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Abstract. Nonnegative Tucker decomposition is a powerful tool for
the extraction of nonnegative and meaningful latent components from a
positive multidimensional data (or tensor) while preserving the natural
multilinear structure. However, as a tensor data has multiple modes, the
existing approaches suffer from a high complexity in terms of compu-
tation time since they involve intermediate computations that can be
time consuming. Besides, most of the existing approaches for nonnega-
tive Tucker decomposition, inspired from well-established Nonnegative
Matrix Factorization techniques, do not actually address the convergence
issue. Most methods with a convergence rate guarantee assume restrictive
conditions for their theoretical analyses (e.g. strong convexity, update of
all of the block variables at least once within a fixed number of iterations).
Thus, there still exists a theoretical vacuum for the convergence rate
problem under very mild conditions.
To address these practical (computation time) and theoretical (conver-
gence rate under mild conditions) challenges , we propose a new iterative
approach named Randomshot, which principle is to update one latent
factor per iteration with a theoretical guarantee: we prove, under mild
conditions, the convergence of our approach to the set of minimizers with
high probability at the rate O

(
1
k

)
, k being the iteration number.

The effectiveness of the approach in terms of both running time and
solution quality is proven via experiments on real and synthetic data.

Keywords: nonnegative Tucker · convergence rate · proximal gradient

1 Introduction

The recovery of information-rich and task-relevant variables hidden behind data
(commonly referred to as latent variables) is a fundamental task that has been
extensively studied in machine learning [19],[6],[10]. In many applications, the
dataset we are dealing with naturally presents different modes (or dimensions)
and thus, can be naturally represented by multidimensional arrays (also called
tensors). The recent interest for efficient techniques to deal with such datasets is
motivated by the fact that the methodologies that matricize the data and then
apply well-known matrix factorization techniques give a flattened view of the
data and often cause a loss of the internal structure information [6], [19]. Hence,
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to mitigate the extent of this loss, it is more favourable to process a multimodal
data set in its own domain, i.e. tensor domain, to obtain a multiple perspective
view of the data rather than a flattened one [19].

Tensor decomposition techniques are promising tools for exploratory analysis
of multidimensional data in diverse disciplines including signal processing [2],
social networks analysis [8]. In this paper, we focus on a specific tensor
factorization, that is, the Tucker decomposition with nonnegativity
constraints. The Tucker decomposition, established by Tucker [16], is one
of the most common decompositions used for tensor analysis with many real
applications [17], [12].

Most of the approaches for the nonnegative Tucker problem are derived
from some existing standard techniques for the Nonnegative Matrix Factorization
NMF (i.e. they are natural extensions of these techniques) and do not provide any
convergence guarantee (i.e. theoretical convergence proof). An iterative approach,
inspired from the so-called Hierarchical Least Squares has been proposed in [12] .
The idea is about employing ”local learning rules”, in the sense that the rows of
the loading matrices are updated sequentially one by one. The main limitation
of this method is the lack of convergence guarantee and the update of all of
the variables, which can be time consuming. The class of NMF -based methods
emcompasses other approaches such as those set up in [10], [6], etc.
Alongside the NMF -based approaches, some Block Coordinate Descent-type
algorithms have been proposed. Roughly speaking, the idea is to cyclically update
the variables (i.e. update of all of the block variables per iteration or in
every fixed number of iterations in a deterministic or random order). A method
proposed in [17] ensures a convergence rate (to a critical point) and imposes for
the convergence analysis, the strong convexity assumption of each block-wise
function (i.e. a multivariate function considered as a function of only one variable)
for some of the update schemes proposed. This method can be time-consuming
due to the update of all of the block variables per iteration. Besides, the
block-wise strong convexity is not always verified [3]. A second approach estab-
lished in [18], ensures a convergence rate (to a critical point) with no convexity
assumption, but for the convergence analysis, it requires for all of the block
variables to be updated (in a cyclic order or with a random shuffling) in every
fixed number of iterations. Thus, there is still a theoretical vacuum for approaches
yielding convergence rates under loose conditions (i.e. without any convexity-type
assumption [17], any constraint for all of the variables to be updated per iteration
[17] or at least once within a fixed number of iterations [18], any full-rankness [3]
assumption).

The method set up in this paper, based on the update per iteration of a single
block variable picked randomly, can be classified among the Randomized Proximal
Coordinate Gradient-type methods [9]: we propose an algorithm for which each
update is performed via a single iteration of Projected Gradient Descent with the



Randomshot, a fast nonnegative Tucker factorization approach 3

descent step defined via a carefully chosen minimization problem . Our approach
is different from the Block Coordinate Descent, which idea is to update all of
the variables (per iteration [17], [3] or in every fixed number of iterations [18]).
With regards to the existing works for nonnegative Tucker decomposition, our
contributions are the following ones:

– Proposition of a fast randomized algorithm for the nonnegative Tucker prob-
lem, named Randomshot for which each update stage can be parallelized,

– Theoretical guarantee: we prove with high probability, under fairly loose
conditions (i.e. with no convexity assumption, no constraint for all of the
variables to be updated and no rank-fullness assumption), the convergence
to the set of minimizers at the rate O

(
1
k

)
, k being the iteration number.

