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Drinking Water Distribution Networks (WDN) are critical infrastructures exposed to the risk of accidental and intentional contaminations. To ensure protection of drinking water, there is an important need to design automatic and secure Early Warning Systems (EWS). Online monitoring of water quality into a WDN is a challenging problem due to the complexity of hydraulic networks. Conventional detection methods deal with specific contaminants and usually assume a stationary state of the WDN meanwhile such problem is hardly addressed when operational conditions are changing. This paper introduces a generic methodology based on a temporal analysis in order to extract prior knowledge for warning detectors. Frequent types of operating period are extracted and for each period, upstream / downstream relationships into the WDN can be found. The procedure is fully data-driven and prevents to use heavy hydraulic-quality simulations during the monitoring stage. In fact, the method can be used as a preprocessing step by any detector in order to help dealing with multiple quality sensors and to avoid false alarms due to operating changes. The proposed approach is illustrated on a large real-world network in France and the experimental results are very promising.

I. INTRODUCTION

The development of online Contamination Warning Systems (CWS) has become increasingly popular over the last decade [START_REF] Storey | Advances in on-line drinking water quality monitoring and early warning systems[END_REF]. The interest for Early Warning Systems (EWS) [START_REF] Banna | Online drinking water quality monitoring: review on available and emerging technologies[END_REF], [START_REF] Dong | A survey of smart water quality monitoring system[END_REF] can be explained by the need to rapidly detect (and respond) to contamination, due to the potential impact on population health. It is worth noting that laboratory-based methods (manual sampling and chemical analysis) are expensive and delay operational response that is to say no real-time protection. Furthermore, modern water utilities are now deploying new technologies to collect and analyze massive data-streams based on sensor networks [START_REF] Hou | An early warning and control system for urban, drinking water quality protection: Chinas experience[END_REF], [START_REF] Rapousis | Qowater: A crowdsourcing approach for assessing the water quality[END_REF], [START_REF] Cheifetz | An incremental sensor placement optimization in a large real-world water system[END_REF], [START_REF] Seth | Testing contamination source identification methods for water distribution networks[END_REF].

There is a large panel of event detection methods using statistical, heuristics, machine learning, and optimization techniques. In addition to the various formulations of detectors, strategies usually differ in their underlying assumptions like contamination substances (real / simulated injections), decision from single or multi-measurements. As a detector, one can cite signal processing approaches like the LPCF method (Linear Prediction Coefficient Filter) [START_REF] Mckenna | Testing water quality change detection algorithms[END_REF] which is part of the CANARY tool [START_REF] Hart | Canary: a water quality event detection algorithm development tool[END_REF] (a development tool for monitoring water quality events), which analyzes each signal independently at each time t. It consists to determine the linear combination of the most recent observations which provides the best estimation of the observed signal at time t. The objective is to estimate the coefficients that minimize absolute value of residuals. The residual values are then compared to a fixed threshold in order to determine the presence or absence of contamination. Furthermore, the MV-NN (multivariate nearest-neighbor) [START_REF] Hart | Canary: a water quality event detection algorithm development tool[END_REF] is also implemented in the CANARY framework. This method deals with multiple variables corresponding to the synchronized signals of different sensors at time t. The Euclidean distance is then computed between the observation points at time t and the values predicted by MVNN. The contamination detection is performed by comparing Euclidean distance with a fixed threshold. The ROC curve is used to evaluate the resulting results.

Other approaches can integrate a hydraulic model e.g., [START_REF] Eliades | Contamination event detection in water distribution systems using a model-based approach[END_REF]. Using many Monte Carlo simulations implemented in parallel, the method estimates a concentration of chlorine threshold at each time t. If the concentration falls below the level estimated by the Monte-Carlo simulations at time t, an alarm is triggered. The method depends on uncertainties involved in the hydraulic model due to the water demand. The model is tested on a realistic network using EPANET. This approach is extended [START_REF] Eliades | Contamination event detection using multi-level thresholds[END_REF] by using a threshold interval instead of a fixed threshold value at each time t. This method is also tested on hydraulic reference models.

