
Singleshot : a scalable Tucker tensor decomposition

1 Properties on Tensors, Subtensors and Derivatives of the decomposition

1.1 Notations and definitions

Besides of the notations introduced in the main paper, we consider the following additional notations:

• For two tensors X ,Y ∈ RI1×...×IN , we denote by 〈, 〉 the element-wise inner product
defined by 〈X ,Y〉 =

∑
i1,··· ,iN X i1,··· ,iNYi1,..,iN . This inner product is associated with

the Frobenius norm defined by ‖X‖2F =
∑
i1,··· ,iN X 2

i1,··· ,iN .

• The Kronecker product of two matrices A ∈ RK×L,B ∈ RM×N , denoted by A ⊗B ∈
RKM×LN is defined by [6]:

A⊗B =


A1,1B.....A1,LB
A2,1B.....A2,LB

.......

.......
AK,1B.....AK,LB


• For N matrices

{
A(n)

}N
1

, we denote the Kronecker product A(1) ⊗ · · ·A(n−1) ⊗
A(n+1) · · ·⊗A(N) by ⊗

m∈IN 6=n
A(m),⊗ representing the Kronecker product of two matrices.

• The cardinality of a set θ is denoted by #θ.

• Let A(n) ∈ RIn×Jn a matrix and θ a subset of {1, 2, ..., In} (set of consecutive integers
from 1 to In with 1 and In included). We denote by A

(n)
θ,: the matrix derived from A(n) by

stacking row-wise the rows
{
A

(n)
j,: , j ∈ θ

}
.

• For X ∈ RI1×...×IN , we denote by X 1
θ1 ∈ R#θ1×I2....×IN a subtensor defined with

respect to the first mode by fixing its first indexes to the values given by θ1, X 1,2
θ1,θ2

∈
R#θ1×#θ2×I3....×IN a subtensor defined with respect to the first and second modes by
fixing its first and second indexes to the values given by θ1 and θ2 and so on. For example,
let’s consider a four-order tensor X ∈ R10×15×20×30: X 1

θ1 , θ1 = {1, 6, 8, 9} is the tensor
derived from X by stacking with respect to the first mode the tensors

{
X 1
e,:,:,:, e ∈ θ1

}
,

X 1,2
θ1,θ2

, θ2 = {1, 2, 4, 5} is the tensor such that
(
X 1,2
θ1,θ2

)
i,j,k,l

= X i,j,k,l with (i, j) ∈
θ1 × θ2 and × being the Cartesian product of two sets.
• We denote Tr (A) the trace of a square matrix A.
• Let’s consider N real numbers a1, .., aN . The products a1....aN (product of the N numbers)

and a1..an−1an+1..aN (product of all of the numbers except an) are denoted by:

a1....aN =
∏
m∈IN

am

a1..an−1an+1..aN =
∏

m∈IN 6=n

am
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• The absolute value is denoted by | · · · |

1.2 Properties on subtensors

The purpose of this section is to introduce some properties useful for the convergence results of
Singlesghot and Singleshot-inexact. The first property expresses the mode-n subtensor of a tensor X
depending on the latent factors which yield its Tucker decomposition. The reasoning uses simple
algebraic arguments.

Property 1 (Subtensor-Tucker decomposition). Let X ∈ RI1×...×IN ,G ∈ RJ1×...×JN be two
tensors and

{
A(m) ∈ RIm×Jm , 1 ≤ m ≤ N

}
N matrices such that:

X = G ×m
m∈IN

A(m)

The nth subtensor of X with respect to the mode n, denoted by Xn
in ∈ RI1×...×In−1×1×In+1..×IN , is

equal to:
Xn
in = G ×p

p∈In−1

A(p) ×n A
(n)
in,:

×q
q∈In+1

N

A(q)

Besides, if θ ⊂ {1, 2, ....In} (set of consecutive integers from 1 to In with 1 and In included), we
have:

Xn
θ = G ×p

p∈In−1

A(p) ×n A
(n)
θ,: ×q

q∈In+1
N

A(q) ∈ RI1..×In−1×#θ×In+1..×IN ,# : cardinality

Proof. The mode-n unfolding operator [·](n) turns a tensor in RI1×···×IN into a matrix in
RIn×

∏
k 6=n Ik according to a given ordering. Let’s denote TZn its inverse operator that turns a

matrix in RIn×
∏
k 6=n Ik into a tensor in RI1×···×IN according to the same ordering.

By definition of Xn
in , we have:

Xn
in = TZn

(
X

(n)
in,:

)
(1)

with X
(n)
in,:

being the ithn row of the matrix X(n), the mode-n matricized form of the tensor X .
By definition of the matricization of the Tucker decomposition, we have [7]:
X(n) = A(n)G(n)

(
⊗m∈IN 6=nA(m)

)>
⇒ X

(n)
in,:

= A
(n)
in,:

G(n)
(
⊗m∈IN 6=nA(m)

)>
(because the rows of AB are defined by Ai,:B)

⇒ X
(n)
in,:

=

G ×p
p∈In−1

A(p) ×n A
(n)
in,:

×q
q∈In+1

N

A(q)

(n)

(matricization of the Tucker decomposition

[7])
The incorporation of the equality given by the last implication in the equation (1) yields:

Xn
in = TZn


G ×p

p∈In−1

A(p) ×n A
(n)
in,:

×q
q∈In+1

N

A(q)

(n)


Given that TZn is the inverse operator of [·](n) by definition, the last equality yields:

Xn
in = G ×p

p∈In−1

A(p) ×n A
(n)
in,:

×q
q∈In+1

N

A(q) (2)

With the same reasoning, the second assertion is straightforward.

The next property expresses the objective function with respect to the subtensors drawn from X and
uses Property 1.
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Property 2 (Slice-wise expression of the Euclidean discrepancy). Let X ∈ RI1×..×IN ,G ∈
RJ1×..×JN two tensors,

{
A(m) ∈ RIm×Jm , 1 ≤ m ≤ N

}
N matrices. The following equality holds:

‖X − G ×m
m∈IN

A(m)‖2F =

In∑
in=1

‖Xn
in − G ×p

p∈In−1

A(p) ×n A
(n)
in,:

×q
q∈In+1

N

A(q)‖2F .

Besides, if {θm}1≤m≤M is a partition of {1, 2, ..., In}, we have:

‖X − G ×m
m∈IN

A(m)‖2F =

M∑
m=1

‖Xn
θm − G ×p

p∈In−1

A(p) ×n A
(n)
θm,:

×q
q∈In+1

N

A(q)‖2F

with Xn
θm ∈ RI1..In−1×#θm×In+1×...×IN and A

(n)
θm,:
∈ R#θm×Jn .

Proof. By definition of the square of the Frobenius norm, we have:
‖X − G ×m

m∈IN
A(m)‖2F =

∑In
in=1 ‖X

n
in − X̂

n

in‖
2
F with X̂

n

in being the ithn subtensor of the tensor

X̂ = G ×m
m∈IN

A(m) with respect to the mode n.

By Property 1, we have X̂
n

in = G ×p
p∈In−1

A(p) ×nA(n)
in,:

×q
q∈In+1

N

A(q), which concludes the proof for

the first assertion.
The second assertion is straightforward with the second assertion of Property 1.

The next property simply states that the objective function can be expressed in terms of subtensors
drawn with respect to every mode, a practical consequence being that we can choose them as small
as we want.

Property 3 (Expression of the Euclidean discrepancy with respect to subtensors drawn with respect
to every mode). Let’s consider X ∈ RI1×...×IN a tensor and a partition

{
θ

(n)
mn , 1 ≤ mn ≤Mn

}
a

partition of {1, ..In}. Thus, we have:
f(G,

{
A(m)

}N
1

) = ‖X −G ×m
m∈IN

A(m)‖2F =
∑M1

m1=1 ..
∑Mq

mq=1 ..
∑MN

mN=1 ‖X θ
(1)
m1
,..,θ

(N)
mN

−G ×p
p∈IN

A
(p)

θ
(p)
mp ,:
‖2F with the subtensor X

θ
(1)
m1
,..,θ

(N)
mN

∈ R#θ(1)
m1
×···×#θ(N)

mN being the subtensor derived from X

whose entries are X i1,··· ,iN , (i1, · · · , iN ) ∈ θ(1)
m1 × · · · × θ

(N)
mN , A(p)

θ
(p)
mp ,:
∈ R#θ(p)

mp
×Jp

Proof. By Property 1, we have:
f
(
G,
{
A(m)

}N
1

)
=
∑M1

m1=1 ‖X
1

θ
(1)
m1

− G ×1 A
(1)

θ
(1)
m1
,:
×m
m∈I2N

A(m)‖2F .

By applying Property 1 with respect to the second mode to ‖X 1

θ
(1)
m1

− G ×1 A
(1)

θ
(1)
m1
,:
×m
m∈I2

N

A(m)‖2F ,

we have:
f
(
G,
{
A(m)

}N
1

)
=
∑M1

m1=1

∑M2

m2=1 ‖X
1,2

θ
(1)
m1
,θ

(2)
m2

− G ×1 A
(1)

θ
(1)
m1
,:
×2 A

(2)

θ
(2)
m2
,:
×m
m∈I3

N

A(m)‖2F .