– Numerical experiments are performed to prove the efficiency of our approach
in terms of running time and solution quality.

2 Notations

A N−order tensor is denoted by a boldface Euler script letter X ∈ RI1×···×IN .
The entries of X ∈ RI1×..×IN are denoted by X i1,..,iN . The matrices are denoted
by bold capital letters (e.g. A). The identity matrix is denoted by Id. The jth

row of a matrix A ∈ RJ×L is denoted by Aj,: and the transpose of a matrix A
by A>. The Hadamard product (or component-wise product) of two matrices
of the same dimensions A and B is denoted by A � B. Matricization is the
process of reordering all the elements of a tensor into a matrix. The mode-n

matricization of a tensor [X ]
(n)

arranges the mode-n fibers to be the columns

of the resulting matrix X(n) ∈ RIn×(
∏
m6=n Im). The mode-n product of a tensor

G ∈ RJ1×···×JN with a matrix A ∈ RIn×Jn denoted by G ×n A yields a tensor
of the same order B ∈ RJ1×···Jn−1×In×Jn+1···×JN whose mode-n matricized form
is defined by: B(n) = AG(n). For a tensor X ∈ RI1×...×IN , its ithn subtensor
with respect to the mode n is denoted by Xn

in ∈ RI1×···×In−1×1×In+1×···×IN and

defined via the mapping between its n-mode matricization
[
Xn
in

](n)
and the ithn

row of X(n), i.e. the tensor Xn
in is obtained by reshaping the ithn row of X(n),

with the target shape (I1, .., In−1, 1, In+1, .., IN ) (e.g. the second subtensor with
respect to the third mode of X ∈ R20×30×40 is the tensor X 3

2 ∈ R20×30 with(
X 3

2

)
i,j

= X i,j,2, 1 ≤ i ≤ 20, 1 ≤ j ≤ 30). The N − order identity tensor of size

R is denoted by I ∈ RR×...×R and is defined by: Ii1,i2,..,iN = 1 if i1 = .. = iN
and 0 otherwise.
For writing simplicity, we introduce the following notations:

– The set of integers from n to N (with n and N included) is denoted by
InN = {n, .,N}. If n = 1, it is simply denoted by IN = {1, .., N}.

– We denote by IpN 6=n = {p, .., n− 1, n+ 1, .., N} the set of integers from p to
N with n excluded. If p = 1, this set will be simply denoted by IN 6=n.

The product of G with the matrices A(m) will also be alternatively expressed by:
G ×m
m∈IN

A(m) = G ×m
m∈In−1

A(m) ×n A(n) ×q
q∈In+1

N

A(q) = G ×m
m∈IN 6=n

A(m) ×n A(n)
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The Frobenius norm of a tensor X ∈ RI1×···×IN , denoted by ‖X‖F is defined by:

‖X‖F =
(∑

1≤in≤In,1≤n≤N X 2
i1,··· ,iN

) 1
2

. The same definition holds for matrices.

The `1 norm for tensor, denoted by ‖ · · · ‖1 is defined by: ‖X‖1 =
∑
i1,..,iN

|X i1,..,iN |.
The maximum and minimum functions are respectively denoted by max and min.
We denote the positive part of a tensor by (X )+, i.e. (X )+ = max(X , 0) with
max(., 0) applied component-wise. The same definition holds for matrices.
The proximal operator of a function f , denoted Proxf is defined by:
Proxf (x) = arg minu

(
f(u) + 1

2‖u− x‖
2
F

)
The indicator function and the complement of a set A are denoted by 1A and Ac.
The notation RI+ represent the elements of RI with positive components.

3 Fast nonnegative Tucker

3.1 Nonnegative Tucker problem

Given a positive tensor X ∈ RI1×...×IN (i.e. with nonnegative entries), the
nonnegative Tucker decomposition aims at the following approximation:

X ≈ G ×m
m∈IN

A(m),G ∈ RJ1×...×JN+ ,A(m) ∈ RIm×Jm+

The tensor G is generally called the core tensor and the matrices A(m) the loading
matrices: we keep these denotations for the remainder of the paper. A natural way
to tackle this problem is to infer G and A(m) in such a way that the discrepancy
between X and G ×m

m∈IN
A(m) is low. Thus, a relevant problem is:

min
G≥0,A(1)≥0,··· ,A(N)≥0

{
f
(
G,A(1), · · · ,A(N)

)
4
=

1

2
‖X − G ×m

m∈IN
A(m)‖2F

}
(1)

3.2 Randomshot, a randomized nonnegative Tucker approach

Contrary to the existing approaches for nonnegative Tucker problem, based
either on NMF extension [12] or Block Coordinate Descent (update of all of the
variables per iteration [17] or within a fixed number of iterations [18]), the idea of
our approach named Randomshot, is based on the update of only one variable
per iteration picked randomly while fixing the others at their last updated values.
Each update is performed via a single iteration of Projected Gradient Descent.
To avoid an unnecessary distinction between the core tensor G and the loading
matrices A(m), we rename the variables G,A(1), ...A(N) by x1, x2, ..., xN+1:

x1 = G, xj+1 = A(j), 1 ≤ j ≤ N (2)

Besides, we denote by xkj the value of the variable xj at the kth iteration. With
these notations and by denoting the derivative of the function f with respect to
xi by ∂xif , the principle of Randomshot is summarised by Algorithm 1.