Recently, another detection method [START_REF] Liu | A multivariate based event detection method and performance comparison with two baseline methods[END_REF] was proposed to identify the existence of contamination taking into account correlations between various synchronized sensors measuring some water quality features (e.g., pH and ORP). The method consists of three steps, a first step of calculating the Pearson correlation between the sensors data measuring the water quality, then a threshold is define to determine whether the correlation between two different sensors is significant or not. The last step aims to highlight the correlations between all sensors, if the Euclidean distance of correlations exceeds a defined threshold, an alarm is triggered. The exhibited advantage of this study is that the proposed model can detect contamination caused by cadmium nitrate at a low concentration while reducing the number of FP and FN. But the method may fail if the measured data are not synchronized which usually happens due to the spatial deployment of sensors in a WDN.

The changes due the hydraulics into a WDN can cause a high number of false alarms [START_REF] Vugrin | Trajectory clustering approach for reducing water quality event false alarms[END_REF], thereby some studies include hydraulic-quality simulations to improve the detection ability. The method proposed by [START_REF] Oliker | Network hydraulics inclusion in water quality event detection using multiple sensor stations data[END_REF] describes a model for contamination detection by integrating a hydraulic modeling in their approach. This study has two phases; the first phase for outlier detection on measurements of water quality and a second step for event classification based on contamination simulations. The aim is to improve the contaminant detection by introducing the hydraulic model and thus realizes a spatial analysis to detect events with low-level signature. This approach has been tested on hydraulic reference models using EPANET. An extension of this work [START_REF] Oliker | Spatial event classification using simulated water quality data[END_REF] re-uses the idea of the previous spatiotemporal analysis by simulating contaminations and applies a multi-sensor strategy. Three organophosphate pesticides are studied as contaminants: Chlorpyrifos, Malathion and Parathion. This article proposes to segment the operating WDN in time before running any detection method. The resulting temporal segmentation can be useful to explain a certain temporal homogeneity of water quality. This paper is organized as follows. Section 2 describes the case study and the data used in this work. Section 3 exposes the proposed methodology including two successive steps such as signal segmentation and operational profile extraction. Section 4 presents the results about the operational periods. And finally, Section 5 concludes this paper and draws some prospects.

II. DESCRIPTION OF THE CASE STUDY

The Syndicat des Eaux d'Ile-de-France (SEDIF) is a large association including 150 municipalities which provides drinking water for more than 4 million inhabitants of suburban Paris. This is the largest drinking WDN in France with about 8,000 km of pipes and more than 750,000 m 3 of water produced each day. The waterworks are currently operated by Veolia Water. The water is produced in three large Drinking Water Treatment Plants (DWTP) located on the three main rivers of the Seine river basin (cf. Figure 1). Around 200 quality sensors have been deployed over the entire network based on an incremental and flexible methodology to minimize the average impact of contamination on the population [START_REF] Cheifetz | An incremental sensor placement optimization in a large real-world water system[END_REF]. This paper is focused on a major part of the SEDIF network which is supplied by the Neuilly-sur-Marne DWTP, located on the Marne river. This subnetwork can be represented by a single hydraulic model which is illustrated as the green area in Figure 1. This large hydraulic model includes multiple sectors with different elevations, contains 7 tanks, about 30,000 nodes and 40,000 pipes. As the SEDIF network is fully interconnected, the various operational conditions are strongly impacting the water propagation into the entire WDN. Indeed, any point into the network can be under the influence of multiple sources depending on its location and time. Then, the objective is to identify major operational periods based on 9 water flow measurements (in m 3 /h) collected in 2015 (with a time-step of 5 minutes). Such operational period is defined as the duration between two significant operating changes. The next section introduces a new methodology to extract automatically these periods. The next subsections describe the three successive steps illustrated by the present case study.

A. Data preprocessing

As always when dealing with real-world data, the first step consists in denoising each signal and replacing some missing values. First, a heuristic approach is used to remove the outliers by fixing environmental thresholds based on the expert knowledge of each water flowmeter. Then, a spline interpolation is used such as the interpolated value is estimated by a cubic interpolation of the neighboring values.

