at least 2, and let DΣ
2 be

the RGP of order 2 over Σ consisting of a single arc labelled Σ∗. Then, RG-
PHom(DΣ

2 ) is PSPACE-complete.

4 An EXPTIME algorithm for RGPHom

In certain models where simple directed paths rather than directed walks are
considered, like in [17], or when the target RGP is acyclic, there is a simple
PSPACE algorithm to decide RGPHom. Indeed, in those cases, the length of a
walk in Q is at most |V (DQ)|. Thus, we can iterate over each possible mapping
f and for each mapped arc (x, y), we iterate over each possible walk W from
f(x) to f(y), and check in polynomial space whether L(EQ(W )) ⊆ L(EP (x, y)).

However, in general, the walks may be arbitrarily long. As we will see, we can
still bound their maximum length. Note that for two RGPs P and Q, if P

n−→ Q
then the query Q is contained in the query P , but there are examples where
the converse does not hold (see Figure 1). Thus, the problem RGPHom for two
RGPs does not fully capture RGP Query Containment. Nevertheless, we
will show that the former can be solved in EXPTIME, which is better than the
(tight) EXPSPACE complexity of RGP Query Containment shown in [7,10].

ba+

P

a

Q

Fig. 1. Two n-core RGPs P and Q over alphabet {a, b} which have no n-homomorphism
in either direction. From P to Q because one can not map suitably the arc labelled by b,
in the other direction because neither b nor a+ is included in a. However, any database
that matches the RGP P would contain a walk of arcs all labelled by a (because of the
arc with label a+ in P ). The database would clearly also match Q. So Q is contained
in P .

For a regular language L over alphabet Σ and a positive integer n, we denote
by L|n the n-truncation of L, i.e. the set of words of L with length at most n.
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Lemma 1. Let A, B1, . . . Bk be a collection of regular expressions over alphabet
Σ, and let nA, ni be the minimum number of states of an NFA recognizing L(A)
and L(Bi), respectively. Then, we have that L(B1) · · ·L(Bk) ⊆ L(A) if, and only
if, L(B1)|nAn1

· · ·L(Bk)|nAnk
⊆ L(A) (the left hand side denotes the product of

languages).

Proof. Since L(Bi)|nAni
⊆ L(Bi) for every i with 1 ≤ i ≤ k, if L(B1) · · ·L(Bk) ⊆

L(A), then it holds also for truncations and L(B1)|nAn1
· · ·L(Bk)|nAnk

⊆ L(A).
For the converse, we assume that L(B1)|nAn1

· · ·L(Bk)|nAnk
⊆ L(A). That

is, any word w1 · · ·wk of L(B1) · · ·L(Bk) with |wi| ≤ nAni for every i with
1 ≤ i ≤ k, belongs to L(A). We need to prove that all words of L(B1) · · ·L(Bk)
(without length restriction) belong to L(A).

We proceed by induction on the vectors of subword lengths of words in
L(B1) · · ·L(Bk). For such a word w1 · · ·wk, this associated vector is (|w1|, . . . , |wk|),
and these vectors are ordered lexicographically. The induction hypothesis is that
all words of L(B1) · · ·L(Bk) whose associated vector is at most (l1, . . . , lk) (where
for any i with 1 ≤ i ≤ k, li is a positive integer), belongs to A. By our assump-
tion, the case where li ≤ nAni is true.

Now, consider a word w = w1 · · ·wk of L(B1) · · ·L(Bk), whose associated
vector is (|w1|, . . . , |wk|), and where for some j ∈ {1, . . . , k}, |wj | = lj + 1;
whenever i 6= j, |wi| ≤ li. Let A and Aj be two NFAs recognizing A and Bj
with smallest numbers nA and nj of states, respectively.