Remark 1. The equality in Algorithm 1 is due to the fact that Prox1A with
A being a convex set corresponds to the projection on A [17].
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Algorithm 1 Randomshot

Inputs: X : tensor of interest, n: splitting mode, x01 ≡ G0: initial core tensor,{
x0m+1 ≡ A

(m)
0

}
1≤m≤N

: initial loading matrices.

Output: G ∈ RJ1×...×JN
+ , A(m) ∈ RIm×Jm

+ , 1 ≤ m ≤ N
Initialization: k = 0

1: while a predefined stopping criterion is not met do
2: Choose randomly index i ∈ {1, ..., N + 1} a with a probability pi > 0
3: Compute optimal step ηik via the problem defined by the equation (7).
4: Block variable update

xk+1
i =

(
xki − ηik∂xif(xk1 , ..., x

k
N+1)

)
+

= Prox1RI
+

(
xki − ηik∂xif(xk1 , ..., x

k
N+1)

)
with I being the dimension of xi, 1RI+

the indicator function of RI
+

5: xk+1
j = xkj ,∀j 6= i

6: k ← k + 1
7: end while

3.3 Efficient computation of the gradient via parallelization

For the computation of the block-wise derivatives, we propose a divide-and-
conquer approach: we split the data tensor into independent sub-parts and
determine the gradients via the computation of independent terms involving
these sub-parts. For a fixed integer 1 ≤ n ≤ N (in the sequel, n will be referred
to as the splitting mode), this is achieved via the following reformulation of the
objective function in terms of subtensors drawn with respect to the nth mode
(see Property 1 in the supplementary material):

f(G,A(1), ..,A(N)) =

In∑
in=1

1

2
‖Xn

in − G ×m
m∈IN 6=n

A(m) ×n A
(n)
in,:
‖2F (3)

The tensor Xn
in is the ithn subtensor with respect to the splitting mode n.

From the equation (3), each derivative in Algorithm 1 can be computed via
a parallelization process. To observe this, we distinguish three cases: deriva-
tive with respect to the core tensor G, derivative with respect to A(p), p 6= n,
derivative with respect to A(n) with n being the splitting mode.
First case: derivative with respect to the core. The derivative with respect
to the core is given by (see Property 5 in the supplementary material):

∂Gf
(
Gk,A(1)

k , ..,A
(N)
k

)
=

In∑
in=1

Rin ×m
m∈IN 6=n

(
A

(m)
k

)>
×n
((

A
(n)
k

)
in,:

)>
︸ ︷︷ ︸

θin

(4)

with Rin = −Xn
in + Gk ×m

m∈IN 6=n
A

(m)
k ×n

(
A

(n)
k

)
in,:

The derivative with respect to the core given by the equation (4) being the sum
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of In independent terms, it can be computed via a parallelization process.
Second case: derivative with respect to A(p), p 6= n. The derivative with

respect to A(p) is given by (see Property 7 in the supplementary material):

∂A(p)f
(
Gk,A(1)

k , ..,A
(N)
k

)
=

In∑
in=1

(
−
(
Xn
in

)(p)
+ A

(p)
k B

(p)
in

)(
B

(p)
in

)>
(5)

The matrices (Xn
in

)(p) and B
(p)
in

represent respectively the mode-p matricized

forms of the ithn subtensor Xn
in and the tensor Bin is defined by :

Bin = Gk ×m
m∈Ip−1

A
(m)
k ×p Id ×q

q∈Ip+1
N 6=n

A
(q)
k ×n

(
A

(n)
k

)
in,:

, Id ∈ RJp×Jp : identity

This derivative being the sum of In independent terms, its computation can also
be parallelized.
Third case: derivative with respect to A(n). The derivative with respect to

A(n) can be computed via the row-wise stacking of In independent terms, that

are the derivatives with respect to the rows A
(n)
j,: , which allows to determine it via

a parallelization process. Given the expression of f given by (3), ∂
A

(n)
j,:
f depends

on a single subtensor Xn
j and is given by (see Property 6 in the supplementary):

∂
A

(n)
j,:
f
(
Gk,A(1)

k , .,A
(N)
k

)
= −

(
(Xn

j )(n) −
(
A

(n)
k

)
j,:

B(n)

)
B(n)> (6)

The matrices (Xn
j )(n) ∈ R1×

∏
k 6=n Ik and B(n) respectively represent the mode-n

matricized form of the tensors Xn
j and B = Gk ×m

m∈IN 6=n
A

(m)
k .

4 Framework of the theoretical analysis

For the analysis, we consider a framework where a single variable is
updated per iteration. The justification of this theoretical analysis with re-
spect to existing analyses performed for the Randomized Proximal Coordinate
Gradient approaches stems from the fact that either they assume the convexity
of the objective function [1] or present different algorithmic settings [9], which
make their analyses non applicable to our setting. We recall that our objective
in this paper is not to compete with Randomized Proximal Coordinate Gradient
methods, but to fill the theoretical vaccum for the nonnegative Tucker problem.
For simplicity purpose, we consider the alternative notations given by the equa-
tion (2) as well as the following notations:
A. The objective function evaluated at

{
xk1 , .., x

k
N+1

}
(i.e. the value of the vari-

ables at the iteration k) is denoted by f(xk). The same notation holds for any
function of the variables

{
xk1 , .., x

k
N+1

}
, with xkj being the value of xj at the

iteration k
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B. The objective function evaluated at
{
xk1 , .., x

k
i−1, x

k+1
i , xki+1, .., x

k
N+1

}
will be

denoted by f(xk1 , .., x
k
i−1, x

k+1
i , xki+1, .., x

k
N+1).