B. Signal segmentation

This step aims to extract temporal segments along each time-series of water flow. This well-known problem known as segmentation or piece-wise approximation comes with the identification of change-points surrounding each segment and the estimation of the segment values. In this present case, each segment is supposed constant and the number of segments is unknown making the problem harder. Meanwhile, each flow time-series is segmented independently which is easier than segmenting the 9 time-series at once. This segmentation task can be solved by several approaches and one can compare the three following algorithms.

1) Piece-wise regression: This regression method [START_REF] Brailovsky | Application of piece-wise regression to detecting internal structure of signal[END_REF] aims to detect internal structure of signal. It is a dynamic programming algorithm that can find the optimal segmentation according to a cost function. However, this approach is impracticable in practice due to a complexity of O(T 2 K) where T is the signal length and K the number of segments. The criterion of the predictive probabilistic estimate (PPE) [START_REF] Brailovsky | Application of piece-wise regression to detecting internal structure of signal[END_REF] is used to select the value of K. The algorithm takes as input each flow signal y = (y 1 , ..., y T ) and number K. In this study, a linear constant regression is applied on each segment and the sum of squared residuals, noted ERR 1 , is computed between the original signal and a regression coefficient such as

ERR 1 (i, j) = j l=i (y l -β) 2 (1) 
where β is the estimator of constant regression on y i , ..., y j and 0 ≤ i, j ≤ T .

2) Top-down algorithm: This iterative algorithm consists to select an optimal point for dividing the time series in two segments at each step [START_REF] Keogh | An online algorithm for segmenting time series[END_REF]. Unlike the piece-wise algorithm which requires the number of segment K, this approach use an error threshold to find the optimal segmentation. If the error ERR 2 between the original signal and the signal mean at some interval is above a fixed threshold, the algorithm continues by dividing the signal which explains why K is not required. This algorithm stops when all segments have their approximation errors ERR 2 lower than the threshold.

ERR 2 (i, j) = j l=i (y l -ŷi:j ) 2 (2) 
where ŷi:j is the average of the signal between i and j. Time complexity of this algorithm is similar to the previous algorithm in worst case. In practice, the time resolution depends on the fixed error threshold and obviously, increasing this value reduces the execution time.

3) TVD-MM algorithm: This algorithm [START_REF] Figueiredo | On total variation denoising: A new majorization-minimization algorithm and an experimental comparisonwith wavalet denoising[END_REF] performs a smoothing and a segmentation of signal, based on total variation of signal (equation 3), by minimizing the objective function given by the equation 4.

T -1 t=1 |y t -y t-1 | (3) 
T -1

t=1 |y t -x t | 2 + λ T -1 t=1 |x t -x t-1 | (4) 
where λ > 0 is the regularization parameter, (y t ) t≤T represents the original signal and (x t ) t≤T the smoothness signal. The higher λ, the more the smoothness of the signal is. This method, illustrated in Figure 3, does not require the number /h) A p r 1 5 , 0 0 h A p r 1 5 , 1 2 h A p r 1 6 , 0 0 h A p r 1 6 , 1 2 h A p r 1 7 , 0 0 h A p r 1 7 , 1 2 h A p r 1 8 , 0 0 h A p r 1 8 , 1 2 h A p r 1 9 , 0 0 h A p r 1 9 , 1 2 h A p r 2 0 , 0 0 h A p r 2 0 , 1 2 h A p r 2 1 , 0 0 h A p r 2 1 , 1 2 h A p r 2 2 , 0 0 h A p r 2 2 , 1 2 h A p r 2 3 , 0 0 h A p r 2 3 , 1 2 h A p r 2 4 , 0 0 h A p r 2 4 , 1 2 h A p r 2 5 , 0 0 h Fig. 2. Segmentation of a single water flow using the TVD-MM algorithm.

The raw water flow is in black and the estimated segments are in red.

K. The algorithm returns the index at the beginning and end of each segment and their centroid value is computed as a mean.

The following Table compares qualitatively the three implemented methods of segmentation. The selected algorithm is TVD-MM because it combines the three desirable characteristics: low execution time, sufficient precision and the segment number is not required.