With the same recursive reasoning, we have:
f
(
G,
{
A(m)

}N
1

)
=
∑M1

m1=1

∑M2

m2=1 ...
∑MN

mN=1 ‖X θ
(1)
m1
,...θ

(N)
mN

− G ×q∈IN A
(q)

θ
(q)
mq ,:
‖2F

1.3 Derivatives computation

This equality is going to be used to establish the expression of the derivative of our objective function
with respect to the core and uses simple algebraic arguments.
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Property 4 (Equality on the element-wise inner product with a mode-n product). Let’s consider 2
tensors X ∈ RI1×···×IN ,G ∈ RJ1×···×JN and N matrices

{
A(m)

}
1≤m≤N . The following equality

holds
〈X ,G ×m

m∈IN
A(m)〉 = 〈X ×m

m∈IN
A(m)>,G〉

Proof. The tensorial element-wise inner product is by definition equivalent to the matricial element
wise inner-product applied on any mode-n matricization of the two tensors. Thus, we have:
〈X ,G ×m

m∈IN
A(m)〉 = 〈X(n),A(n)G(n)

(
⊗m∈IN 6=nA(m)

)>〉
⇒ 〈X ,G ×m

m∈IN
A(m)〉 = Tr

(
X(n)>A(n)G(n)

(
⊗m∈IN 6=nA(m)

)>)
(by definition the inner product

for the matrices)
⇒ 〈X ,G ×m

m∈IN
A(m)〉 = Tr

((
⊗m∈IN 6=nA(m)

)
G(n)>A(n)>X(n)

)
(because Tr(A) = Tr(AT ))

⇒ 〈X ,G ×m
m∈IN

A(m)〉 = Tr
(
G(n)>A(n)>X(n)

(
⊗m∈IN 6=nA(m)

))
(because Tr(AB) = Tr(BA))

⇒ 〈X ,G ×m
m∈IN

A(m)〉 = Tr
(
G(n)> [X ×m∈IN A(m)>](n)

)
(by definition of the matricization of

the Tucker decomposition [7])
⇒ 〈X ,G ×m

m∈IN
A(m)〉 = 〈G(n),

[
X ×m∈IN A(m)>](n)〉 (by definition of the inner product for

matrices)
⇒ 〈X ,G ×m

m∈IN
A(m)〉 = 〈X ×m

m∈IN
A(m)>,G〉

As the previous one, this equality is going to be used to establish the expression of the derivative of
our objective function with respect to the core and uses simple algebraic arguments. Mainly it uses
the independance of two mode-n products when the modes are different and the matricial product of
factors with successive mode-n products on the same mode.

Property 5 (Successive mode-n products). Let’s consider a tensor G ∈ RJ1×...×JN and N matrices{
A(m) ∈ RIm×Jm , 1 ≤ m ≤ N

}
. The following equality holds(

G ×m
m∈IN

A(m)

)
×m
m∈IN

A(m)> = G ×m
m∈IN

A(m)>A(m)

Proof. Among the known facts on mode-n products [6], one is the independance regarding to the
mode, for m 6= n, X ×nA×mB = X ×mB×nA, the other concerns successive mode-n products
X ×n A×n B = X ×n (BA) (provided the product AB makes sense).(

G ×m
m∈IN

A(m)

)
×m
m∈IN

A(m)> = G ×m
m∈IN

A(m) ×m
m∈IN

A(m)> = G ×m
m∈IN

A(m)>A(m)

The next property yields the expression of the derivative of the objective function with respect to
the core as well as the Lipschitz character of the derivative under boundedness assumption and uses
simple algebraic arguments

4



Property 6 (Derivative/Lipschitz character of the derivative ). The derivative of the function ξ(G) =
‖X − G ×m

m∈IN
A(m)‖2F is given by

∂Gξ(G) = −2

(
X − G ×m

m∈IN
A(m)

)
×m
m∈IN

A(m)>.

Let’s assume that G ∈ Dg and A(m) ∈ Dm, 1 ≤ m ≤ N with Dg ={
G ∈ RJ1×...×JN |‖G‖F ≤ α

}
,Dm =

{
A(m) ∈ RIm×Jm |‖A(m)‖F ≤ α

}
. Then, the derivative

is Lipschitz with the bound 2
∏
m∈IN ‖A

(m)‖2F

Proof. Derivative and Lipschitz character.
1. Derivative expression justification
ξ(G + H) = ‖X − (G + H) ×m

m∈IN
A(m)‖2F = ‖X − G ×m

m∈IN
A(m) −H ×m

m∈IN
A(m)‖2F

⇒ ξ(G + H) = ‖R−H ×m
m∈IN

A(m)‖2F with R = X − G ×m
m∈IN

A(m) the residual tensor.

By definition of the square of the Frobenius norm, we have:
ξ(G + H) = ξ(G)− 2〈R,H ×m

m∈IN
A(m)〉+O(‖H‖2F )

⇒ ξ(G + H) = ξ(G)− 2〈R ×m
m∈IN

A(m)>,H〉+O(‖H‖2F ) (by Property 4).

The derivative is then ∂Gξ(G) = −2

(
X − G ×m

m∈IN
A(m)

)
×m
m∈IN

A(m)>

2. Justification of the Lipschitzian character
The derivative can be rewritten according to Property 5 as:
∂Gξ(G) = −2X ×m

m∈IN
A(m)> + 2G ×m

m∈IN
A(m)>A(m),

The norm of the difference of the derivarives is ‖∂Gξ(G1) − ∂Gξ(G2)‖F = 2‖(G1 − G2) ×m
m∈IN

A(m)>A(m)‖F and is bounded by:

‖∂Gξ(G1)− ∂Gξ(G2)‖F ≤ 2‖G1 − G2‖F
∏
m∈IN

‖A(m)>A(m)‖F

≤ 2‖G1 − G2‖F
∏
m∈IN

‖A(m)‖2F

At this point, we simply derive the expression of the derivative of the objective function with respect
to the subtensors

Property 7 (Slice-wise derivative with respect to the core). Let’s consider the function f defined by:
f(G) =

∑In
in=1 ‖X

n
in − G ×m

m∈In−1

A(m) ×n A
(n)
in,:

×q
q∈In+1

N

A(q)‖2F . The derivative of f is given by:

∂Gf(G) = −2

In∑
in=1

(
Xn
in − G ×m

m∈IN 6=n
A(m) ×n A

(n)
in,:

)
×m

m∈IN 6=n
A(m)> ×n

(
A

(n)
in,:

)>

Proof. This a direct consequence of Property 6.

The purpose of the following property is to establish the expression of the derivative of the objective
function with respect to a loading matrix as well as the Lipschitz character of the derivative under the
boundedness assumption
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Property 8 (Derivative with respect loading matrix/ Lipschitz character). Let’s denote g(A(n)) =
‖X − G ×1 A

(1) ×2 · · · ×N A(N)‖2F . The derivative of g(·) is given by:

∂g(A(n)) = −2
(
X(n) −A(n)B(n)

)
B(n)>

with X(n),G(n),B(n) being the mode-n matricized forms of the tensors X ,G, and B defined as

B = G ×p
p∈In−1

A(p) ×n Id ×q
q∈In+1

N

A(q),

with Id ∈ RJn×Jn the identity matrix.
Let’s assume that G ∈ Dg and A(m) ∈ Dm, 1 ≤ m ≤ N with Dg ={
G ∈ RJ1×..×JN |‖G‖F ≤ α

}
,Dm =

{
A(m) ∈ RIm×Jm |‖A(m)‖F ≤ α

}
. The derivative ∂g is

Lipschitz with the bound 2‖G‖2F
∏
m∈IN 6=n ‖A

(m)‖2F

Proof. :Derivative and Lipschitz character.
1. Derivative expression
By introducing the tensors R = X −G ×m

m∈IN
A(m) and B = G ×p

p∈In−1

A(p)×n Id ×q
q∈In+1

N

A(q), Id ∈

RJn×Jn and by denoting R(n) and B(n) their mode-n matricized forms, we have:

g(A(n) + H) = ‖X − G ×m
m∈IN

A(m) − G ×m
m∈IN 6=n

A(m) ×n H‖2F = ‖R−B ×n H‖2F

⇒ g(A(n) + H) = ‖R‖2F − 2
〈
R(n),HB(n)

〉
+ ‖HB(n)‖2F

⇒ g(A(n) + H) = g(A(n))− 2
〈
R(n)B(n)>,H

〉
+O

(
‖H‖2F

)
As a consequence and given that G ×m

m∈IN
A(m) = B ×n A(n), the derivative is:

∂g(A(n)) = −2R(n)B(n)> = −2
(
X(n) −A(n)B(n)

)
B(n)>

2. Lipschitz character of the derivative
‖∂g(A

(n)
1 )− ∂g(A

(n)
2 )‖F = 2‖

(
A

(n)
1 −A

(n)
2

)
B(n)B(n)T ‖F ≤ 2‖A(n)

1 −A
(n)
2 ‖F ‖B(n)‖2F

‖B(n)‖F = ‖G(n) ⊗
m∈IN 6=n

A(m)‖F ≤ ‖G‖F ‖ ⊗
m∈IN 6=m

A(m)‖F = ‖G‖F
∏

m∈IN 6=m
‖A(m)‖F (see for

example [8], page 433). Thus, we have:
‖∂g(A

(n)
1 )− ∂g(A

(n)
2 )‖F ≤ 2‖A(n)

1 −A
(n)
2 ‖F ‖G‖2F

∏
m∈IN 6=m ‖A

(m)‖2F

We simply derive the expression of the derivative of the objective function with respect to a loading
matrix in terms of the subtensors

Property 9 (Slice-wise derivative with respect to a loading matrix). Let’s denote f(A(p)) =∑In
in=1 ‖X

n
in − G ×p

p∈In−1

A(p) ×n A
(n)
in,:

×q
q∈In+1

N

A(q)‖2F with p < n (p > n follows the same

principle). The derivative of f is given by

∂f(A(p)) = −2

In∑
in=1

((
Xn
in

)(p) −A(p)
(
B

(p)
in

))(
B

(p)
in

)>
with

(
Xn
in

)(p)
and B

(p)
in

being the mode-p matricized forms of the subtensors Xn
in and Bin , with Bin

defined by
Bin = G ×m

m∈Ip−1

A(m) ×p Id ×q
q∈Ip+1

n−1

A(q) ×n A
(n)
in,:

×r
r∈In+1

N

A(r).
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Proof. This is a direct application of Property 8.

The following inequality is useful for the proof of Singleshot-inexact

Property 10. For λ > 0 and k > k0 = 1 + 1
log(1+λ) log

(
1

log(1+λ)

)
, 1
(1+λ)k−1 ≤ 1

k−k0
with log

being the logarithmic function, i.e. the inverse of the exponential function which we denote by e.