C. Γi = maxD1×D2×...DN+1
‖∂xif(x1, .., xN+1)‖F : supremum of ‖∂xif‖F on D1 ×

...DN+1 with × referring to the Cartesian product and the set Dj defined in
the subsection 4.2. Γi is well defined since ‖∂xif‖F is continuous and the finite
product of compact sets is a compact set.
D. Γ = max(Γi, 1 ≤ i ≤ N + 1)

Our theoretical analysis is mainly based on a careful definition of the descent
steps (see section 4.1) as well as some natural assumptions (see section 4.2).

4.1 Definition of the descent step ηi
k at the (k + 1)th iteration

By assuming that at the iteration k + 1, the ith variable has been selected, we
introduce the following definition of ηki :

ηik = arg min
η∈[ δ1√

K
,
δ2√
K

]

(
η − δ1√

K

)
max (Φ (η) , Ψ (η) , θ(η)) (7)

Φ (η) = f(xk1 , .., x
k
i−1,

(
xki − η∂xif(xk)

)
+
, xki+1, .., x

k
N+1)− f(xk)

(
1− f(xk)

2

)
(8)

Ψ (η) = ‖
(
xki − η∂xif

(
xk
))

+
− xki ‖2F − η2‖∂xif(xk)‖2F (9)

θ (η) = 〈∂xif(xk), (xki − η∂xif(xk))+ − xki 〉 (10)

+λf
(
xk1 , .., x

k
i−1,

(
xki − η∂xif(xk)

)
+
, xki+1, .., x

k
N+1

)
The parameters λ > 0, δ2 > δ1 > 0 represent user-defined parameters, K
represents the maximum number of iterations. The problem (7) is well defined
since it corresponds to the minimization of a continuous function on a compact
set, by Assumption 4 (presented in the section 4.2) and by the fact that all of
the factors

{
xk1 , .., x

k
N+1

}
are already known at the (k + 1)th iteration. Besides,

it corresponds to the minimization of a unimodal function for which there are
several resolution heuristics such as the Golden section method.

4.2 Assumptions

Besides of the definition (7), we consider the following five assumptions:

Assumption 1. the nth subtensors are uniformly bounded: ‖Xn
j ‖F ≤ σ, ∀j.

Assumption 2. we consider the domain G ∈ D1,A
(m) ∈ Dm+1 with:

D1 =
{
Ga ∈ RJ1×...×JN |‖Ga‖F ≤ α

}
,Dm+1 =

{
A(m)
a ∈ RIm×Jm |‖A(m)

a ‖F ≤ α
}
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Assumption 3. the solution of the problem (7) is not attained at δ1√
K

:

δ1√
K

< ηik ≤
δ2√
K

(11)

Assumption 4. non-vanishing gradient

∂xif(xk) 6= 0 (12)

Assumption 5. minimizer not attained at the initial point

f(x01, .., x
0
N+1) = f(x0) 6= fmin, fmin : minimum of f on D1 × ...× DN+1 (13)

4.3 Theoretical result

Under the definition of the minimization problem given by (7) and the assumptions
laid out in the section 4.2, the following inequality holds:

∀k > 2 max
(
k0,

2
ε

(
1 + log( 1

ρ )
)
− 2

∆0
+ 2
)

with 0 < ρ < 1, 0 < ε < min(2, ∆0):

1− ρ ≤ P
(
∆k ≤

2ε

k − 2k0
+
α2Nδ22Γ

2

λk

)
(14)

with log being the logarithmic function, k0 = 1
log(1+λ) log

(
1

log(1+λ)

)
(λ > 0 being

the parameter that intervenes in the problem (7)), ∆k = f
(
xk
)
− fmin ≥ 0,

fmin being the minimum value of f on D1 × D2 × ..× DN+1: fmin well defined
since f is continuous and a finite product of compact sets is a compact set. The
probability P is the sampling distribution of the block variables in Algorithm 1.
This result states that the random sequence xk =

{
xk1 , .., x

k
N+1

}
converges to

the set of minimizers of the function f (given by (1)) at the rate O( 1
k ) with a

probability at least 1− ρ.
To establish this result, we consider a sequence of properties that are Property
1, Property 2, Property 3, Property 4, Property 5. The proof of Property 4 and
the Lipschitz character of the block-wise derivatives (used by Property 2) are
postponed in the supplementary (since they are perfectly straightforward) as
well as some inequalities for Property 1 (to avoid arguments redundancy).

