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Robust energy management system for multi-source DC
energy systems – real-time setup and validation

Jean-Marc Nwesaty, Antoneta Iuliana Bratcu, Senior Member, IEEE, Alexandre Ravey, Member, IEEE, David Bouquain,
and Olivier Sename, Senior Member, IEEE

Abstract—This paper aims at providing a proof of concept of a
systematically designed LPV/H∞-based energy management system
(EMS) for coordinated multi-variable control of multi-source electrical
systems. A three-source electrical system representing the power
supply system on board of an electric vehicle has been chosen as a
representative example of irregular and generally not a priori known
load variation. The power supply system is composed of fuel cell,
battery and supercapacitor. Each power source is coupled to a DC-
DC converter, all converters being connected in parallel to a common
DC-bus in order to feed the load represented by the vehicle's electrical
motor. The system is modelled as an LPV system – as its operating
point depends on the load – and the control objectives are cast into
the H∞ formalism as a disturbance-rejection problem.

A dedicated hardware-in-the-loop system was built for proof of
concept purpose, with real-world battery and supercapacitor being
used, while the fuel cell system is entirely emulated. A dSPACE
MicroAutoBox® II device embeds the designed EMS, due to its
flexibility and ease of programming with MATLAB®. A driving cycle
from IFSTTAR (Institut Français des Sciences et Technologies des
Transports, de l'Aménagement et des Réseaux) is chosen as a pertinent
scenario of load variation due to its rich frequency content able to
challenge all the three sources. Effectiveness of the EMS is assessed in
relation to the imposed control objectives – DC-bus voltage regulation,
dynamical separation of power sources' current variations depending
on the specialization range of each source, and imposing desired
steady-state behavior for each of the three power sources – with very
promising results.

Index Terms—H∞ control, LPV systems, power source coordination,
reduced-order controller, frequency separation, electric vehicle.

I. INTRODUCTION

MULTI-SOURCE – also named hybrid – power supply sys-
tems are nowadays becoming ubiquitous, especially in ap-

plications where load variation is strongly irregular. The concept
of “microgrid” has thus emerged, where the basic functional en-
tities may operate either in the so-called “grid-connected” mode,
or to supply power for a variety of stand-alone applications –
such as electrical mobility – or for islanded/isolated zones when
they operate in “grid-forming” mode. Renewable energies, whose
intermittency requires hybridization with storage units, may also
be present in microgrids. In particular, DC microgrids have gained
popularity vs. AC ones due to their more simplified operation (e.g.,
no need for synchronization). Stand-alone applications in avionic,
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automotive and marine industries, but also power supply of remote
areas may benefit from this advantage, among others [1], [2].

Multi-source power supply systems use combinations of different
storage technologies, such as fuel cells, batteries, supercapacitors,
flying wheels, etc.. Ragone’s plot [3], features two main classes of
sources: high-energy-density sources that can supply power for long
duration of time (e.g., fuel cells), and high-power-density sources,
which can provide relatively high power for short period of time
(e.g., supercapacitors). Batteries are classified in between the two
classes depending on the battery type.

In the electromobility three main hybridization topologies are
available depending on the number of components, energy man-
agement complexity and performance reliability: series, parallel,
and cascaded [4]–[6]. In this paper, a parallel structure of three
sources in a DC system – fuel cell, battery and supercapacitor – is
chosen due to its flexibility (sources’ independent operation, facility
to replace/add power sources, etc.).

1) Related works: In multi-source systems an Energy Manage-
ment System (EMS) should coordinate the different devices and
ensure a desired power sharing between sources to satisfy the load
demand, while preserving reliability of all sources and extending
their remaining useful life [7].

Efficient EMS can be designed for a variety of applications.
Model Predictive Control (MPC) – with its nonlinear and/or
stochastic versions – may be applied at coordinated multivariable
control strategies for stand-alone microgrids and/or multi-source
systems, with or without renewable sources, as it successfully deals
with multiple constraints [8]–[10]. But adequate plant mathematical
modelling and also a priori knowledge of load variation to predict
the behavior are needed. For electric vehicles, this results in driving-
cycle-dependent solutions, which may be a disadvantage. Nonlinear
methods have also been proposed, such as Lyapunov-based [11]
or sliding mode [12]. More recently, interest of multi-agent-based
approach and games theory has been revealed [13].