C. Extraction of the operating profiles

1) Construction of a segmental matrix: From segmented water flows, the construction of a matrix with the overall segments is realized as follows: each column indicates a single water flow and each row represents a temporal interval (period). It is worth noting that the duration of each period can be variable and period transitions correspond to the fusion of change-points from all water flows. In practice, the matrix M (i, j) contains a scalar value of the flow j at period i. The Figure 3 illustrates this matrix where each row is represented as the values of colored lines between consecutive black lines. 2) Clustering the segments: With the fusion of all the overall change-points, the multivariate time-series can be seen as over-segmented. Then, a second segmentation is performed by classifying the segment values of water flow based on the matrix defined previously. The classical K-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF] is adopted for clustering the multidimensional segments x = (x 1 , ..., x n ) where x i is the segment vector at the ith period. In practice, the algorithm is randomly launched 40 times and we keep the clustering with the lowest intra-cluster inertia. The number K of clusters is selected by maximizing the Silhouette average [START_REF] Rousseeuw | Silhouettes: a graphical aid to the interpretation and validation of cluster analysis[END_REF]:
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K * = arg max K n i=1 S i (K) (5) 
where K * is the selected number of clusters, and S i can be seen as the degree of homogeneity between the vector x i and his belonging cluster. In the present study, the highest average is obtained with K = 12.

3) Extraction of frequent profiles: After classifying the multivariate segments, a new segmentation is obtained according with time. This segmentation is represented as a sequence of character labels where each letter corresponds to a cluster. The goal is to extract all frequent patterns (or periods) of the sequence revealing the global operational periods. Such approach is illustrated by the following example: considering a sequence abacdedeabaececdabacd, the most frequent patterns are aba and cd, respectively 3-grams and 2-grams.

Several approaches of sequential pattern mining can be used to solve this problem. An empirical algorithm based on various distances is introduced to extract the most frequent patterns in the sequence of character labels. The next part describes this approach illustrated to extract the operational periods :

1) Using the classical n-gram method [START_REF] Brown | Class-based n-gram models of natural language[END_REF], the frequencies of all n-grams are computed with an exhaustive search. Based on hydraulic knowledge, the duration of period patterns would be preferred between 1 day and 3 days. The selected n-grams are chosen with n from 6 to 12 and the Figure 4 shows the n-gram durations for the selected values of n. A total of 36,432 patterns are obtained and only 1,093 patterns are used after removing the ones with an occurrence lower than 4. 2) The Hamming distance [START_REF] Volkovich | The method of n-grams in large-scale clustering of dna texts[END_REF] is used to compute the distance between two patterns (x, y) with the same number of letters (same n) such as D(x, y) = n i=1 |x i -y i |. For each n value, pairs of similar patterns are identified by thresholding the distance. Then, the least frequent pattern is removed from each pair. Obviously, the number of patterns decreases as the distance threshold increases. Nevertheless, this number of patterns is decreasing down to a specific distance threshold as illustrated by the Figure 5. That way, each n-gram has a specific threshold value and patterns with the highest distances are then removed. Then, 111 patterns are selected. 3) The Jaro-Winkler distance [START_REF] Cohen | A comparison of string metrics for matching names and records[END_REF] is used to compute the distance between two patterns (x, y) with different lengths (different n) such as D(x, y) = 0 if m = 0, otherwise D(x, y)

= 1 3 ( m |x| + m |y| + m-p m )
, where m is the number of similar characters and p is half the number of transpositions (different or missing characters). The number of patterns is significantly decreasing down to a distance threshold of 0.24 as illustrated by the Figure 6. Then, the 6 remaining patterns are selected as the most frequent patterns and operational periods have been identified. 