Property 1. By considering that the ith variable has been picked at the (k+ 1)th

iteration, the following inequalities hold:

f(xk+1) ≤ f(xk)

(
1− f(xk)

2

)
(15)

‖xk+1
i − xki ‖2F ≤ (ηik)2‖∂xif(xk)‖2F (16)

〈∂xif(xk), xk+1
i − xki 〉 ≤ −λf(xk+1) (17)

The inequality (15) ensures the decreasing of the objective function after
each update. The intuition of the inequality (16) is that it yields an estimation
of the Lipschitz parameter of the function x→ ∂xif(xk1 , ., x

k
i−1, x, x

k
i+1, ., x

k
N+1).

The inequality (17) controls the random character of the gradient by carefully
choosing the descent direction xk+1

i − xki .
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Proof: by definition of ηik as a minimizer (equation (7)), we have:

(ηik−
δ1√
K

) max
(
Φ
(
ηik
)
, Ψ
(
ηik
)
, θ(ηik)

)
≤ ( δ1√

K
− δ1√

K
) max

(
Φ
(
δ1√
K

)
, Ψ
(
δ1√
K

)
, θ( δ1√

K
)
)

By Assumption 3, ηik >
δ1√
K

. Thus, the previous inequality yields:

max
(
Φ
(
ηik
)
, Ψ
(
ηik
)
, θ(ηik)

)
≤ 0 ⇒ Φ

(
ηik
)
≤ 0 and Ψ

(
ηik
)
≤ 0 and θ(ηik) ≤ 0.

The inequalities (15), (16), (17) stem from Φ
(
ηik
)
≤ 0, Ψ

(
ηik
)
≤ 0, θ(ηik) ≤ 0.

Since the reasoning is identical for the three inequalities, we perform it only for
the first one (see Property 8 in the supplementary for the remaining ones).
Given that Φ

(
ηik
)
≤ 0, we have:

f(xk1 , .., x
k
i−1,

(
xki − ηik∂xif(xk)

)
+
, xki+1, .., x

k
N+1)− f(xk)(1− f(xk)

2 ) ≤ 0.

Since xk+1
i =

(
xki − ηik∂xif(xk)

)
+

by definition, we have:

f(xk1 , .., x
k
i−1, x

k+1
i , xki+1, .., x

k
N+1) ≤ f(xk)

(
1− (f(xk)

2

)
(18)

As xk+1
j = xkj for j 6= i by definition, the inequality (18) yields the result:

f(xk+1) = f(xk+1
1 , .., xk+1

i−1 , x
k+1
i , xk+1

i+1 , .., x
k+1
N+1) ≤ f(xk)(1− (f(xk))

2 ) �

Property 2. The sequence ∆k = f(xk)− fmin verifies the inequality:

∆k+1 ≤
∆k

1 + λ
+

α2Nδ22Γ
2

2K(1 + λ)
(19)

Proof: let’s consider xi the variable selected at the (k + 1)th iteration. The
derivative x→ ∂xif(xk1 , ., x

k
i−1, x, x

k
i+1, .., x

k
N+1) is Lipschitz (by Property 4 and

Property 6 in the supplementary, each of them using Assumptions 1 and 2)
with respect to the variable xi with the parameter α2N . Thus, we have by [13]
f(xk1 , .., x

k
i−1, x

k+1
i , xki+1, .., x

k
N+1) ≤ f(xk1 , .., x

k
i−1, x

k
i , x

k
i+1, .., x

k
N+1)

+〈∂xif(xk), xk+1
i − xki 〉+ α2N

2 ‖x
k+1
i − xki ‖2F .

Given that xk+1
j = xkj ,∀j 6= i (selection of xi), the last inequality yields:

f(xk+1)− fmin︸ ︷︷ ︸
∆k+1

≤ f(xk)− fmin︸ ︷︷ ︸
∆k

+ 〈∂xif(xk), xk+1
i − xki 〉︸ ︷︷ ︸

can be bounded by Property 1

+
α2N

2
‖xk+1

i − xki ‖2F︸ ︷︷ ︸
can be bounded by Property 1

.

By Property 1, Assumption 3, the definitions of Γi (as the supremum of ∂xif)
and Γ (as max(Γ1, .., ΓN )) respectively, the last inequality yields:

∆k+1 ≤ ∆k − λf(xk+1) + α2N

2

(
ηik
)2
Γ 2
i ≤ ∆k − λf(xk+1) +

α2Nδ22
2K Γ 2

⇒ ∆k+1 ≤ ∆k − λf(xk+1) + λfmin +
α2Nδ22
2K Γ 2 = ∆k − λ∆k+1 +

α2Nδ22
2K Γ 2

⇒ (1 + λ)∆k+1 ≤ ∆k +
α2Nδ22
2K Γ 2: which concludes the proof. �

Property 3. Let’s consider P the probability distribution with respect to which
the block variables are drawn and EP the expectation associated. Let’s consider

the sequence ∆k = f(xk)− fmin. For k > 2
ε

(
1 + log( 1

ρ )
)
− 2

∆0
+ 2 (log being the

logarithmic function) with 0 < ρ < 1, 0 < ε < min(2, ∆0). We have :

P (∆k ≤ ε) ≥ 1− ρ (20)
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Proof: Claim 1: the sequence ∆k is decreasing.
Justification of Claim 1: by Property 1, we have:

∆k+1 = f(xk+1)− fmin ≤ f(xk)− 1
2

(
f(xk)

)2 − fmin ≤ f(xk)− fmin = ∆k

Claim 2: EP (∆k+1|∆k) ≤ ∆k(1− ∆k
2 ), EP(|): the conditional expectation [14].