Complex techno-economical criteria must be considered in the
multi-source EMS design. Thus, reliability-aware design rely on
complex degradation and ageing models of storage units, along
with optimization methods [14]. The multi-scale character of multi-
source systems justify hierarchical control structures [15], with
dynamically separated layers for enabling operation of sources in
their “specialization” range of variations – according to Ragone’s
taxonomy – to improve their reliability [16]. In this way, high-
power-density sources (like ultracapacitors), specialized in provid-
ing high-amplitude fast-varying currents, are able to protect high-
energy-density sources (like fuel cells or batteries), whose current
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variations must be smoother. Dynamic separation can be done by
filtering, where variations of current of each source are confined in
a predefined frequency interval [17]–[19]. The LQG optimal control
strategy also works to dynamically separate two sources [20].

2) Paper contribution: Here a three-source – fuel cell, battery
and supercapacitor – power supply on board of an electric vehicle
is considered. Each source is controlled by means of a DC-DC
converter to operate in its frequency specialization range; the
electrical motor with its converter is the load (Fig. 1.a). Fuel cell
and battery are thus protected from strong variations of power
demand. The EMS design is cast into the linear parameter varying
(LPV)/H∞ framework methodology developed by authors in [21],
which is a generic solution of EMS for multi-source systems with
potentially any number of sources, that guarantees closed-loop
robust stability. In this paper, the validation is done on a dedicated
test-bench designed in collaboration with FEMTO-ST Laboratory
in Belfort, France. Real battery and supercapacitor are used in the
test bench, whereas a complete real-time emulator developed at
FEMTO-ST Laboratory [22] represents the fuel cell. A reduced-
order version of the controller [23] is employed in real time.

The methodology of implementation is discussed and comparison
with the numerical simulation is conducted for IFSTTAR driving
cycle (Institut Français des Sciences et Technologies des Transports,
de l'Aménagement et des Réseaux), a suburban driving cycle. Effec-
tiveness of the proposed EMS, as well as adaptations and limitations
imposed by the real-world implementation, are discussed.

This paper is organized as follows. Section II provides a detailed
description of the real-time test bench. Modelling of the LPV
system, as well as control objectives, are presented in Section III.
Section IV explains how the proposed LPV/H∞ control design
procedure is adapted to the real-time test bench. Section V discusses
the real-time validation results including a comparison with the
numerical simulation ones. Section VI concludes the paper.

II. DESCRIPTION OF THE REAL-TIME TEST BENCH

The physical setup of the dedicated hardware-in-the-loop system
corresponds to Fig. 1.b. The three power sources are paralleled
on a DC-bus through DC-DC buck/boost converters; they supply
an active load – whose variation is imposed to represent the
desired driving cycle of the electric vehicle – by means of a rapid-
prototyping platform based on dSPACE MicroAutoBox® II device.
Fig. 1.b shows an expanded view of the interconnections between
the different parts used in the assembled test bench.

1) Power sources: This part is numbered as 1 in Fig. 1.b. The
fuel cell is the main power source in the system. A 2-kW NEXA fuel
cell with 50 V open-circuit voltage is here emulated by means of a
fuel cell emulator [22]. In this way, behavior of the considered fuel
cell can be replicated without hydrogen consumption. Consisting
mainly of a programmable power supply driven by a real-time
fuel cell model, the emulator is equipped by a human-machine
interface, which allows on-line investigation of different parameters.
Further details about fuel cell emulator can be found in [22], [24].
The supercapacitor is used to provide/absorb the fast variations of
load current. Two MAXWELL supercapacitors in series are used to
cover the voltage interval [0,32] V, each of which has the capacity
of 56 F with maximum voltage value of 16 V. The supercapacitor

voltage range is limited in between [15,30] V, considered equivalent
linearly to [0,100] % of state of charge (SOC). The battery is
employed to handle the mid-range variations of the load current.
Three batteries of 12 V and 110 Ah are here connected in series.