Proof. let’s consider the univariate function `(x) = x− e(x−1) log(1+λ) − k0 defined on the domain
x > k0, e being the exponential function (inverse of the logarithmic function).
The derivative is given by `

′
(x) = 1− (log(1 + λ))e(x−1)×ln(1+λ).

Given that x > k0, we have by definition of k0:
x > 1 + 1

log(1+λ) log( 1
log(1+λ) )

⇒ x− 1 > 1
log(1+λ) log( 1

log(1+λ) )

⇒ (x− 1) log(1 + λ) ≥ log
(

1
log(1+λ)

)
(because log(1 + λ) > 0 since λ > 0 by definition)

⇒ e(x−1) log(1+λ) ≥ elog( 1
log(1+λ) ) (because the exponential e is an increasing function)

⇒ e(x−1) log(1+λ) ≥ 1
log(1+λ) (because e is the inverse of the logarithmic function)

⇒ e(x−1) log(1+λ) log(1 + λ) ≥ 1(because log(1 + λ) > 0 since λ > 0 by definition)
⇒ 0 ≥ 1− (log(1 + λ)) e(x−1) log(1+λ)

⇒ `
′
(x) ≤ 0: this implies that ` is a decreasing function on the domain x > k0.

Thus, for an integer k > k0, we have:
`(k) = k − e(k−1) log(1+λ) − k0 ≤ `(k0) = −e(k0−1) log(1+λ) < 0
⇒ 0 < k − k0 < e(k−1) log(1+λ) = (1 + λ)k−1: this concludes the proof.

2 Theoretical analysis

2.1 Definitions and supplementary notations

f
(
G,A(1), · · · ,A(N)

)
=

1

2
‖X − G ×m∈IN A(m)‖2F

=
1

2

In∑
in=1

‖Xn
in − G ×p

p∈In−1

A(p) ×n A
(n)
in,:

×q
q∈In+1

N

A(q)‖2F

We consider, for writing simplicity, the alternative notations of f
(
G,A(1), · · · ,A(N)

)
given by

f
(
G,
{
A(m)

}N
1

)
, f
(
G,
{
A(p)

}n
1
,
{
A(q)

}N
n+1

)
, f
(
G,
{
A(p)

}n−1

1
,A(n),

{
A(q)

}N
n+1

)
and the

same notations hold for any function of the N + 1 variables
{
G,A(1), · · · ,A(N)

}
.

Besides, we consider the following notations:

• the minimum value of f by fmin = f
(
Gm,A(1)

m , ..,A
(N)
m

)
, with(

Gm,A(1)
m , · · · ,A(N)

m

)
← arg min

Dg×D1×....×DN
f
(
G,A(1), · · · ,A(N)

)
.

Such value exists since a finite product of compact sets is a compact set and f is continuous
since it is polynomial.

• the function f considered as a function of only the variable G by f(.,
{
A(m)

}N
1

). The same
notations hold for all the variables as well as the derivatives.

• the block-wise derivative of f with respect to G (respectively with respect to A(p)) evaluated

at
(
G̃, Ã(1), · · · , Ã(N)

)
by ∂Gf

(
G̃,
{
Ã(m)

}N
1

)
(respectively ∂A(p)f

(
G̃,
{
Ã(m)

}N
1

)
).

7



• The block-wise derivative of f is denoted by ∂xf (x representing the right variable). The
gradient of f , denoted by∇f = (∂Gf, ∂A(1)f, ..., ∂A(N)f). is an element of RJ1×···×JN ×
RI1×J1 × · · · ×RIN×JN endowed with the norm ‖ · ‖∗ defined as the sum of the Frobenius
norms, i.e.:

‖∇f(G̃,
{
Ã(m)

}N
1

)‖∗ = ‖∂Gf
(
G̃,
{
Ã(m)

})
‖F +

∑N
p=1 ‖∂A(p)f

(
G̃,
{
Ã(m)

})
‖F

We define the following suprema, which are well defined since f and its derivatives are continuous
(because polynomial) and a finite product of compact sets is a compact set :

• Γ = supDg×D1×···×DN f
(
G,A(1), · · · ,A(N)

)
• Γg = supDg×D1×..×DN ‖∂Gf

(
G,A(1), ...,A(N)

)
‖F

• Γm = supDg×D1×...×DN ‖∂A(m)f
(
G,A(1), ...,A(N)

)
‖F

Lastly, the maximum number of iterations will be denoted by K

2.1.1 Definitions for Singleshot-inexact

We consider the following definition for ηNk (descent step for A(N) at the iteration k + 1)

ηNk = arg min
η∈[ 1

4Kγ ,
1
Kγ ]

σ (η)

(
λf

(
Gk+1,

{
A

(m)
k+1

}N−1

1
, Ã(N)(η)

)
− f

(
Gk,

{
A

(m)
k

}N
1

)
+ f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

))
(3)

with:

σ (η) = η − 1

4Kγ

`j(A
(N)) =

1

2
‖Xn

j − Gk+1 ×m
m∈In−1

A
(m)
k+1 ×n (A

(n)
k+1)j,: ×q

q∈In+1
N−1

A
(q)
k+1 ×N A(N)‖2F

Ã(N)(η) = A
(N)
k − η × 1

Bk

∑
j∈SET k

∂A(N)`j

where ∂A(N)`j represents the derivative of `j evaluated at A(N)
k , and λ > 0, γ > 1 being user-defined

parameters.
This problem is well defined for two main reasons. The first one is that all the factors{
Gk,

{
A

(m)
k

}
1≤m≤N

,Gk+1,
{
A

(m)
k+1

}
1≤m≤N−1

}
are known at the update stage of A(N) at the

(k + 1)th iteration (i.e. the computation stage of A(N)
k+1) because the variables updates are performed

in the order ’update of G’, ’update of A(1)’,. . . , ’update of A(N−1)’, ’update of A(N)’ and we
consider the minimization problem of a continuous function on a compact set.
The second is that as a consequence of the Assumption 3.2 presented below, there exists SET k
such that

∑
j∈SET k ∂A(N)`j 6= 0 (see Property 11) and the set considered is one of such sets

(i.e. for which the inexact gradient is different from the null matrix). In the sequel, the matrix∑
j∈SET k ∂A(N)`j will be referred to as the inexact gradient.

2.1.2 Definitions for Singleshot

For Singleshot, we consider the following definitions for the descent steps ηGk and ηpk at the (k + 1)th

iteration:

ηGk = arg min
η∈[

δ1√
K
,
δ2√
K

]

σ (η)

(
f

(
Gk − ηDG

k ,
{
A

(m)
k

}N
1

)
− f

(
Gk,

{
A

(m)
k

}N
1

))
(4)

ηpk = arg min
η∈[

δ1√
K
,
δ2√
K

]

σ (η)

(
f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,A

(p)
k − ηD

p
k,
{
A

(q)
k

}N
p+1

)
− f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,
{
A

(q)
k

}N
p

))
(5)
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with:

σ(η) = η − δ1√
K

The parameters δ1 > 0, δ2 > 0 being user-defined parameters.

The minimization problems related to ηGk and ηpk are well defined since the factors involved in their
definitions are known at the computation stage of Gk+1 and A

(p)
k+1 and the problems correspond to

the minimization of functions on compact sets.
Remark 1. Contrary to Singleshot, only the descent step ηNk for the loading matrix A(N) is defined
via a minimization problem for Singleshot-inexact

2.2 Assumptions

The theoretical analysis of Singleshotinexact requires Assumption 1, Assumption 2, Assumption
3.1, Assumption 3.2, Assumption 3.3 and the definition of the step given by the equation (3). The
theoretical analysis of Singleshot requires the Assumption 1, Assumption 2, Assumption 4 and the
minimization problems defined by the equations (4) and (5). All of the assumptions are given below.

2.2.1 Common assumptions

Assumption 1 (Uniform boundedness). The nth subtensors are uniformly bounded, i.e. ‖Xn
in‖F ≤

ρ, ∀1 ≤ in ≤ In
Assumption 2 (Factors boundedness). G ∈ Dg =

{
G ∈ RJ1×..×JN |‖G‖F ≤ α

}
,A(m) ∈ Dm ={

A(m) ∈ RIm×Jm |‖A(m)‖F ≤ α
}
, 1 ≤ m ≤ N

2.2.2 specific assumptions for Singleshotinexact

Besides of Assumption 1 and Assumption 2, we consider three additional assumptions:
Assumption 3.1 (Bound on descent step related to the update of A(N)).

1

4Kγ
< ηNk ≤

1

α2N

We highlight the fact that ηNk is does "not" mean "ηk to the power N": N simply refers to the
loading matrix A(N). On the other side, α2N corresponds to α to the power 2N .
Assumption 3.2 (non-nullity of the gradient with respect to A(N)).

∂A(N)f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
6= 0

It is worth to notice that we do not impose the non-vanishing assumption on all of the par-
tial gradients, but only on the partial gradient with respect to A(N) evaluated at the point(
Gk+1,A

(1)
k+1, ..,A

(N−1)
k+1 ,A

(N)
k

)
Assumption 3.3 (Choice of the number of subtensors).

In

√
1

2
+

1

In
≤ Bk, In > 2

2.2.3 specific assumptions for Singleshot

Besides of the definitions given by the equations (4) and (5), we consider, alongside Assumption 1
and Assumption 2, the following additional assumption:
Assumption 4.

δ1√
K

< ηGk , η
p
k ≤

δ2√
K

These inequalities simply amount to consider that the solutions of the minimization problems given
by the equations (4) and (5) are not attained at the lower bound of the interval. Again, we highlight
the fact that ηpk is does "not" mean "ηk to the power p": p simply refers to the loading matrix
A(p).
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2.3 Theoretical result

The theoretical analysis is motivated by the fact that the existing convergence results for Coordinate
Gradient Descent cannot be applied directly to our setting. Most of the existing approaches use the
assumption of convexity [1] or strong convexity [9] on the objective function, which is not verified
in our case since we are in a non-convex setting. Some approaches have been proposed for the
non-convex setting, but with block-wise (i.e. multivariate function considered as a function of one of
its variable while the others are fixed) strong convexity [13]. The reasoning proposed does not fit our
framework since the block-wise strong convexity is not verified for our problem.