Justification of the Claim 2: by Property 1 we have:

f(xk+1) ≤ f(xk)− 1
2

(
f(xk)

)2 ≤ f(xk)− ∆2
k

2 (due to the fact 0 ≤ ∆k ≤ f(xk))

⇒ ∆k+1 ≤ ∆k − ∆2
k

2 (subtraction of fmin on both sides of the last inequality)

⇒ EP (∆k+1|∆k) ≤ ∆k(1− ∆k
2 ) (property of the conditional expectation)

Given ∆0 > 0 (by Assumption 5), ∆k ≥ 0 (definition of fmin), Claim 1,
Claim 2 along with 0 < ε < ∆0 and ε < 2, we have (Theorem 1 in [14]):

P (∆k ≤ ε) ≥ 1− ρ for k > 2
ε

(
1 + log( 1

ρ )
)
− 2

∆0
+ 2 �

Property 4. For p fixed and q such that p+ q ≤ K, we can show that:

∆p+q ≤
∆p

(1 + λ)q
+
α2Nδ22Γ

2

2K

q∑
j=1

1

(1 + λ)j
≤ ∆p

(1 + λ)q
+
α2Nδ22Γ

2

2Kλ
(21)

Proof: this is perfectly straightforward and done by a simple reasoning by
induction on q (for p fixed) using Property 2. (see property 9 in the supplementary
material). �

Property 5. For λ > 0 and k > k0 = 1
log(1+λ) log

(
1

log(1+λ)

)
, 1
(1+λ)k

≤ 1
k−k0

with log being the logarithmic function .

Proof: let’s consider the univariate function `(x) = x− ex log(1+λ)− k0 defined on
the domain x > k0, e being the exponential function (inverse of the log function).
The derivative is given by `

′
(x) = 1− (log(1 + λ))ex×ln(1+λ).

By definition of e and given that x > k0, log(1 + λ) > 0 (since λ > 0), we have:

x log(1 + λ) ≥ log
(

1
log(1+λ)

)
⇒ (log(1 + λ)) ex log(1+λ) ≥ 1 ⇒ `

′
(x) ≤ 0: this

implies that ` is a decreasing function on the domain x > k0.
Thus, for an integer k > k0, we have:
`(k) = k − ek log(1+λ) − k0 ≤ `(k0) = −ek0 log(1+λ) < 0
⇒ 0 < k − k0 < ek log(1+λ) = (1 + λ)k: this concludes the proof. �

Now, we establish the convergence to a minimizer with high probability.
Proof of our result given by the inequality (14)

We consider ε, k0, ρ,∆k as for (14) and Λ = max
(
k0,

2
ε

(
1 + log( 1

ρ )
)
− 2

∆0
+ 2
)

.

Without loss of generality, we consider that Λ < K
2 (we can choose K sufficiently

large such that this inequality is verified since Λ is fixed in advance). Let’s choose
k such that Λ < k ≤ K

2 (such k exists, e.g. k = K
2 ). We have by Property 4:

∆2k ≤ ∆k
(1+λ)k

+
α2Nδ22Γ

2

2λK ≤ ∆k
k−k0 +

α2Nδ22Γ
2

2λk (since k ≤ K and Property 5:

applicable since k > k0 due to the fact that k > Λ ≥ k0)

Given the implication ∆k ≤ ε⇒ ∆2k ≤ ε
k−k0 +

α2Nδ22Γ
2

2λk , we have:
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P(∆k ≤ ε) ≤ P
(
∆2k ≤ ε

k−k0 +
α2Nδ22Γ

2

2λk

)
Since k > 2

ε

(
1 + log( 1

ρ )
)
− 2

∆0
+ 2 (due to the fact that k > Λ ), 0 < ε <

min(∆0, 2), 0 < ρ < 1, we have by Property 3:

1− ρ ≤ P(∆k ≤ ε) ≤ P(∆2k ≤ ε
k−k0 +

α2Nδ22Γ
2

2λk )

Let’s denote h = 2k. Thus, ∀h > 2 max
(
k0,

2
ε

(
1 + log( 1

ρ )
)
− 2

∆0
+ 2
)

,0 < ε <

min(2, ∆0), 0 < ρ < 1, the following inequality holds:

1− ρ ≤ P
(
∆h ≤

2ε

h− 2k0
+
α2Nδ22Γ

2

λh

)
Remark 2. Contrary to the existing analyses for nonnegative Tucker, our proof
does not use any convexity assumption as in [17], does not impose for all of the
block variables to be updated per iteration [17] or at least once within a fixed
number of iterations as in [18] and does not assume any rank-fullness as in [3].
Besides, we prove the convergence to a minimizer for nonnegative Tucker instead
of a critical point as it is the case for the state-of-the-art methods [17],[18], [3].

5 Numerical experiments

The objective of these experiments is to prove that our approach, based on the
update of one variable picked randomly per iteration, yields competitive results
both in terms of running time and solution quality compared to some state-of-
the-art NMF -based and Block Coordinate Descent-type (with all of the variables
updated per iteration in a predefined order) approaches for the nonnegative
Tucker problem (which justifies the choice of the competitors presented
in the section 5.1). This demonstration is performed via some benchmark tasks:
the objective is not to establish new techniques for these tasks, but to prove the
efficiency of our approach in terms of computation time and solution quality.