2) DC-DC converters: This part is numbered as 2 in Fig.
1.b. The fuel cell is connected to 1-quadrant DC-DC boost con-
verter and the rest of sources are connected to 2-quadrant DC-
DC buck/boost converters to allow bi-directional power flows for
charging/discharging. In this implementation, each of the three
arms of a three-phase DC-AC inverter works as a different DC-
DC converter, each of which is connected to a common DC-bus.
All inverter inputs/outputs can handle 25 A DC current and up to
350 V DC voltage. Each DC-DC converter consists of two IGBT
transistors operated by two complementary pulse-width modulated
(PWM) signals. Averaged duty cycle of each PWM signal is noted
by α, where α ∈ [0, 1]. Practically, α ∈ [0.10, 0.90] in order to
avoid extreme operating conditions of the converters.

3) DC-bus: Numbered as 3 in Fig. 1.b, the DC-bus represents
the physical connection between all paralleled power converters
and the load. The DC-bus voltage should be regulated around a
desired value regardless of load current variations. Here this voltage
reference is chosen to be Vdcref = 60 V, which can be ensured by
all converters with duty cycle values in between admissible limits.

4) Active load: This part is numbered as 4 in Fig. 1.b; it is a
device directly connected to the DC-bus, used to program a desired
load current profile, a driving cycle profile in our case. The load
current profile is provided as one-second-sampled table of values.

5) Sensors: This part is numbered as 5 in Fig. 1.b. Current
sensors measure currents of all three sources (Ifc, Ibat and Isc)
to be controlled at low level; at high-level control both DC-bus
voltage Vdc and supercapacitor voltage Vsc are measured, where
the last one is a direct image of supercapacitor SOC.

6) Real-time embedded control system: Numbered as 6 in
Fig. 1.b, this part consists of the proposed EMS. To this
end, MicroAutoBox® II from dSPACE is used as a flexible,
MATLAB® /Simulink®-programmable real-time system, effective
for hardware-in-the-loop-based rapid prototyping. The sampling
time, 50 µs (20 KHz), is chosen in relation to the fastest dynamic
in the system, namely that of PWM signals.

7) Human machine interface (HMI): This part is numbered as
7 in Fig. 1.b; it is designed using the ControlDesk 4.2 program
and allows communication with the real-time control system. Its
main tasks are to read and visualize the actual values of all interest
variables. Some of parameters can also be tuned in real time.

III. SYSTEM MODELLING AND CONTROL OBJECTIVES

A. System modeling

Fig. 1.a exhibits three main stages: the input stage including
the power sources, the conversion stage including the DC-DC
converters, and the DC link connected to the load as output stage.
A global two-level control structure [21] is here used: all three
sources are current-controlled within low-level proportional-integral
(PI) controller-based loops whose references come from the upper-
level LPV/H∞-based controller (Fig. 2). Hence, low-level dynamics
are much faster than the upper-level ones. Fuel cell and battery
are modelled as ideal current sources, with negligible dynamics.
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Figure 1: a) Electrical schematic of the considered on-board power supply system including power sources' equivalent electrical models. b) Schematics of the rapid-
prototyping test bench used to validate the energy management system.

Supercapacitor state of charge (SOC) is controlled to supply load
variations during acceleration/braking phases. The EMS ”sees” the
load as the current drawn from or injected into the DC link. Average
models of all the converters are used [25]. The global model is:

dIfc
dt

=
1

Lfc
[Vfc −RfcIfc − Vdc(1− αfc)]

dIsc
dt

=
1

Lsc
[Vsc −RscIsc − Vdcαsc]

dIbat
dt

=
1

Lbat
[Vbat −RbatIbat − Vdcαbat]

dVdc
dt

=
1

Cdc
[
−1
Rdc

Vdc − Iload + Ifc(1− αfc)