Few approaches (in the sense that the problem has drawn much less attention compared to the
convexity or strong convexity cases) handle, for any function, the general case with no convexity or
block-wise convexity assumption (our problem can be classified in this trend), but the theoretical
analysis cannot be replicated since the algorithmic frameworks are different from ours. Our purpose
here is not to compete with state-of-the-art Coordinate Gradient Descent algorithms, but simply to
prove such a simple algorithmic setting yields a convergence rate in the general non-convex setting
for the scalable tensor decomposition problem.

The difficulty of the proof relies on the lack of convexity for the objective function as well as the
block-wise function. To overcome this, we rely on careful definitions of the descent steps.

2.3.1 Convergence of Singleshotinexact

The purpose of this section is to prove that the sequence
{
Gk,A(1)

k , · · · ,A(N)
k

}
converges to the

set of minimizers of f at the rate O( 1
k ). Before establishing the convergence, we introduce the

preliminary results Property 11, Property 12 and Property 13.

The aim of the following property is to prove that there exists a non-zero inexact gradient. It is simply
based on a reasoning by contradiction and is a direct consequence of Assumption 3.2.

Property 11 (Existence of a set such that the inexact gradient is non-zero). Under Assumption 3.2,
the following property holds:
∃SET k ⊂ {1, 2, ...In} ,

∑
j∈SET k ∂A(N)`j 6= 0 with ∂A(N)`j defined by the equation (3)

Proof. We perform a reasoning by contradiction. Let’s assume that ∀SET k ⊂
{1, 2, ..., In} ,

∑
j∈SET k ∂A(N)`j = 0

Let’s choose SET k = {1, 2, .., In}. Thus, we have
In∑
j=1

∂A(N)`j = ∂A(N)f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
= 0,

which is in contradiction with Assumption 3.2

For this part of the proof, we simply establish an explicit bound on the norm of the gradient
approximation error. This idea that consists to bound the gradient approximation error ‖βk‖2F by
considering a lower bound on the number of terms that intervene in the inexact-gradient is inspired
from [12].

Property 12 (Bound on the gradient approximation error). Let’s consider the gradient approximation
error βk defined by:

βk = 1
Bk

∑
j∈SET k ∂A(N)`j −∂A(N)f(Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k ) with `j and ∂A(N)`j defined by

(3). The following inequality holds:

‖βk‖2F ≤ 8I2
n(ρ+ αN+1)2α2N

Proof. By definition of βk, we have:

‖βk‖2F = ‖ 1
Bk

∑
j∈SET k ∂A(N)`j − ∂A(N)f(Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k )‖2F
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Given that ∂A(N)f(Gk+1,
{
A

(m)
k+1

}N−1

1
,A

(N)
k ) =

∑
j∈SET k ∂A(N)`j +

∑
j 6∈SET k ∂A(N)`j by the

alternative expression of f in terms of subtensors drawn with respect to one mode, we have:
‖βk‖2F = ‖

(
1
Bk
− 1
)∑

j∈SET k ∂A(N)`j −
∑
j 6∈SET k ∂A(N)`j‖2F

⇒ ‖βk‖2F ≤
((

1− 1
Bk

)∑
j∈SET k ‖∂A(N)`j‖F +

∑
j 6∈SET k ‖∂A(N)`j‖F

)2

(since the real func-

tion x→ x2 is increasing on the set of real positive numbers and by triangle inequality)
Since (a+ b)2 ≤ 2(a2 + b2) for a, b ≥ 0, by application of Cauchy-Schwartz inequality and given
that the cardinality of SET k is Bk, we have:

‖βk‖2F ≤ 2
(

1− 1
Bk

)2

Bk
∑
j∈SET k ‖∂A(N)`j‖2F + 2(In −Bk)

∑
j 6∈SET k ‖∂A(N)`j‖2F

Given that
∑
j∈SET k =

∑
1≤j≤In −

∑
j 6∈SET k , we have:

‖βk‖2F ≤ 2

(
1− 1

Bk

)2

Bk

In∑
j=1

‖∂A(N)`j‖2F + 2

(
(In −Bk)− (Bk − 1)2

Bk

)
︸ ︷︷ ︸

θ

∑
j 6∈SET k

‖∂A(N)`j‖2F

with θ =
InBk−B2

k−(B2
k−2Bk+1)

Bk
≤ InBk−2B2

k+2Bk−1
Bk

≤ I2
n−2I2

n( 1
2 + 1

In
)+2In−1

Bk
= − 1

Bk
under

Assumption 3.3.
Thus, by Assumption 1, Assumption 2 and given that Bk ≤ In, we have:

‖βk‖2F ≤ 2
(

1− 1
Bk

)2

Bk
∑In
j=1 ‖∂A(N)`j‖2F ≤ 2× 4× In × In(ρ+ αN+1)2α2N

⇒ ‖βk‖2F ≤ 8I2
n(ρ+ αN+1)2α2N

The following inequality simply establishes a lower bound on the variation of the block-wise function

A(N) → f(Gk,
{
A

(m)
k+1

}N−1

1
,A(N)) between the consecutive iterations k and k + 1 and is a direct

consequence of the minimization problem given by the equation (3).

Property 13 (Lower bound on the variation of the block-wise objective function). The following
inequality holds:

λf

(
Gk+1,

{
A

(m)
k+1

}N
1

)
− f

(
Gk,

{
A

(m)
k

}N
1

)
+ f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
≤ 0

Proof. The minimization problem defining ηNk being well defined (see the equation (3) and Property
11), we have:

σ
(
ηNk
)(

λf

(
Gk+1,

{
A

(m)
k+1

}N−1

1
, Ã(N)(ηNk )

)
− f

(
Gk,

{
A

(m)
k

}N
1

)
+ f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

))
≤ σ

(
1

4Kγ

)(
λf

(
Gk+1,

{
A

(m)
k+1

}N−1

1
, Ã(N)

(
1

4Kγ

))
− f

(
Gk,

{
A

(m)
k

}N
1

)
+ f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

))
with σ(η) = η − 1

4Kγ by definition (see the equation (3)).
Since σ

(
1

4Kγ

)
= 0 by definition, the previous inequality yields:

σ
(
ηNk
)(

λf

(
Gk+1,

{
A

(m)
k+1

}N−1

1
, Ã(N)(ηNk )

)
− f

(
Gk,

{
A

(m)
k

}N
1

)
+ f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

))
≤ 0

Since ηNk > 1
4Kγ by Assumption 3.1, σ(ηNk ) = ηNk − 1

4Kγ > 0. Thus, the previous inequality yields:

λf

(
Gk+1,

{
A

(m)
k+1

}N−1

1
, Ã(N)(ηNk )

)
− f

(
Gk,

{
A

(m)
k

}N
1

)
+ f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
≤ 0

⇒ λf

(
Gk+1,

{
A

(m)
k+1

}N
1

)
− f

(
Gk,

{
A

(m)
k

}N
1

)
+ f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
≤ 0 (*)

The last implication (*) stems from the definition of ηNk because:

Ã(N)(ηNk ) = A
(N)
k − ηNk

Bk

∑
j∈SET k ∂A(N)`j = A

(N)
k+1 with `j being defined by (3))
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The next result states that f
(
Gk,

{
A

(m)
k

}N
1

)
converges to fmin when k →∞.

The main idea is to prove that ∆k = f
(
Gk,

{
A(m)

}
k

)
− fmin is a recursive sequence verifying the

inequality
(1 + λ)∆k+1 ≤ ∆k + ζ(ρ,α,In)

Kγ and the conclusion comes from a straightforward reasoning by
induction.

Theorem 1 (Convergence to the set of minimizers for Singleshotinexact at the rate O
(

1
k

)
). ] The

following inequality holds:

∀k > k0, f

(
Gk,

{
A

(m)
k

}N
1

)
− fmin ≤

f

(
G1,

{
A

(m)
1

}N
1

)
− fmin +

4I2
n(ρ+αN+1)2α2N

λ

k − k0

with:

k0 = 1 +
1

log(1 + λ)
log

(
1

log(1 + λ)

)
, λ > 0

Proof. Let’s denote fN the function defined by A(N) → f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A(N)

)
− fmin

and ∂fN
(
A(N)

)
the derivative of fN . Since A(N) → ∂fN (A(N)) is Lipschitz with α2N as the

Lipschitz parameter (Assumption 2 and Property 8), we have [10]:

fN

(
A

(N)
k+1

)
≤ fN

(
A

(N)
k

)
+ 〈∂fN

(
A

(N)
k

)
,A

(N)
k+1 −A

(N)
k 〉+

α2N

2
‖A(N)

k+1 −A
(N)
k ‖2F (6)

By definition, we have:
A

(N)
k+1 − A

(N)
k = −ηNk

(
∂fN (A

(N)
k ) + βk

)
with βk = 1

Bk

∑
j∈SET k ∂A(N)`j − ∂fN (A

(N)
k ),

∂A(N)`j being the derivative of the function `j evaluated at A(N)
k with:

`j(A
(N)) = 1

2‖X
n
j − Gk+1 ×p

p∈In−1

A
(p)
k+1 ×n

(
A

(n)
k+1

)
j,:
×q

q∈In+1
N−1

A
(q)
k+1 ×N A(N)‖2F

This equality combined with the inequality (6) yields (since ηNk > 0):

fN

(
A

(N)
k+1

)
− fN

(
A

(N)
k

)
ηNk

≤ −‖∂fN
(
A

(N)
k

)
‖2F − 〈∂fN

(
A

(N)
k

)
, βk〉+

α2NηNk
2
‖∂fN

(
A

(N)
k

)
+ βk‖2F

By developing the terms ‖∂fN
(
A

(N)
k

)
+ βk‖2F and rearranging them in the last inequality, we have:

fN

(
A

(N)
k+1

)
− fN

(
A

(N)
k

)
ηNk

≤ α2NηNk − 2

2
‖∂fN

(
A

(N)
k

)
‖2F+

α2NηNk
2
‖βk‖2F+(α2NηNk −1)〈∂fN

(
A

(N)
k

)
, βk〉

(7)
Since α2NηNk − 1 ≤ 0 (by Assumption 3.1) and given that the absolute value of a is equal to −a if
a < 0, we have by the Cauchy-Schwartz inequality:
(α2NηNk − 1)〈∂fN