We consider the product automaton A×Aj of A and Aj , with set of states
S × Sj (where S and Sj are the sets of states of A and Aj , respectively), and
a transition ((s1, s2), a, (s′1, s

′
2)) only if we have the transitions (s1, a, s

′
1) and

(s2, a, s
′
2) in A and Aj , respectively (all other transitions are “dummy transi-

tions” to a “garbage state”). Consider the run of A×Aj for the word wj . The
crucial observation is that, because |wj | = lj + 1 > nAnj , this run necessarily
visits two states of A × Aj twice, that is, the run contains a directed cycle.
Consider the shorter run obtained by pruning this cycle. The two runs start and
end at the same two states of A × Aj . The shorter run corresponds to a word
w′j of length at most |wj | − 1 ≤ lj . Since wj ∈ L(Bj), the end state of these
runs is a pair containing an accepting state of Aj (thus w′j belongs to L(Bj) as
well). Thus, the word w′ obtained from w by replacing wj with w′j belongs to
L(B1) · · ·L(Bk), and w′ satisfies the induction hypothesis. Thus, w′ belongs to
L(A). But now, considering the pruned cycle in A×Aj , we can build a valid run
for wj in A×Aj that leads to a valid run for w in A. This proves the inductive
step and concludes the proof.

Proposition 3. Let E be a regular expression over alphabet Σ, and AE an NFA
with nE states recognizing L(E). Let Q = (DQ, EQ) be an RGP over Σ. For any
two vertices u and v in Q, we can compute a walk W from u to v satisfying
L(EQ(W )) ⊆ L(E) (if one exists), in time 2O(nE |Q| log(|E|+|Q|)). Moreover, if
such a walk exists, then there exists one of length at most 2nE |Q|.

Proof. Since E and Q are finite, we will assume that |Σ| ≤ |E|+ |Q| (if not, we
simply remove the unused symbols from Σ.)
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By Lemma 1, there is a walk W in Q from u to v such that L(EQ(W )) ⊆ L(E)
if and only if there exists one in the RGP Q′ obtained from Q by replacing
each arc-label EQ(x, y) by a regular expression EQ′(x, y) defining the nEnB-
truncation of L(EQ(x, y)) (where nB is the smallest number of states of an
NFA recognizing L(E(x, y))). Thus, we first compute Q′. Note that L(EQ′(x, y))
contains at most |Σ|nEnB words.

Next, we will construct an auxiliary digraph G(E,Q, u, v). This digraph has
vertex set 2S × V (Q), where S is the set of states of AE .

Given two states s1 and s2 of AE and a word w over Σ, we say that w reaches
s2 from s1 in AE if there exists a sequence of transitions of AE starting at s1
and ending at s2 using the sequence of letters of w.

Now, for two vertices (S1, x) and (S2, y) of G(E,Q, u, v), we create the arc
((S1, x), (S2, y)) if, and only if, for each state s of S1 and each word w of
L(EQ′(x, y)), w reaches a state of S2 in AE .

Deciding whether ((S1, x), (S2, y)) is an arc of G(E,Q, u, v) takes time at
most |S1|2nE |L(EQ′(x, y))|, which is at most |Σ|O(nE |Q|). Since there are (2nE |Q|)2
pairs of vertices of G(E,Q, u, v), overall the construction of G(E,Q, u, v) can be
done in time |Σ|O(nE |Q|).

Now, we claim that there exists a walkW from u to v with L(EQ(W )) ⊆ L(E)
if and only if there is a directed path in G(E,Q, u, v) from a vertex ({s0}, u) to
a vertex (Sf , v), where s0 is the initial state of AE , and Sf is a subset of the
accepting states of AE . Indeed, such a path corresponds precisely to a walk W
from u to v in Q, such that all the words of L(W ) are accepted by AE .

This check can be done in linear time in the size of G(E,Q, u, v) using a
standard BFS search, thus we obtain an additional time complexity of (2nE |Q|)2,
which is also at most |Σ|O(nE |Q|). Since |Σ| ≤ |E|+|Q| we obtain 2O(nE |Q| log(|E|+|Q|)).

Finally, it is clear that the length of an obtained directed path of G(E,Q, u, v)
is at most the number of vertices of G(E,Q, u, v), which is 2nE |Q|, as claimed.
This completes the proof. ut

Theorem 2. RGPHom is in EXPTIME.

Proof. We proceed as follows. First, we go through all possible vertex-mappings
of V (P ) to V (Q) (there are |V (Q)||V (P )| such possible mappings). Consider such
a vertex-mapping, f .