+ Ibatαbat + Iscαsc],

(1)

where Ifc, Ibat, and Isc are the currents of fuel cell, battery, and
supercapacitor sources, respectively. αfc, αbat, and αsc are the
corresponding converter average duty cycle values. Vfc, Vbat and
Vsc are fuel cell, battery and supercapacitor voltages, respectively.
Lfc, Lbat, Lsc, Rfc, Rbat and Rsc are the inductances and resis-
tances of smoothing inductors of each power converter, respectively.
ILoad is the load current, Vdc is the DC-bus voltage, Cdc and Rdc

are the DC-bus capacitor and resistance, respectively. Vsc is the
output of the supercapacitor electrical model in Fig. 1.a [26]:

dV0
dt

=
−1
C0

Isc

dV1
dt

=
−1
C1R1

V1 −
1

C1
Isc

dV2
dt

=
−1
C2R2

V2 −
1

C2
Isc

Vsc = − IscR0 + V0 + V1 + V2,

(2)

where R0, C0, R1, C1, R2, and C2 are constant parameters of
supercapacitor model, V0, V1 and V2 are sub-voltages in Fig. 1.a.
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Figure 2: LPV/H∞ robust control design block diagram [21], [27].

The high-level control handles the dynamics in (2) and Vdc
dynamics from (1), while the three currents are controlled within
the low-level control loops (PI current controllers – see Section
IV-A). The system composed of (2) and Vdc equation from (1) is
rewritten in LPV form as follows:{

ẋ = A · x+B1 · w +B2(ρ) · u
y = C · x+D · u, (3)

with state vector x = [Vdc V1 V2 V0]
T , disturbance input

w = Iload, control input vector u = [Ifc Ibat Isc]
T com-

posed of fuel cell, battery and supercapacitor currents, respectively.
ρ = [ρ1 ρ2 ρ3]

T = [αfc αbat αsc]
T is the varying parameter

vector, where each ρi is bounded within [0.1, 0.9]. Each varying
parameter is supposed to be independent from the others.
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B. Control objectives
The main goals of the proposed EMS are:
1) to keep the DC-bus voltage around 60 V within an error of

±10% regardless of the load current variations;
2) to apply dynamical (frequency) separation of power sources,

i.e., each power source must supply power with respect to its
characteristic frequency according to Ragone’s classification [3]
– this helps to protect fuel cell and battery from harmful fast
variations of load current. Frequency separation is achieved due
to some suitable choice of weighting functions associated to H∞
control design (see Section IV-B);

3) to slowly keep the supercapacitor SOC around 50%, allowing
to absorb/provide power to fulfil instantaneous load power demand;

4) to impose a desired steady-state behavior for the fuel cell and
battery, according to some desired power sharing between sources
in steady state. Fuel cell operating point can thus be imposed, e.g.,
the maximum-efficiency one. Steady-state behavior is involved in
battery charging, depending on its type. Battery charging could be
achieved by using the main power source (fuel cell).

Note that battery SOC is not controlled; instead, its charg-
ing/discharging current regimes are imposed. Indeed, in practice
a battery SOC is not controlled linearly around a desired value
like supercapacitor’s one, but it is used as an indicator to start its
charging/discharging according to some desired regime (e.g., C/5
or C/10, where C is the battery capacity in Ah).

IV. CONTROL DESIGN: SELECTION OF PARAMETERS AND
ADAPTATIONS TO THE TEST BENCH

A. Curent control loops design (low-level control)
Each source current must be controlled and prevented from

exceeding admissible limits. Supposing that the DC-link voltage
Vdc is kept constant at its reference value Vdcref by the EMS,
dynamics of currents (1) are linear, which justifies their control
by classical PI controllers. These loops are designed to be fast
enough to be neglected at the slower-dynamic upper level and
to ensure tracking of current references generated by upper-level
LPV/H∞ controller (Fig. 2). Hence, the following equalities hold
in the sequel: Ifc∗=Ifc, Ibat∗=Ibat and Isc

∗=Isc. PI controllers'
parameters can be found in Table II in the Appendix.