(
A

(N)
k

)
, βk〉 ≤ (1− α2NηNk )‖∂fN

(
A

(N)
k

)
‖F ‖βk‖F

Since 2ab ≤ a2 + b2, the previous inequality yields:

(α2NηNk − 1)〈∂fN
(
A

(N)
k

)
, βk〉 ≤

1− α2NηNk
2

(‖∂fN
(
A

(N)
k

)
‖2F + ‖βk‖2F ) (8)

The combination of the inequalities (7) and (8) yields after simplification:

fN

(
A

(N)
k+1

)
− fN

(
A

(N)
k

)
ηNk

≤ −1

2
‖∂fN

(
A

(N)
k

)
‖+

1

2
‖βk‖2F ≤

1

2
‖βk‖2F
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Thus, we have:

fN

(
A

(N)
k+1

)
≤ fN

(
A

(N)
k

)
+
ηNk
2
‖βk‖2F

Let’s consider the sequence ∆k defined by: ∆k = f

(
Gk,

{
A

(m)
k

}N
1

)
− fmin. By the replacement

of fN by its expression, the last inequality yields:

∆k+1 ≤ ∆k +

(
f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
− f

(
Gk,

{
A

(m)
k

}N
1

))
+
ηNk
2
‖βk‖2F (9)

By Property 13, we have:

f

(
Gk+1,

{
A

(m)
k+1

}N−1

1
,A

(N)
k

)
− f

(
Gk,

{
A

(m)
k

}N
1

)
≤ −λf

(
Gk+1,

{
A

(p)
k+1

}N
1

)
≤ −λf

(
Gk+1,

{
A

(p)
k+1

}N
1

)
+ λfmin︸ ︷︷ ︸

−λ∆k+1

By combining the last inequality with inequality (9), we have

(1 + λ)∆k+1 ≤ ∆k +
ηNk
2
‖βk‖2F

By Property 12, the last inequality yields:

(1 + λ)∆k+1 ≤ ∆k +
ηNk
2
× (8I2

n(ρ+ αN+1)2α2N )

Given that ηNk ≤ 1
Kγ , the last inequality implies:

(1 + λ)∆k+1 ≤ ∆k +
1

2Kγ
× (8I2

n(ρ+ αN+1)2α2N )

By introducing, ε̃(ρ, α, In) = 8I2
n(ρ+ αN+1)2α2N , this recursive expression yields (by a reasoning

by induction):
∆k ≤ ∆1

(1+λ)k−1 + ε̃(ρ,α,In)
2Kγ

∑k−1
m=1

1
(1+λ)m = ∆1

(1+λ)k−1 + ε̃(ρ,α,In)
2Kγ

1
λ

(
1− 1

(1+λ)k−1

)
⇒ ∆k ≤ ∆1

(1+λ)k−1 + ε̃(ρ,α,In)
2λKγ

Given that k ≤ K, we have:

f

(
Gk,

{
A

(m)
k

}N
1

)
− fmin ≤

f

(
G1,
{
A

(m)
1

}N
1

)
−fmin

(1+λ)k−1 + ε̃(ρ,α,In)
2λ × 1

kγ

Since γ > 1 by definition, we have:

f

(
Gk,

{
A

(m)
k

}N
1

)
− fmin ≤

f

(
G1,

{
A

(m)
1

}N
1

)
− fmin

(1 + λ)k−1
+
ε̃(ρ, α, In)

2λ
× 1

k
(10)

By considering that k > k0 = 1 + 1
log(1+λ) log( 1

log(1+λ) ) (which is natural since we study the
asymptotic behavior with respect to k), the equation (10) yields by Property 10:

f

(
Gk,

{
A

(m)
k

}N
1

)
− fmin ≤

f

(
G1,

{
A

(m)
1

}N
1

)
− fmin

k − k0
+
ε̃(ρ, α, In)

2λ
× 1

k − k0
(11)
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2.3.2 Convergence of Singleshot

The objective of this section to establish for Singleshot an ergodic convergence rate of O
(

1√
K

)
.

Before establishing this rate, we introduce some preliminary results that are Properties 14.1 and
14.2, Property 15.2, Property 15.1, Property 16.

The properties 14.1 and 14.2 simply state that the objective function decreases after each update stage
provided the descent steps have been carefully chosen via the minimization problems given by the
equations (4) and (5)

Property 14.1 (Sufficient decrease of the objective function (G) ). Under Assumption 4, we have:

f

(
Gk+1,

{
A

(m)
k

}N
1

)
≤ f

(
Gk,

{
A

(m)
k

}N
1

)

Proof. Let’s note fkG the function f
(
·,
{
A

(m)
k

}N
1

)
−f
(
Gk,

{
A

(m)
k

}N
1

)
, we have by the definition

of ηGk (equation (4)) and the definition of a minimizer:

(ηGk −
δ1

K
1
2

)fkG
(
Gk − ηGk D

G
k

)
≤ (

δ1

K
1
2

− δ1

K
1
2

)fkG

(
Gk −

δ1

K
1
2

DG
k

)
= 0

Since ηGk >
δ1

K
1
2

by Assumption 4, we have

fkG
(
Gk − ηGk D

G
k

)
≤ 0

By definition of fkG and given that Gk+1 = Gk − ηGk D
G
k , we have:

f

(
Gk+1,

{
A

(m)
k

}N
1

)
≤ f

(
Gk,

{
A

(m)
k

}N
1

)

Property 14.2 (Sufficient decrease of the objective function (A(p))). Under Assumption 4, we have:

f

(
Gk+1,

{
A

(m)
k+1

}p
1
,
{
A

(q)
k

}N
p+1

)
≤ f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,
{
A

(q)
k

}N
p

)

Proof. This is the same reasoning as Property 14.1.

The next two properties simply use the definition of the update schemes

Property 15.1 (Implicit assumption on A
(p)
k+1). Under Assumption 4, A(p)

k+1 belongs to a ball

centered around A
(p)
k whose radius is equal to β

K
1
2

.

Proof. By definition, we have:

‖A(p)
k+1 −A

(p)
k ‖F = ‖ δ2

K
1
2
∂A(p)f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,
{
A

(q)
k

}N
p

)
‖F

⇒ ‖A(p)
k+1 −A

(p)
k ‖F ≤

δ2

K
1
2

Γp (by definition of Γp)

⇒ ‖A(p)
k+1 −A

(p)
k ‖F ≤

δ2

K
1
2

max (Γg,Γ1, ...,ΓN )
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Property 15.2 (Implicit assumption on Gk+1). Under Assumption 4, Gk+1 belongs to a ball centered
around Gk whose radius is equal to β

K
1
2

.

Proof. With the same reasoning as for Property 15.1, we have:

‖Gk+1 − Gk‖F ≤
δ2

K
1
2

Γg ≤
δ2

K
1
2

max(Γg,Γ1, ...,ΓN )

The next property establishes the Lipschitz property for the squared Frobenius of the block-wise
derivative (which will be needed in Property 17.1)

Property 16. Lipschitz property for the squared Frobenius of the block-wise derivative Let’s consider
the function gp defined by:

gp

(
G,A(1), ..,A(N)

)
= ‖∂A(p)f

(
G,A(1), ..,A(N)

)
‖2F , 1 ≤ p ≤ N (12)

We consider gp is defined on the set D̂g × D̂1 × ... × D̂N with D̂g ={
G ∈ RJ1×...×JN |‖G‖F < 2α

}
, D̂m =

{
A(m) ∈ RIm×Jm |‖A(m)‖F < 2α

}
. The function

fp is Lipschitz (therefore, the restriction of gp to the set Dg × D1 × .... × DN is Lipschitz since
Dg × D1 × ....× DN ⊂ D̂g × D̂1 × ...× D̂N )

Proof. by noticing that the derivative of gp is bounded on D̂g × D̂1 × ... × D̂N and given that a
finite product of convex sets (respectively open sets) is a convex set (respectively open set), by
[11]:Corollary 2.31 yields the Lipschitz character of the function gp.

The next three properties bound the mean block-wise derivative for the core and the loadings factors.
They mainly use known algebraic arguments and Properties 14.1 or 14.2. As the second property
includes indicia k and k + 1, the third property is necessary to bound the mean block-wise derivative
of the loading factors at the kth iteration.