IV. EXPERIMENTAL RESULTS

The proposed methodology led to the identification of 6 frequent patterns of water flows in 2015. These patterns are seen as 6 types of significant operational periods. The Figures 7 and8 illustrate five patterns for type 1 and 2 respectively. The operational profiles of type 1 occur 33 times in 2015. The patterns of type 1 are 6-grams (cf. sub-section 3.C) ing that the operational profiles are time-series composed of 6 contiguous segments. The Figure 7 shows that all these profiles share a similar duration of about 16 hours. By comparing each water flows of the 4 profiles of type 1, the Figure 7 shows that these profiles are mainly characterized by flows 4,5,8 and 9 with values of about 1000 m 3 /h, 3200 m 3 /h, 2500 m 3 /h and 700 m 3 /h when the period starts. Two steps of 200 m 3 /h are observed for the flow 1, at the beginning and at the end of the periods. Flow 6 is almost constant approximating 1800 m 3 /h, after that two successive decreases at the end of the profile. Flow 3 is constant of about 400 m 3 /h. Flows 2 and 7 do not seem to be discriminants. Furthermore, the operational profiles of type 2 refer to 6grams and these are illustrated in Figure 8. Their duration is near one day (from 24 to 25 hours). The values of flow 5 and 8 are generally of about 2700 m 3 /h and 1000 m 3 /h respectively at beginning and then decrease at 12h and 18h respectively. Two steps of 200 m 3 /h are observed for the flow 1, at the beginning, middle and at the end of the periods. Flow 3 characterized by a peak at the end of periods between 18 h and 25h. Flow 4 appears near zeros, and then increases at 15h. Flow 6 is established early in the period with flow value equals to 1800 m 3 /h and performs two to three separate decreases then it goes back to 1800 m 3 /h. Finally Flow 7 is about 1000 m 3 /h throughout the period. It can be seen that flows 2 and 9 are not used to discriminate the type 2 of operational periods. V. CONCLUSION This paper presents a practical methodology designed as a preprocessing step for early warning systems. This approach aims automatically to extract operational profiles revealing distinct states of a hydraulic behavior into a WDN. The proposed methodology is composed by two successive phases: the segmentation of multiple water flows and the extraction of the frequent operational periods. Various statistical and data analysis techniques have been used to address clustering and segmentation problems. To extract operating periods, a pattern matching algorithm based on various distances is used and a comprehensive procedure is given to estimate the resulting thresholds. Six types of operational periods have been identified and their operational profiles differ in their durations and water flow patterns. These profiles provide consolidate knowledge about the hydraulic behavior of the drinking WDN according with time.

As a future work, extensive simulations of contamination will be performed using a specific hydraulic model for each type of operational period. Some useful knowledge can be deduced such as spatial relations like downstream/upstream between sensors.
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 1 Fig. 1. The SEDIF perimeter around Paris and the main drinking water treatment plants (in red). The hydraulic network studied in this paper is highlighted by the fifty-one municipalities colored in green.
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 3 Fig. 3. Segmentation of four water flows using the TVD-MM algorithm. The vertical black lines are marking the global change-points between the multidimensional segments of water flows.
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 4 Fig. 4. Distribution of the duration in days per n-gram. The durations of each n-gram is represented with min, max, median, first and third quantile.
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 5 Fig. 5. Number of patterns according to Hamming distance thresholds. For n-grams with n=10 and n=11, only 3 patterns and 2 patterns are retained respectively using the threshold marked as a red circle.
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 6 Fig.[START_REF] Cheifetz | An incremental sensor placement optimization in a large real-world water system[END_REF]. Number of patterns according to Jaro-Winkler distance thresholds. Among all the n-grams, 6 patterns are retained using the threshold marked as a red circle.
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 7 Fig. 7. Five operational profiles occurring in operational periods of type 1.
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 8 Fig. 8. Five operational profiles occurring in operational periods of type 2.
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 9 Figure 9 illustrates the six operational period types. Each type differs in their durations and distinct flow segments. Type 6 has the longer profiles and the most frequent with 118 occurrences.
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 9 Fig. 9. The 6 types of operational periods are each represented by a single profile of 9 water flows.

TABLE I

 I 

	.	A QUALITATIVE COMPARISON BETWEEN THE THREE
		SEGMENTATION METHODS.
	Algorithm	Execution time	Precision	K required
	Piecewise regression	--	++	Yes
	Top-down	-	+	No
	TVD-MM	++	+	No
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