The three tracking low-level loops have the converters’ duty
cycles, αfc, αbat, αsc, as control inputs. It is thus reasonable to
choose the varying parameter vector ρ = [αfc αbat αsc]

T to
describe globally the time-varying system.

B. LPV/H∞ control loop design (upper-level control)
The LPV controller K(ρ) in Fig. 2 should satisfy the control

objectives in Section III-B for the parameter-varying plant G(ρ);
its design is tackled in the H∞ framework applied to LPV systems
[28]. In Fig. 2 usual forms of the weighting functions are considered
to represent the control objectives. A first-order weighting function
1/WeVdc

is in charge to ensure performance of load variations
rejection, i.e., both desired time response and acceptable error range
for the DC-link voltage (Vdc) regulation. A first-order weighting
function 1/WeVsc

is used to maintain supercapacitor SOC around
50%. A supercapacitor's SOC may be expressed as:

SOC = (Vsc − Vsc,min)/(Vsc,max − Vsc,min) · 100%, (4)

where Vsc,max is the maximum allowed supercapacitor's voltage
(SOC=100%) and Vsc,min is the minimum allowed voltage input
for the supercapacitor converter (SOC=0%). Here Vsc ∈ [15, 30] V.

Weighting functions 1/WuIfc, 1/WuIbat and 1/WuIsc shape the
dynamic behavior of current references of fuel cell, battery and
supercapacitor, respectively, in order to dynamically separate the
sources depending on their characteristic frequencies. Sharp sepa-
ration is done with fourth-order functions 1/WuIbat and 1/WuIsc,
while 1/WuIfc is a constant. Weighting function 1/WeIfc

is
defined as a first-order one and 1/WeIbat

is a constant value to
determine fuel cell and battery long-term behaviors, respectively.
Thus, a desired steady-state power sharing can be imposed by
using Ifcsteadystate and Ibatsteadystate reference inputs. Plant G(ρ)
together with the weighting functions form the extended plant P (ρ).

Parameters of weighting functions result from a genetic-
algorithm (GA)-based optimization procedure [29], [30] with a two-
fold objective function: to guarantee an arbitrarily imposed degree
of closed-loop stability, while sizing a desired frequency separation
between power sources according to each application [27]. Guess
values for this algorithm are selected as presented in Section IV-D3.
The resulting weighting functions are given in the Appendix.

C. LPV/H∞ controller design and order reduction
The control design problem is cast into a set of Linear Matrix

Inequalities (LMI) and solved in the context of LPV/H∞ control
polytopic approach [31]. System in (3) has a polytopic form with
23 = 8 vertices (since the parameter vector ρ has three bounded
elements in [0.1,0.9]). The generalized LPV MIMO system is:ẋz

y

 =

A B1 B2(ρ)

C1 D11 D12

C2 D21 D22


xw
u

 . (5)

The LMIs are solved off-line by using Yalmip/Sedumi solver as
a convex optimization with a single Lyapunov function (framework
of quadratic stabilization [28], [32]) at each vertex of the polytope,

leading to vertex controllers Ki =

[
Ai Bi

Ci Di

]
with 1 ≤ i ≤ 8. The

LPV controller K(ρ) is computed on-line as a convex combination
of the vertex controllers Ki, i.e., K(ρ) =

∑8
1 γi(ρ)Ki, with:

γi(ρ) =

∏3
j=1 |ρj − C(wi)j |∏3

j=1

∣∣∣ρj − ρj∣∣∣ > 0,

8∑
1

γi = 1,

where wi are the vertices corresponding to the extreme values of
the parameter vector ρ. C(wi)j is the jth component of the vector

C(wi) defined as C(wi)j =

{
ρj if wi = ρj
ρj otherwise

, where in this case

ρj = max(ρj) = 0.9, ρj = min(ρj) = 0.1.
The full-order LPV/H∞ controller is a combination of eight

eighteenth-order controllers. For practical purposes, MORE toolbox
[33] is used to find a reduced-order model that fits the original con-
troller for bounded frequency range. The Iterative SVD Tangential
Krylov Algorithm (ISTIA) is applied on each vertex controller for
the whole closed-loop bandwidth, resulting in tenth-order vertex
controllers. Stability and performance have been checked a poste-
riori (see [23] for more details).
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D. Adaptations to the test bench

1) Control design: The proposed methodology has been applied
to the test bench model to obtain a reduced-order controller for
real-time implementation. Sources’ currents saturation have been
taken into account in the design. Comparison between real-time and
numerical simulation results has been performed under the same
scenario. Thus, samples of the measured load current (Fig. 3.a)
were used to re-perform numerical simulation.