Property 17.1. Mean block-wise derivative (G)

∀K ≥ 1,
1

K

K−1∑
k=0

‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤

δ2
δ2
1
(2Γ + α2NΓ2

gδ
2
2)

K
1
2

(13)

Proof. By Assumption 2 (factors boundedness) and Property 6 (Lipschitz derivative), we have

‖∂Gf
(
G1,

{
A

(m)
k

}N
1

)
− ∂Gf

(
G2,

{
A

(m)
k

}N
1

)
‖F ≤ ‖G1 − G2‖F

∏
m∈IN

‖A(m)
k ‖2F ≤ α2N‖G1 − G2‖F

Thus, ∂Gf
(
.,
{
A

(m)
k

}N
1

)
is Lipschitz, which paves the way to the inequality [10]:

f

(
Gk+1,

{
A

(m)
k

}N
1

)
≤ f

(
Gk,

{
A

(m)
k

}N
1

)
+ 〈∂Gf

(
Gk,

{
A

(m)
k

}N
1

)
,Gk+1 − Gk〉+

α2N

2
‖Gk+1 − Gk‖2F

Since Gk+1 = Gk − ηGk ∂Gf

(
Gk;

{
A

(m)
k

}N
1

)
and by definition of Γg as the supremum of

‖∂Gf
(
G,
{
A(m)

}N
1

)
‖F on Dg × D1 × ...× DN , we have:

ηGk ‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤ f

(
Gk,

{
A

(m)
k

}N
1

)
− f

(
Gk+1,

{
A

(m)
k

}N
1

)
+
α2N (ηGk )2

2
Γ2
g

(14)
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By Properties 14.1 and 14.2, we have f
(
Gk+1,

{
A

(m)
k+1

}N
1

)
≤ f

(
Gk+1,

{
A

(m)
k

}N
1

)
. This

inequality combined with the inequality (14) yields

ηGk ‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤ f

(
Gk,

{
A

(m)
k

}N
1

)
− f

(
Gk+1,

{
A

(m)
k+1

}N
1

)
+
α2NΓ2

g

2
(ηGk )2

By taking the sum of this inequality, we have:

K−1∑
k=0

ηGk ‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤ f(G0,

{
A

(m)
0

}N
1

)− f
(
GK ,

{
A

(m)
K

}N
1

)
+
α2NΓ2

g

2

K−1∑
k=0

(ηGk )2

⇒
K−1∑
k=0

ηGk ‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤ 2Γ +

α2NΓ2
g

2

K−1∑
k=0

(ηGk )2(by definition of Γ as the supremum of f )

Since δ1

K
1
2
< ηg,k ≤ δ2

K
1
2

, we have

1∑K−1
k=0 ηGk

≤ 1

δ1K1/2
,

K−1∑
k=0

(ηGk )2∑K−1
k=0 ηGk

≤ δ2
2

δ1K1/2

and
K−1∑
k=0

ηGk∑K−1
k=0 ηGk

‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≥

δ1
δ2

1

K

K−1∑
k=0

‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F

With the last three inequalities, we have:

1

K

K−1∑
k=0

‖∂Gf
(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤

δ2
δ2
1

(
2Γ +

α2NΓ2
gδ

2
2

2

)
K

1
2

Property 17.2 (Mean block-wise derivative (A(p))).

∀K ≥ 1,
1

K

K−1∑
k=0

‖∂A(p)f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,A

(p)
k ,
{
A

(q)
k

}N
p+1

)
‖2F ≤

δ2
δ2
1

(
2Γ +

α2NΓ2
pδ

2
2

2

)
K

1
2

Proof. Let’s note f (p)
k the function f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
, ·,
{
A

(q)
k

}N
p+1

)
. Since the reasoning

is identical to the one previously performed before the equation (14), and given that the Lipschitz
constant for the derivative with respect to A(m) is also equal to α2N (by Property 8 and Assumption
2), we have:

ηpk‖∂A(p)f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,A

(p)
k ,
{
A

(q)
k

}N
p+1

)
‖2F ≤ −f

(p)
k

(
A

(p)
k+1

)
+f

(p)
k

(
A

(p)
k

)
+
α2N (ηpk)

2
Γ2
p

2
(15)

By Properties 14.1 and 14.2, we have

f

(
Gk+1,

{
A

(m)
k+1

}N
1

)
≤ f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,A

(p)
k+1,

{
A

(q)
k

}N
p+1

)
= f

(p)
k

(
A

(p)
k+1

)
,

and

f
(p)
k

(
A

(p)
k

)
= f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,A

(p)
k ,
{
A

(q)
k

}N
p+1

)
≤ f

(
Gk,

{
A

(m)
k

}N
1

)
.
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By inserting the last two inequalities in the equation (15), we have:

ηpk‖∂A(p)f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,A

(p)
k ,
{
A

(q)
k

}N
p+1

)
‖2F ≤ f

(
Gk,

{
A

(m)
k

}N
1

)
−

f

(
Gk+1,

{
A

(m)
k+1

}N
1

)
+

α2NΓ2
p

2 (ηpk)2

From this point, we perform exactly a reasoning identical to the one performed for Property 17.1
(from inequality (14)) and get the result.

The idea of the proof of the following theorem is similar to the classical reasoning used to prove the
"sequential criterion for continuity".

Property 17.3 (Bound on mean derivative for any mode).

∃Kp ≥ 1,∀K ≥ Kp,
1

K

K−1∑
k=0

‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤

δ2

δ2
1K

1
2

(
1 +

(
2Γ +

α2NΓ2
pδ

2
2

2

))
(16)

Proof. The function gp defined by gp
(
G,A(1), ..,A(N)

)
= ‖∂A(p)f

(
G,A(1), · · · ,A(N)

)
‖2F being

lipschitz by the equation Property 16, it is uniformly continuous. Then, we have:

∀ε > 0,∃η > 0, ‖x− y‖∗ ≤ η ⇒ |‖∂A(p)f(x)‖2F − ‖∂A(p)f(y)‖2F | ≤ ε (17)

Let’s consider y = (Gk+1,A
(1)
k+1, · · · ,A

(p−1)
k+1 ,A

(p)
k , · · · ,A(N)

k ) and x =
(
Gk,A(1)

k , · · · ,A(N)
k

)
‖x− y‖∗ = ‖Gk+1−Gk‖F +‖A(1)

k+1−A
(1)
k ‖F + ....+‖A(p−1)

k+1 −A
(p−1)
k ‖F ≤ pβ

K
1
2

(by Property
15.2 and 15.1 )
Thus, we have:

‖x− y‖∗ ≤
pβ

K
1
2

(18)

Since pβ

K
1
2

converges to zero whenK →∞, ∃Kp,∀K ≥ Kp, ‖x−y‖∗ ≤ pβ

K
1
2
≤ η. By the inequality

(17), we have:
∀ε > 0,∃Kp,∀K ≥ Kp, |‖∂A(p)f(x)‖2F − ‖∂A(p)f(y)‖2F | ≤ ε
⇒ ∀ε > 0,∃Kp,∀K ≥ Kp, ‖∂A(p)f(x)‖2F − ‖∂A(p)f(y)‖2F ≤ ε (because a ≤ |a|)
⇒ ∀ε > 0,∃Kp,∀K ≥ Kp, ‖∂A(p)f(x)‖2F ≤ ε+ ‖∂A(p)f(y)‖2F
⇒ ∀ε > 0,∃Kp,∀K ≥ Kp, ‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤ ε

+‖∂A(p)f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,
{
A

(q)
k

}N
p

)
‖2F

The last inequality holds for any value of k ∈ {1, 2, ..K} provided K ≥ Kp (it is worth to notice
that we are dealing with two variables k and K that are different). Then, by summing over k (not K),
we have: ∀ε > 0,∃Kp, ∀K ≥ Kp:
1
K

∑K−1
k=0 ‖∂A(p)f

(
Gk,

{
A

(p)
k

}N
1

)
‖2F ≤ ε+ 1

K

∑K−1
k=0 ‖∂A(p)f

(
Gk+1,

{
A

(m)
k+1

}p−1

1
,
{
A

(q)
k

}N
p

)
‖2F

⇒ ∀ε > 0,∃Kp,∀K ≥ Kp,
1
K

∑K−1
k=0 ‖∂A(p)f(Gk,

{
A

(m)
k

}N
1

)‖2F ≤ ε +

δ2
δ21

(2Γ+
α2NΓ2

pδ
2
2

2 )

K
1
2

(by
Property 17.2)

⇒ ∃Kp ≥ 1,∀K ≥ Kp,
1
K

∑K−1
k=0 ‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤

δ2
δ21

K
1
2

+

δ2
δ21

(2Γ+
α2NΓ2

pδ
2
2

2 )

K
1
2

Thus, we have:

∃Kp ≥ 1,∀K ≥ Kp,
1

K

K−1∑
k=0

‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤

δ2

δ2
1K

1
2

(
1 +

(
2Γ +

α2NΓ2
pδ

2
2

2

))
(19)
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Theorem 2. Convergence rate
The following inequality holds:

∃K0 > 0,∀K ≥ K0,
1

K

K−1∑
k=0

‖∇f
(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤

(N + 1)∆

K
1
2

(20)

with ∆ = δ2
δ2
1

(
2Γ +

α2NΓ2
gδ

2
2

2 +
∑N
p=1(1 + 2Γ +

α2NΓ2
pδ

2
2

2 )

)

Proof. First, let’s establish a bound on 1
K

∑K−1
k=0 ‖∇f

(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ in order to make appear

1
K

∑K−1
k=0 ‖∂Gf

(
Gk,

{
A

(m)
k

}N
1

)
‖2F , 1

K

∑K
k=1 ‖∂A(1)f(Gk,

{
A

(m)
k

}N
1

)‖2F , · · · , 1
K

∑K
k=1 ‖∂A(N)f(Gk,

{
A

(m)
k

}N
1

)‖2F ,

which are the variables that have already been bounded via the inequality and Properties 17.1 and
17.3.