5.1 Experimental setting

Randomshot is compared to the following five state-of-the-art methods:
1. TuckerLRA (Algorithm 1 in [19]): this method is based on the multiplica-
tive update rules for the NMF and the replacement of the original tensor by a
noise-reduced version.
2. TuckerHALS [19]: this approach is an extension of the Hierarchical Least
Squares for NMF.
3. TuckerSparse [6]: this is an approach inspired from the multiplicative update
rules set up for the NMF problem.
4. TuckerCCD [17]: this approach proposes a Block Coordinate Descent method
for the nonnegative Tucker problem with a convergence rate (to a critical point).
Each block variable update is performed via an extrapolation operation.
5. CPCCD [17]: this is a standard method for the tensor completion problem
with nonnegativity constraints and convergence guarantee (to a critical point).
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For all of the methods, the code has been done with Tensorly [7] except for
TuckerCCD and CPCCD for which we recover the matlab code made avail-
able on the author’s [17] website for fairness purpose. For Randomshot, the
derivatives computation is performed via the multiprocessing package of Python
and the minimisation problems for the steps are solved by the Golden Section
method. As in [9], the variables are picked according to a uniform distribution on
{1, .., N + 1}, N : tensor order and only one variable is updated per iteration. For
each experiment, the splitting mode n is fixed to 1, i.e. we consider subtensors
with respect to the first mode (changing n has no effect on Randomshot output:
it simply changes the way to compute the gradients, but not their final values).

5.2 Synthetic experiment

The task considered is the denoising problem of a three-order noisy tensor
Xn ∈ R300×200×100 defined by: Xn = X real + 2 ×N oise with N oise = (N )+
and X real = (T )+. The entries of T and N are drawn from a standard Gaussian
distribution. For fairness purpose, the initial points and the stopping criterion are
defined identically: each algorithm is stopped when the relative error is inferior
to a predefined threshold or a maximum number of iterations is reached.
The evaluation criteria are the running time and the reconstruction error Re
defined by:

Re = ‖X real − Gout ×1 A
(1)
out ×2 A

(2)
out ×3 A

(3)
out‖2F with Gout,

{
A

(n)
out, 1 ≤ n ≤ 3

}
being the latent factors inferred from the decomposition of Xn.
For R ∈ {5, 7, 10}, {δ1, δ2} =

{
10−6, 10−5

}
and for the remaining values of R, δ1

and δ2 are fixed to 10−7 and 10−6. The value of λ is fixed to 10−1 for all R.
Figure 1 portrays two expected behaviors of randomized-coordinate type algo-
rithms, i.e. the decreasing of the objective function and the decreasing of the
reconstruction error with respect to the number of epochs (one epoch= m con-
secutive iterations with m being the number of block variables [4]). From Table 1
and Figure 1, our approach outperforms its competitors with less running time
(other numerical results are provided in the section 6.2 of the supplementary).
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Fig. 1. Left: Running time (mean over 5 runs), Center: Reconstruction error with
respect to the number of epochs, Right: Objective function with respect to time
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Approximation error: G ∈ RR×R×R

R
Methods Randomshot TuckerHALS TuckerCCD TuckerLRA TuckerSparse

5 2047 2409 2421 2118 2564

7 2224 2418 2422 12919 2856

10 2300 2480 2180 31417 3970

17 2467 5974 2425 12402 1935

20 2213 30550 2427 21930 3412

23 2163 4246 2428 7613 2423

25 1806 6266 2428 23762 2181

Table 1. Reconstruction error (averaged over 5 independent runs)

5.3 Application to the impainting problem

We compare our approach to its competitors for the inpainting task, which aims
to infer missing pixels in an image (we consider two images of size 256 × 256
and 512 × 512: see Figure 2). For this application, we build a training tensor
Strain ∈ RNp×8×8 by stacking along the first mode overlapping patches Pt of
size 8 × 8 (the number of patches being Np ∈ {32, 64} for the two images)
constructed from the input image (with missing pixels). The core tensor as
well as the loading matrices Al ∈ R8×R,Aw ∈ R8×R, Ae ∈ RNp×R (R being
an integer whose value has to be defined) are learned from Strain through a
nonnegative decomposition. Each patch is then reconstructed by estimating the
sparse coefficients through the projection of the non-missing pixels on Al and
Aw matrices, i.e. Pr

t = Gt×1 Al×2 Aw with the components of Gt (defined as in
[11]) representing the sparse coefficients. The evaluation criteria are the running
time for the decomposition of Strain (i.e. the inference of the four latent factors
G,Al,Aw,Ae) and the PSNR defined by:

PSNR = 10 log10

(
m×n×2552
‖Ireal−Irec‖2F

)
with m,n representing respectively the image

sizes and Ireal, Irec the real and the reconstructed images. Each evaluation
criterion is averaged over 5 independent selections of the non-missing pixels
Again, we notice as expected, that our algorithm learns better with the number of
epochs (one epoch being defined as in [4]). Our approach achieves greater PSNR
within less time (Figure 2) due its parallel and randomized natures. This proves
that Randomshot, based on the update of a single variable picked randomly per
iteration, can be competitive with respect to NMF -based and Block Coordinate
Descent-type approaches for nonnegative Tucker problem.