2) Selection of control references: Four exogenous inputs repre-
sent the references for the upper-level control loop (Fig. 2). These
references are selected for real-time implementation as follows:

a) DC-bus voltage reference Vdcref is chosen to be 60 V;
b) fuel cell steady-state behavior is imposed such that fuel cell

be able to supply the total average load current, according to:

Ifc,ref (t) = average(Iload(t))/(1− αfc(t)), (6)

where average(Iload(t)) is the load current suitably low-pass
filtered, e.g., with 10 rad/s as cut-off frequency to remove noise.
αfc(t) is the real-time value of the fuel cell converter average duty
cycle. However, this reference choice is not unique and the fuel cell
can be managed in a different way, e.g., to provide quasi-constant
current corresponding to its maximum power efficiency;

c) as the fuel cell provides all the load power in steady state, then
the battery is here managed to provide no current in long term, thus
preserving its SOC: Ibatref = 0 A. However, the battery should be
able to replace the fuel cell on line in case of unavailability – in
this case, another proper choice of Ibatref must be made;

d) supercapacitor SOC reference is reasonably chosen as 50 %,
so the supercapacitor is always ready to either provide or absorb
power in case of fast and important variations of load current.

3) Selection of weighting functions: This step is crucial for
implementing a reliability-aware design of the proposed EMS.
Selection of 1/WeVdc

, 1/WeVsc
, 1/WeIfc

and 1/WeIbat
is ex-

plained above in Section IV-B. As regards the weighting functions
1/WuIfc

, 1/WuIbat
and 1/WuIsc , they must be chosen to represent

a suitable conditioning of the source currents’ response to load vari-
ations. Standard forms are here chosen, whose parameters – mainly
their folding frequencies – result from a GA-based optimization, as
explained above. Initial guess values are selected as follows.

Basically, the folding frequencies of these filters are chosen
in relation with the characteristic frequencies of sources, which
quantitatively express the maximum speed of variations each source
can provide and still respect its reliability specifications. Practically,
for a given storage technology, its characteristic frequency may
be deduced from the datasheet, i.e., from the maximum current
gradient recommended for maximizing its proper operation time.

Therefore, the fuel cell current must only have slow variations,
so 1/WuIfc

will be a low-pass filter with a roll-off frequency
near its characteristic frequency. Battery current variations will be
confined within a bandwidth including its characteristic frequency,
so 1/WuIbat

will be a bandpass filter. Finally, the ultracapacitor
must work at high-frequency variations, so 1/WuIsc will ideally
be a high-pass filter with a folding frequency near its characteristic
frequency. In practice, however, it is about a bandpass filter, given
the limited spectrum of supercapacitor. 1/WuIfc

, 1/WuIbat
and

1/WuIsc may be locally superposed, more or less – in frequency

regions where the load is supplied by two of the three sources – and
together they should cover the whole spectrum of load variations.

4) Expected differences between numerical simulation and real-
time results: The modelling uncertainty of sources is expected to
be the main source of differences here, that is, differences between
nominal and real values of parameters characterizing each of the
three sources. Indeed, widely-known equivalent electrical models
of literature have been used in simulation for the fuel cell, battery
and supercapacitor, with datasheet values of parameters of these
models. It is however known that such parameters – resistances,
inductances, capacities – vary in time and may not be equal to
the datasheet ones any longer. Resuming identification of sources’
models was beyond the scope of this paper. Therefore, currents
of sources are expected to vary in real time differently from in
simulation. Meanwhile, the proposed control strategy is expected
to perform robustly against these parameter variations.