By convexity of the function g(x) = x2, since ‖∇f
(
Gk,

{
A

(m)
k

}N
1

)
‖∗ is equal to the sum of the

norms of the block-wise derivatives evaluated at Gk,A(1)
k , · · · ,A(N)

k , we have:

‖∇f
(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤ (N+1)

(
‖∂Gf(Gk,

{
A

(m)
k

}N
1

)‖2F +
∑N
p=1 ‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F
)

⇒ 1
K

∑K−1
k=0 ‖∇f

(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤ (N + 1) 1

K

∑K−1
k=0 ‖∂Gf

(
Gk,

{
A

(m)
k

}N
1

)
‖2F

+(N + 1)

K−1∑
k=0

1

K

N∑
p=1

‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F

By permuting the two signs
∑

, we have:

⇒ 1

K

K−1∑
k=0

‖∇f
(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤ (N + 1)

 1

K

K−1∑
k=0

‖∂Gf(Gk,
{
A

(m)
k

}N
1

)‖2F︸ ︷︷ ︸
can be bounded by Property 17.1

 (21)

+(N + 1)

N∑
p=1

K−1∑
k=0

1

K
‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F︸ ︷︷ ︸

can be bounded by Property 17.3

By Property 17.3, we have for each mode p:

∃Kp ≥ 1,∀K ≥ Kp,
1

K

K−1∑
k=0

‖∂A(p)f

(
Gk,

{
A

(m)
k

}N
1

)
‖2F ≤

δ2

δ2
1K

1
2

(
1 +

(
2Γ +

α2NΓ2
pδ

2
2

2

))
(22)

For K ≥ max(Kp, 1 ≤ p ≤ N), all of the inequalities given by (22) are verified for any mode p.
Thus, the inequality (21) yields:
1
K

∑K−1
k=0 ‖∇f

(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤ (N + 1)

(
1
K

∑K−1
k=0 ‖∂Gf

(
Gk,

{
A

(m)
k

}N
1

)
‖2F
)

+(N + 1)

(
N∑
p=1

δ2

δ2
1K

1
2

(
1 +

(
2Γ +

α2NΓ2
pδ

2
2

2

)))
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⇒ 1
K

∑K−1
k=0 ‖∇f

(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤ (N+1)

 δ2
δ21

(2Γ+
α2NΓ2

gδ
2
2

2 )

K
1
2

+
∑N
p=1

δ2

δ2
1K

1
2

(
1 + 2Γ +

α2NΓ2
pδ

2
2

2

)
The last implication results from Property 17.1. Finally, we have:

∀K ≥ max(Kp, 1 ≤ p ≤ N),
1

K

K−1∑
k=0

‖∇f
(
Gk,

{
A

(m)
k

}N
1

)
‖2∗ ≤

(N + 1)∆

K
1
2

(23)
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3 More details on variants

3.1 Singleshot-online

We consider now the problem of decomposing a tensor that can grow over time with respect to every
mode with the single pass constraint (i.e. with no need to resort to the past data), hence the term
"online". This is a relevant problem that has received little attention [2]. Let’s consider a N−order
tensor growing over time with respect to any of its modes. Let’s assume that at time step t, its state is
X t ∈ RI1,t×..×IN,t and that at the time step t+ 1, we have acquired Bn new subtensors with respect
to the mode n Setn =

{
Xn
q ∈ RI1,t×..×In−1,t×1×In+1,t×..×IN,t , 1 ≤ q ≤ Bn

}
. According to the

Tucker decomposition expression, A(n) is the single matrix which dimensions change: its number of
rows increases from In,t to In,t +Bn.

Based on the above described algorithms, we can derive a novel variant able to infer the factors that
approximate X t+1 ∈ R

∏n−1
k=1 Ik,t×(In,t+Bn)×

∏N
k=n+1 Ik,t .

We propose an update scheme identical to the one presented for Singleshot-inexact, with the core
intuition that the online problem can be efficiently tackled via our inexact gradient approach. More
formally, the derivatives with respect to the core tensor G and a loading matrix A(p), p 6= n, denoted
by D̂G

k and D̂p
k are computed as for the Singleshot-inexact method by fixing SET k to Setn. The

derivative D̂n
k ∈ R(In,t+Bn)×Jn is defined by:

D̂n
k = [ o, · · · ,o︸ ︷︷ ︸

In,tzero vectors

,v1, ..,vBn ], (24)

with [., ..., .] being the row-wise stacking operator, o ∈ R1×Jn being the null vector and vj the
derivative of `j evaluated at (A

(n)
k )In,t+j,:, and `j defined by:

`j(a) =
1

2
‖Xn

j − Gk+1 ×p
m∈In−1

A
(m)
k+1 ×n a ×q

q∈In+1
N

A
(q)
k ‖

2
F

with Xn
j ∈ Setn,a ∈ R1×Jn .

One can notice that these update patterns require a single pass on the data since they do not involve at
all X t. The initial values of G and A(p), p 6= n are fixed to Gt and A

(p)
t while the initial value of

A(n) is defined via the row-wise stacking of A(n)
t with Bn random vectors.

3.2 Non-negative constraints

To perform a nonnegative tensor factorization, we simply replace for Singleshot,Singleshot-inexact
and Singleshot-online, all the update schemes by Projected Gradient Descent [14]:

Gk+1 ← max(Gk − ηg,kDG
k , 0), ηg,k > 0

A
(p)
k+1 ← max(A

(p)
k − ηp,kD

p
k, 0), ηp,k > 0

with the tensor DG
k and the matrix Dp

k representing the descent direction for Singleshot,Singleshot-
inexact or Singleshot-online.

4 Numerical experiments: follow up

4.1 More details about the data sets used for the experiments in the main paper

• Enron: constructed from the emails of Enron, this data set represents a three-order tensor
X ∈ RM×M×200. The three modes respectively represent the sender, the recipient and
the words. The entry X i,j,k is equal to 1 if the ith sender sends a message to the jth

recipient containing the kth words. The words considered are the most frequent ones. The
problem considered for this data set is a regression problem, the evaluation criterion being
the approximation error on a test set (with the same size as the training set, but obviously
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different from this one) defined by:

AE = ‖X test − Gs ×1 A
(1)
out ×2 A

2
out ×3 A

(3)
out‖F (25)

The tensor X test represents the test set, the matrices
{
A

(m)
out , 1 ≤ m ≤ 3

}
the latent factors

inferred from the decomposition and the tensor Gs is defined by:
– For the unconstrained decomposition
Gs ← arg minG ‖X test − G ×1 A

(1)
out ×2 A

(2)
out ×3 A

(3)
out‖2F

This problem is solved by the classical gradient descent algorithm.
– For the positive decomposition
Gs ← arg minG≥0 ‖X test − G ×1 A

(1)
out ×2 A

(2)
out ×3 A

(3)
out‖2F

This problem is solved by the classical project gradient descent algorithm.
• Movielens: is a tensor X ∈ RM×M×610 constructed from the MovieLens latest-small data

set [4] and whose modes represent the time steps, the movies and the users. The entry X i,j,k

corresponds to the rate given by the kth user to the jth movie at the time step i or zero if no
rate has been given. The purpose of this data set is to validate our model on a tensor-based
recommender system. The evaluation criterion is the Mean Average Precision MAP defined
as in [5](section 4.1.2) on the test set.

4.2 Singleshot/Singleshotinexact vs Tensorsketchonline on Enron and Movielens

The purpose of this section is to compare our approaches Singleshot and Singleshotinexact with
Tensorsketchonline, which is one of the most recent divide-and-conquer type method. For Tensors-
ketchonline method, the ’online character’ is artificially generated by splitting the tensor at hand into
subtensors with respect to the first and the second modes.
The results of this comparison are reported in the figures 1 and 2 for the Enron and the Moovielens
data sets. The methods compared achieves similar errors on the test set (different from the training
set) with a slight advantage for Singleshot and Singleshot-inexact with positivity constraints on the
latent factors for the Enron data set (see figure 1) and the unconstrained methods Singleshotinexac-
tunconstrained and Singleshotunconstrained for the Moovielens data set (see figure 2). However, our
approach requires less running time compared to Tensorsketchonline certainly due to the fact that a
complete alternate minimization process is more time-consuming with respect to coordinate gradient
descent.

4.3 Online decomposition

4.3.1 Singleshotonline vs TensorSketchonline on Enron (follow up)

The figure 3 corresponds to follow up for the online experiment presented in the main paper and
represents the approximation error on a test tensor of the same size as the training one.

4.3.2 Singleshotonline vs TensorSketchonline (Toy)

The problem at hand is to reconstruct a 3-order noisy tensor Y = X + σ×N (σ = 10−1, the entries
of the real tensor X are drawn from a normal distribution with zero mean and standard deviation
1 and the entries of the noise tensor N are drawn from a normal distribution with zero mean and
standard deviation 1

2 ) of one billion entries splitted in the following way 10000×1000×100. For the
latent factors inference task, we first consider an initial chunk Y0 of size 1000× 200× 20, followed
by chunks of size 3000× 200× 20, 4000× 200× 20, 4000× 400× 40, 3000× 400× 60,7000×
200× 60,7000× 600× 40,3000× 600× 100,10000× 400× 100. As we consider the case where
the newly streamed data is coherent with respect to the past dimensions, the subtensors have different
sizes. It corresponds to updating the representation with respect to a chosen mode in the following
order: mode 1 (3000 subtensors), mode 2 (200 subtensors), mode 3 (40 subtensors), mode 1 (3000
subtensors), mode 2 (200 subtensors), mode 3 (40 subtensors), mode 1 (3000 subtensors), mode 2
(400 subtensors).

Singleshotonline is compared with Tensorsketchonline. The initial points (drawn from a Gaussian
distribution) as well as the stopping criterion are identically chosen. The stopping criterion is : either
the fitting of the current streamed data is inferior to a fixed threshold or a maximum number of
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Figure 1: Top: error on the test set for the Enron data set, Bottom: CPU running time in seconds for
the Enron data set. The rank of the core tensor is fixed to (5, 5, 5)

iterations is reached. The evaluation criteria are the running time and the approximation error AE
defined by:

AE = ‖X − Gout ×1 A
(1)
out ×2 A

(2)
out ×3 A

(3)
out‖F (26)

with Gout,A(1)
out,A

(2)
out,A

(3)
out being the factors inferred from the decomposition of the noisy tensor

Y .
Figure 4 presents the running time and the fitting error AE over three different noises. It shows that
Singleshot slightly performs better than Tensorsketch while being two times faster.

4.3.3 Non-negative Singleshotonline vs TensorSketchonline on Movielens (this comparison
for Enron has been already presented in the section 5 of the main paper)

The task at hand is a rating prediction problem. The Movielens dataset encompass users rating on
movie along the time. We consider a tensor X ∈ R15000×2000×60 (60 users, 2000 movies). We split
the data along the time-mode (70% training, 30% test) and estimate the rating on the test part given
the latent factors infered for the users and the movies modes. The MAP (Mean Average Precisions)
as well as the running time (for both of them, the value displayed is a mean over 5 different splits) are
given by the figure 5. Our online approach Singleshotonline outperforms Tensorsketchonline both in
terms of MAP while requiring less running time, which is expected as the rating prediction benefits
from the non-negative constraints of our approach.