For each arc (x, y) in P with label EP (x, y), we proceed as follows. Let A be
an NFA recognizing L(EP (x, y)) with smallest possible number nA of states. We
apply Proposition 3 to E = EP (x, y), A and Q, with u = f(x) and v = f(y): thus
we can decide in time 2O(nA|Q| log(|EP (x,y)|+|Q|)) whether the mapping f satisfies
the definition of an n-homomorphism for the arc (x, y). If yes, we proceed to the
next arc; otherwise, we abort and try the next possible mapping. If we find a
valid mapping, we return YES. Otherwise, we return NO.

Our algorithm has a time complexity of |V (Q)||V (P )|·|P |·2O(|P ||Q| log(|P |+|Q|)).
Let n = |P | + |Q| be the input size. We obtain an overall running time of

2O(n2 logn), which is an EXPTIME running time.



Complexity of conjunctive regular path query homomorphisms 9

5 RGPs over a unary alphabet: the {a, a+} case

In this section, we consider a unary alphabet Σ = {a}. For unary regular lan-
guages, Regular Language Inclusion and Regular Language Univer-
sality are no longer PSPACE-complete but they are coNP-complete (see [13]
and [21], respectively) and the lower bounds from Section 3 do not apply.

The case where all arc-labels of the considered RGPs are equal to “a” is
equivalent to the problem of classic digraph homomorphisms, and is known to
capture all CSPs [9]. When each label is either “a” or “a+”– in which case
we speak of {a, a+}-RGP – we have two kinds of constraints: arcs labelled “a”
must map in a classic, local, way, while arcs labelled “a+” can be mapped to
an arbitrary path in the target RGP. Thus, this setting is useful for example to
model descendance relations in hierarchichal data such as XML. This setting is
for example used in languages like SPARQL or XPath for XML documents, that
are tree-structured [8,15,18].

For an {a, a+}-RGP Q, let D(Q) be the arc-labelled digraph with labels
{a, t} and the same vertices as Q obtained from Q as follows. The arcs labelled
by a coincide. The set of arcs labelled by t in D(Q) is the transitive closure of
the arcs of Q (labelled by either label a or a+).

Proposition 4. For any {a, a+}-RGP Q, RGPHom(Q) for {a, a+}-RGP in-
puts is Ptime equivalent to Hom(D(Q)). Thus, the class of {a, a+}-RGP-restricted
non-uniform RGPHom problems follows a dichotomy between Ptime and NP-
complete.

Proof. Let D′P be the digraph obtained from P = (DP , EP ) by replacing all arc-

labels “a+” by labels “t”. For any pair of {a, a+}-RGP P andQ, we have P
n−→ Q

(n-homomorphism) if and only if D′P → D(Q) (classic homomorphism of arc-
labelled digraphs). This provides us with a Ptime reduction from RGPHom(Q)
to Hom(D(Q)). Conversely, given a digraph D′P with arcs labelled by a and t,
let P be the {a, a+}-RGP obtained from D′P by replacing t labels by a+. This
is a Ptime reduction from Hom(D(Q)) to RGPHom(Q).

The dichotomy follows from the CSP dichotomy of [5,22]. ut

Proposition 5. RGPHom for {a, a+}-RGPs is Ptime reducible to Hom for
two-arc-labelled digraphs. Thus this uniform problem is in NP.

The Ptime algorithms based on algebraic methods proposed by Bulatov [5]
and Zhuk [22] for tractable CSPs are somewhat contrived and a bit overkill for
the class of non-uniform RGPHom problems restricted to {a, a+}-RGPs. This
motivates us to look for simple direct combinatorial characterisations and simple
algorithms for interesting {a, a+}-RGPs that model natural queries.

5.1 Undirected {a, a+}-RGPs

We now consider undirected {a, a+}-RGPs, where arcs are pairs of vertices, called
edges (equivalently, for each arc from x to y, we have its symmetric arc from y
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to x). In an n-homomorphism between two undirected {a, a+}-RGPs P and Q,
“a”-edges must be preserved (as in a classic graph homomorphism), while the
endpoints of “a+”-edges need to be mapped to two vertices of Q that are con-
nected by some path. Thus, this variant extends classic graph homomorphisms
via additional (binary) connectivity constraints. We provide an analogue of the
Hell-Nešetřil dichotomy for Hom(H) [11] in this setting.

Theorem 3. Let Q be an undirected and connected n-core {a, a+}-RGP. If Q
has at most one edge, RGPHom(Q) is in Ptime. Otherwise, RGPHom(Q) is
NP-complete.