V. REAL-TIME VALIDATION RESULTS

This section discusses the real-time results obtained on the test
bench. Different driving cycles can be used for EMS assessment.
Here the active load implements the extra-urban IFSTTAR driving
cycle, where acceleration, speed variation on high-way, deceleration
and full brake are frequent (Fig. 3.a); its rich frequency content
is illustrative for the frequency separation of sources (see Section
V-2). Results are analyzed in both time and frequency domains.
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Figure 3: a) Load current scenarii representing the IFSTTAR driving cycle, as
provided by the programmable power supply/load used in the test bench. b) Real-
time versus numerical-simulation behavior of the regulated DC-bus voltage in
response to IFSTTAR driving cycle.

1) Time-domain analysis: As mentioned before, the measured
load current Iload (Fig. 3.a) is low-pass filtered and used in
numerical simulation. Real-time results are here compared against
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Figure 4: a) The three real-time power sources' currents corresponding to IFSTTAR driving cycle. b) Zoom.
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Figure 5: Real-time versus numerical-simulation behavior of a) fuel cell current and
b) battery current in response to IFSTTAR driving cycle.

simulation ones; Table I quantifies these differences by means
of normalized difference signal Euclidean norms of each variable
of interest: Vdc, Ifc, Ibat, Isc, SOCsc. Time-domain analysis is
performed in relation to the control objectives in Section III-B.

Table I: Quantification of differences between simulation and real-time results, based

on normalized difference signal norms: diffx =
‖ xrealtime − xsimulation ‖2

‖ xsimulation ‖2
.

Vdc Ifc Ibat Isc SOCsc

diffx [%] 2.3 22.37 22.34 19.19 6.7

DC-link voltage control (first control objective): Fig. 3.b shows
the Vdc time evolution. Note that real-time results differ by just
2.3% from simulation, due to filtering for noise reduction, and show
Vdc regulation within the imposed boundaries (60 V ± 10%).

Dynamical separation of the power sources (second control ob-
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Figure 6: Real-time versus numerical-simulation behavior of a) supercapacitor
current and b) supercapacitor SOC corresponding to IFSTTAR driving cycle.

jective): evolutions of the three currents in Fig. 4 show that fuel cell,
battery and supercapacitor operate in low-, mid- and high-frequency
range, respectively. As expected, fuel cell current is smoother com-
pared to battery and supercapacitor ones. Supercapacitor current has
the fastest variation, which complies with its role of high-frequency
(high-power-density) source. Frequency-domain analysis in Section
V-2 illustrates better the frequency separation goal. Fig. 5.a shows
the time evolution of fuel cell current. Real-time results differ from
simulation by around 20%; note also that their initial states are
different. This can also be noticed for the battery current evolution
shown in Fig. 5.b. Supercapacitor provided/absorbed current is
shown in Fig. 6.a. Here, the difference between real time and
simulation, especially concerning variations' magnitude, are just
under 20%. As predicted, the largest differences between real time
and simulation can effectively be seen in the behavior of sources’
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currents. This is potentially due to imprecise models and/or to
differences between datasheet and real parameter values, as well
as to noise from different sources (sensors, converters, etc.).

Supercapacitor SOC regulation (third control objective): Fig. 6.b
shows that, as expected, the supercapacitor SOC is maintained
around 50%. Table I shows that differences between the SOC real-
time behavior and simulation are less than 10%; they are due to use
of (4) in SOC computation: supercapacitor voltage is smoother in
numerical simulation as average converter models are used. Despite
these differences, the SOC is well regulated in both numerical
simulation and real time, varying at maximum ±6% around the
desired reference (50%). Hence, the system is able to handle larger
load current variations; otherwise, a smaller supercapacitor can
be used instead. Varying parameter vector ρ = [αfc, αbat, αsc]

T

exhibits significant variations, but without reaching saturation.
2) Frequency-domain analysis: To illustrate the frequency sep-

aration feature of the proposed EMS, the power spectral density
(PSD) and its normalized version are calculated for all current
signals, including the load current (Ifc, Ibat, Isc, Iload):PSD(x) = (1/N)