5.4 Application to tensor completion problem

In this section, we consider a completion problem via Tucker with the core fixed
to the identity tensor I ∈ RR×R×R. The problem of interest is given by [17]:

min
A(1)∈RI1×R≥0,..,A(N)∈RIN×R≥0

‖PΩ(X − I ×m
m∈IN

A(m))‖2F (22)

with A(n) ∈ RIn×R, Ω ⊂ [I1]× ...× [IN ], [In] representing the set of consecutive
integers from 1 to In and × the Cartesian product. For a given tensor, the
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Fig. 2. Top: results for Cameraman (image of size 256 × 256), Bottom: results for
Barbara (image of size 512× 512). Top left: PSNR , Top center: PSNR with respect to
the number of epochs, Top right: Running time. Bottom left: PSNR, Bottom center:
Running time (average of 5 independent runs). For Cameraman and Barbara, the
values of Np (number of patches) are fixed to 32 and 64. See supplementary for δ1, δ2, λ

operator PΩ keeps the entries which indexes belong to Ω and sets to zero the
remaining ones. We consider an equivalent formulation of (22) given by [17]:

min
Y,A(1)≥0,..,A(N)≥0,PΩ(X )=Y

‖Y − I ×m
m∈IN

A(m)‖2F (23)

To solve the problem (23), we propose an extension of Algorithm 1 named
CPRandomshotcomp. The idea is to replace in Algorithm 1 the tensor X
by an intermediate variable Yk in the definition of the partial gradient and the
steps ηik (see section 5 in the supplementary material fore more details). The
variable Yk is updated just after the line 5 in Algorithm 1 via the equality:

Yk+1 = PΩ(Yk) + PΩc
(
I ×m
m∈IN

A
(m)
k+1

)
(24)

with k being to the iteration number. The difference between CPRandomshot-
comp and CPCCD is the update scheme: for the first one, only one variable
is updated per iteration. For the completion task, we consider two images, each
being a tensor X ∈ R500×500×3 (see figure 3) provided by [5]. The tensor at hand
is split into a training and a test sets: 25% of entries are used for the inference
of the latent factors and 75% are used for the test. For the evaluation criteria,
we consider besides of the running time, two standard measures for a tensor
completion problem that are the Relative Standard Error (RSE: the less the
better) [15] and the Tensor Completion Score (TCS: the less the better) [15].
Each evaluation criteria is averaged over 5 independent train−test splits.
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Fig. 3. Top: results for Waterfall. Center: results for Fire. From left to right: Relative
Standard Error, Tensor completion Score and Running time with respect to the rank R.
Bottom: images used and example of reconstruction for Waterfall by our approach

Our approach CPRandomshotcomp performs better than its competitor in
terms of both solution quality and running time (see Figure 3). This proves nu-
merically that the random selection of the variables along with the parallelization
of the partial gradients can be competitive with respect to cyclic (deterministic)
Block Coordinate Descent in terms in solution quality within less running time
(other numerical results are provided in the section 6.2 of the supplementary).

5.5 Additional experiments

In the section 7 of the supplementary, the robustness of our approach with respect
to the step is proven, i.e. we demonstrate that if we fix the step instead of solving
the problem (7), our approach still achieves competitive results. Besides, in the
section 4 of the supplementary, we demonstrate that the non-vanishing gradient
assumption (Assumption 4 in the section 4.2) is verified in practice.

6 Conclusion

In this paper, we propose a new algorithm for the nonnegative Tucker problem
for which we establish a convergence rate of O

(
1
k

)
with high probability and prove

that it achieves competitive results compared to some state-of-the-art nonnegative
Tucker approaches. Besides, we have proven numerically the robustness with
respect to the descent steps. Our future work entails the application of our
approach principle to other types of decomposition different from Tucker as well
the investigation of accelerated versions yielding better convergence rates for the
nonnegative Tucker problem.
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14. Richtárik, P., Takáuaź, M.: Iteration complexity of randomized block-coordinate
descent methods for minimizing a composite function. Math. Program. 144(1-2),
1–38 (2014)

15. Song, Q., Ge, H., Caverlee, J., Hu, X.: Tensor completion algorithms in big data
analytics. ACM Transactions on Knowledge Discovery from Data 13 (2017)

16. Tucker, L.R.: Implications of factor analysis of three-way matrices for measure-
ment of change. C.W. Harris (Ed.), Problems in Measuring Change, University of
Wisconsin Press pp. 122–137 (1963)

17. Xu, Y., Yin, W.: A block coordinate descent method for regularized multiconvex
optimization with applications to nonnegative tensor factorization and completion.
SIAM J. Imaging Sciences 6, 1758–1789 (2013)

18. Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based
on block coordinate update. J. Sci. Comput. 72, 700–734 (2017)

19. Zhou, G., Cichocki, A., Zhao, Q., Xie, S.: Efficient nonnegative tucker decomposi-
tions: Algorithms and uniqueness. IEEE Transactions on Image Processing 24(12),
4990–5003 (2015)