5.2 Directed path {a}-RGPs

We first consider RGPHom(Q) when Q is a directed path whose arc labels are
all “a” (Q is called an {a}-RGP) — arguably the simplest RGP directed graph
example — and where inputs are {a, a+}-RGPs. This case turns out to have an
interesting connection to the following scheduling problem, which enjoys a Ptime
algorithm by reduction to a shortest path problem in edge-weighted digraphs [20,
Chapter 4.4, p.666].

Parallel Job Scheduling With Relative Deadlines
Input: A set J of jobs, a duration function d : J → N, a relative deadline
function r : J × J → Z, and a maximum time tmax.
Question: Is there a feasible schedule for the jobs, that is, an assignment
t : J → N of start times such that every job finishes before time tmax
and for any two jobs j1 and j2, j1 starts before the time t(j2)+r(j1, j2)?

Theorem 4. For any directed path {a}-RGP Q, RGPHom(Q) for {a, a+}-
RGP inputs is Ptime-reducible to Parallel Job Scheduling With Relative
Deadlines. Thus, RGPHom(Q) is in Ptime when restricted to such inputs.

As we will see in the next section, the second part of Theorem 4 can be gener-
alized to all directed path {a, a+}-RGPs using a different method.

5.3 Directed path {a, a+}-RGPs

Our next result is more general than Theorem 4, as we use a stronger method.
It also extends a result from [18], where the statement is proved for directed tree
input RGPs. Here we prove it for all kinds of inputs.

For an arc-labelled digraphD and a positive integer k, the product digraph Dk

is the digraph with vertices V (D)k and with an arc labelled ` from (x1, . . . , xk)
to (y1, . . . , yk) iff all pairs (xi, yi) with 1 ≤ i ≤ k are arcs labelled ` in D.
A homomorphism of Dk to D is called a (k-ary) polymorphism of D. For a
set S, a function f from S3 to S is a majority function if for all x, y in S,
f(x, x, y) = f(x, y, x) = f(y, x, x) = x.
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Theorem 5 ([14]). Let D be an arc-labelled digraph that has a ternary poly-
morphism that is a majority function. Then, Hom(D) is in Ptime.

It is well known that the above applies to directed paths, a result that we can
lift to {a, a+}-RGPs.

Theorem 6. Let Q be an {a, a+}-RGP whose underlying digraph is a directed
path. Then, D(Q) admits a majority polymorphism and thus RGPHom(Q) is
in Ptime.

We remark that Theorem 6 also applies to RGPs with vertex-labels (where the
mapping must preserve the vertex-labels). Indeed, vertex-labels are modeled
as unary relations, which trivially satisfy the properties for having a majority
polymorphism. Moreover, using the same method, Theorem 6 extends to labels
of the form “a∗”, “ak” or “a≤k” for k ∈ N.

6 Conclusion

We have seen that RGPHom, which is generally PSPACE-hard (but in NP when
the target RGP is a graph database), is in EXPTIME. This favorably compares
to the general complexity of RGP query containment, which is EXPSPACE-
complete [7,10], and motivates the use of RGP n-homomorphisms to approximate
query containment. It remains to close the gap between the PSPACE lower
bound and the EXPTIME upper bound.

We have also seen that the case of {a, a+}-RGPs (a case that is also in
NP, and that corresponds to XPath and SPARQL queries), we have a complete
classification of the NP-complete and Ptime cases for undirected RGPs, and all
RGPs whose underlying digraph is a directed path are in Ptime. It was proved
in [18] that when both the input and target is a directed tree {a, a+}-RGP,
RGPHom is in Ptime. Is it true that (for general inputs) RGPHom(Q) is in
Ptime when Q is a directed tree {a, a+}-RGP? 6 When all arc-labels are “a”,
then the only n-core RGPs whose underlying digraphs are directed trees are, in
fact, the directed paths. But there are many more directed tree {a, a+}-RGP
n-cores, see Figure 2 for a simple example.

Fig. 2. An n-core directed tree {a, a+}-RGP. Doubled edges are labelled “a+”, the
others are labelled “a”.

6 This is not true for all acyclic RGPs: there are trees T such that Hom(T ) is NP-
hard [6]. Thus, for the corresponding {a}-RGP Q(T ), RGPHom(Q(T )) is NP-hard.
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