√
X̃(f)X̃(f)∗

NormalizedPSD = (PSD/max(PSD)) · 100%,
(7)

where X̃(f) is the discrete Fourier transform of the discrete-time
signal x(k) of length N . X̃(f)∗ is the complex-conjugated of X̃(f).
The normalized PSD of a source allows to identify the frequency
range where most of that source's power is placed. Fig. 7 shows the
normalized PSD of all three currents (Ifc, Ibat, Isc) for IFSTTAR
driving cycle. Fuel cell maximum power is provided at very low
frequencies within [0, ω1] = [0, 0.1] rad/s, practically representing
a DC value. The battery maximum power is delivered within the
range next to the fuel cell's one, i.e., [ω4, ω5] = [0.1, 0.25] rad/s.
Finally, as expected, the supercapacitor maximum use is within
[0.25, 0.6] rad/s, i.e., in high frequency compared to the other two
sources. Supercapacitor maximum power must usually be provided
depending on the maximum frequency in the load spectrum.
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Figure 7: Normalized power spectral density (PSD) of the three sources' currents
under the IFSTTAR driving cycle scenario.

VI. CONCLUSION

In this paper, the real-time validation of a multi-variable energy
management system (EMS) based on LPV/H∞ control is presented.
A reduced-order version of a systematically designed LPV/H∞
controller has been implemented on a dedicated test bench rep-
resenting a three-source – fuel cell, battery and supercapacitor –
power supply system on board of an electric vehicle. Real battery

and supercapacitor have been used, while the fuel cell has been
represented by a complete emulator. Sources are paralleled on
a DC link by means of DC-DC converters; the DC bus feeds
the load represented by the vehicle's electrical motor. A dSPACE
MicroAutoBox® II device embeds the designed EMS, due to its
flexibility and ease of programming with MATLAB® .

The EMS performance has been assessed against the imposed
control objectives – DC-bus voltage regulation, dynamical separa-
tion of sources' current variations depending on specialization of
each source, and imposing desired steady-state behavior for each
source – with very promising results. IFSTTAR (Institut Français
des Sciences et Technologies des Transports, de l'Aménagement et
des Réseaux) driving cycle has been here chosen for illustration, due
to its rich frequency content able to challenge all the three sources
and thus to allow an as meaningful as possible validation. The EMS
design does not require any previous knowledge of the load current,
so the proposed strategy is not driving-cycle dependent.

Further work may aim at integrating some preliminary Fourier
analysis results about the load profile, e.g., to find the maximum fre-
quency in its spectrum. Further studies may also exploit the quasi-
diagonal form of the reduced-order LPV/H∞ controller transfer
matrix, consistent with the almost independent behavior of sources
when paralleled on the DC link. A structured H∞ control design
may be interesting in this case, where a certain desired controller
structure can a priori be imposed and optimized.
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APPENDIX



1

WeVdc

=
s+ ωb · ε
s/Ms + ωb

=
s+ 0.05

0.5363s+ 500

1

WeIfc

=
s+ ωBC · ε
s/Mu + ωBC

=
s+ 0.0007

0.9091s+ 0.07

1

WeIbat

=1.9

1

WeVsc

=
s+ ωb · ε
s/Ms + ωb

=
s+ 0.0005

0.5263s+ 0.05

1

WuIfc

=3

1

WuIbat

=

(
ε · s+ ωBC

s+ ωBC/M
·
s+ ωb · ε
s/M + ωb

)2

=
s4 + 57.14s3 + 816.3s2 + 0.005714s+ 10−8

0.34s4 + 0.0172s3 + 2.858 · 10−4s2 + 1.721 · 10−6s+ 3.4 · 10−9

1

WuIsc

=

(
ε · s+ ωBC

s+ ωBC/M
·
s+ ωb · ε
s/M + ωb

)2

=
s4 + 395s3 + 3.907 · 104s2 + 1.185 · 104s+ 900

0.1413s4 + 19.91s3 + 709.5s2 + 597.2s+ 127.2
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