4.4 Assumptions check

In this part, we check in the experiments some of the assumptions made.
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Figure 2: Top: error on the test set for the Moovie data set, Bottom: CPU running time in seconds for
the Moovie data set. The rank of the core tensor is fixed to (5, 5, 5)
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Figure 3: Tensorsketchonline vs Singleshotonlinepositive: Approximation error on the Enron data set

4.4.1 Evolution of the gradient with respect to the variable A(N) (Assumption 3.2. for
Singleshotinexact)

First, we check the evolution of the norm of (inexact) derivatives of the latent factors. The figure 6,

representing the norms of ∂A(N)f(Gk+1,
{
A

(m)
k+1

}N−1

1
,A

(N)
k ) and

∑
j∈SET k ∂A(N)`j shows that

Assumption 3.2 for Singleshotinexact is valid in practice and ηNk well defined.

4.4.2 Assumption 3.2 Choice of SET k

A natural way to ensure the non-nullity of the inexact gradient would be to perform an exhaustive
search to determine the best SET k of cardinality Bk. This is impractical even for small values of In
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Figure 4: Online toy problem: Approximation error in log10 scale (left) and CPU running time (right)
for various core tensor ranks. The rank of the core tensor G is fixed to (R,R,R)
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Figure 5: Movie-lens rating prediction : Mean Approximation Error (left), Root Mean Square Error
(center), Running time (right). The rank of the core tensor G is fixed to (R,R,R)

Figure 6: Enron data set X ∈ R1200×1200×200: left (gradient norm for Singleshot on logarithmic
basis), right (inexact gradient norm for Singleshotinexact on logarithmic basis)

because in the worst case, it would require In!
Bk!(In−Bk)! inexact gradient computations. Thus, to get

a convenient SET k, we prove numerically that it is sufficient to perform a random selection of the
subtensors involved in the computation of the inexact gradient as proved in the section 4.4.1

4.4.3 Influence of the number of subtensors

The figure 7 investigates the evolution of the approximation error with respect to the number of
subtensors used for Singleshotinexact. We notice that the more the number of slices is important, the
less the approximation error. This is coherent with the intuition since a small number of subtensors
induces an important error on the descent direction, and thus, lead the algorithm far from good
minima.
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Figure 7: Decomposition accuracy with the core rank fixed to (10, 10, 10) with respect to the number
of subtensors for Singleshotinexact on the Enron data set: left (unconstrained), right (non-negativity
constraint)

5 Why the approach works for subtensors with respect to every mode

Let’s consider a simple case of a three-order tensor X ∈ RI1×I2×I3 . Let’s assume

{1, ..I1} = θ
(1)
1 ∪ θ(1)

2 , {1, ..., I2} = θ
(2)
1 ∪ θ(2)

2 , {1, ..., I3} = θ
(3)
1 ∪ θ(3)

2 ,

with:
θ

(n)
1 =

{
1, · · · , Int

(
In
2

)}
, θ

(n)
2 =

{
Int
(
In
2

)
+ 1, · · · , In

}
, Int(x): the greatest integer that is less or equal to x

As the discrepancy can be rewritten along the sets

f

(
G,
{
A(m)

}N
1

)
= ‖X − G ×m∈I3 A(m)‖2F

=

2∑
m1=1

2∑
m2=1

2∑
m3=1

‖X
θ
(1)
m1
,θ

(2)
m2
,θ

(3)
m3

− G ×1 A
(1)

θ
(1)
m1
,:
×2 A

(2)

θ
(2)
m2
,:
×3 A

(3)

θ
(3)
m3
,:
‖2F

The derivative of f with respect to A(1) is equal to [∂
A

(1)

θ
(1)
1 ,:

f, ∂
A

(1)

θ
(1)
2 ,:

f ] ([, ]: row-wise stacking

operator).
The derivative of f with respect to A

(1)

θ
(1)
1 ,:

requires the processing of the subtensors{
X
θ
(1)
1 ,θ

(2)
m2
,θ

(3)
m3

}
1≤m2,m3≤2

. The same reasoning obviously holds for other derivatives.

Our approach applied to this splitting scheme simply requires the sequential processing of subtensors
X s ∈ R

I1
2 ×

I2
2 ×

I3
2 .

More generally, for X ∈ RI1×...×IN with In =
⋃̇p
k=1

{
(k − 1)× Int( Inp ) + 1, ....k × Int( Inp )

}
(disjoint union), our approach simply requires the processing of subtensors of size Int( I1p )× ....×
Int( INp ).
This means that for our approach, we can use the subtensors as small as we want since we can
choose p as large as we want.

6 Space and time complexity analysis

The complexity (in time) of Singleshot and Singleshot-inexact are given by the table 1. Compared
to the two standard decomposition approaches Tucker-ALS (also named HOOI) and HOSVD,
which use the whole tensor at once and have a complexity O(IN+1) [3], Singleshot requires more
computations, but is more flexible than HOOI and HOSVD in the sense that Singleshot performs the
inference task by sequential processing of small chunks of data (instead of using the whole data set at
once) and can be easily extended to incorporate some popular constraints in tensor decomposition
such as non-negativity.

In terms of complexity, the approaches Singleshotinexact and Singleshot differ only in computation
time (see table 2) since the individual terms in the derivatives are identical (resulting in the same
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space complexity: see table 1), but unlike Singleshot, Singleshotinexact simply drops some of the
terms instead of using all of them (resulting in a smaller complexity in time compared to Singleshot).

Singleshot

Constraints

Steps
Update of A(p), 1 ≤ p ≤ N Core update

Unconstrained (N−1)(
∏N
k=1 Ik)(

∏
k 6=n Jk)+In

∏N
k=1 Jk+

IpJp + Jp
∏
k 6=n I2

k + IpJ
2
p + 2IpJp

N
∏N
k=1 IkJk + 2

∏N
k=1 Jk + N

∏N
k=1 J2

k +∑N
n=1 InJ

2
n

Nonnegativity (N−1)(
∏N
k=1 Ik)(

∏
k 6=n Jk)+In

∏N
k=1 Jk+

IpJp + Jp
∏
k 6=n I2

k + IpJ
2
p + 3IpJp

N
∏N
k=1 IkJk + 3

∏N
k=1 Jk + N

∏N
k=1 J2

k +∑N
n=1 InJ

2
n

Singleshotinexact
Unconstrained (N−1)(b

∏N
k 6=n Ik)(

∏
k 6=n Jk)+b

∏N
k=1 Jk+

bJp + Jp
∏
k 6=n I2

k + bJ2
p + 2bJp

Nb
∏
k 6=n Ik

∏N
k=1 Jk + 2

∏N
k=1 Jk +

N
∏N
k=1 J2

k +
∑
m 6=n ImJ2

m + bJ2
p

Nonnegativity (N−1)(b
∏
k 6=n Ik)(

∏
k 6=n Jk)+b

∏N
k=1 Jk+

bJn + Jp
∏
k 6=n I2

k + bJ2
p + 3bJp

Nb
∏
k 6=n Ik

∏N
k=1 Jk + 3

∏N
k=1 Jk +

N
∏N
k=1 J2

k +
∑N
m 6=n ImJ2

m + bJ2
p

Singleshotonline
Unconstrained (N − 1)(b

∏N
k 6=n Ik,t)(

∏
k 6=n Jk) +

b
∏N
k=1 Jk+bJp+Jp

∏
k 6=n I2

k,t+bJ2
p+2bJp

Nb
∏
k 6=n Ik,t

∏N
k=1 Jk + 2

∏N
k=1 Jk +

N
∏N
k=1 J2

k +
∑
m 6=n Im,tJ

2
m + bJ2

p

Nonnegativity (N − 1)(b
∏
k 6=n Ik,t)(

∏
k 6=n Jk) +

b
∏N
k=1 Jk+bJn+Jp

∏
k 6=n I2

k,t+bJ2
p+3bJp

Nb
∏
k 6=n Ik,t

∏N
k=1 Jk + 3

∏N
k=1 Jk +

N
∏N
k=1 J2

k +
∑N
m 6=n ImJ2

m + bJ2
p

Table 1: Complexity in time per update (one iteration of gradient descent). For Singleshot and
Singleshotinexact, we consider one-mode subtensors drawn from a tensor X ∈ RI1×...×IN . For
Singleshotonline, we consider b subtensors X ∈ RI1,t×..In−1,t×b×In+1,t..×IN,t acquired with respect
to a mode n at the time step t. For all of the methods, we consider to have a core tensor G ∈
RJ1×...×JN and for the non-negativity, we consider the projected gradient descent [14]. with Ij,t
representing the dimension at the time step j

Singleshot/Singleshotinexact

Constraints

Steps
Update of A(p), 1 ≤ p ≤ N Core update

Constrained or unconstrained
∏
m∈IN 6=n

Im +
∑
m∈IN 6=m

ImJm + Jp +

IpJp

∏
m∈IN 6=n

Im +
∑
m∈IN 6=m

ImJm + Jp +∏
m∈IN

Jm

Singleshotonline

Constraints

Steps
Update of A(p) , 1 ≤ p ≤ N Core update

Constrained or unconstrained
∏
m∈IN 6=n

Im,t +
∑
m∈IN 6=m

Im,tJm +

Jp + Ip,tJp

∏
m∈IN 6=n

Im,t +
∑
m∈IN 6=m

Im,tJm,t +

Jp +
∏
m∈IN

Jm

Table 2: Complexity in space. For Singleshot and Singleshotinexact, we consider one-mode subtensors
drawn from a tensor X ∈ RI1×...×IN . For Singleshotonline, we consider b subtensors X ∈
RI1,t×..In−1,t×b×In+1,t..×IN,t acquired with respect to a mode n at the time step t. For all of the
methods, we consider to have a core tensor G ∈ RJ1×...×JN and for the non-negativity, we consider
the projected gradient descent [14]. with Ij,t representing the dimension at the time step j
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