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Abstract MEthane Remote LIdar missioN (MERLIN) is a German-French space mission, scheduled for
launch in 2024 and built around an innovative light detecting and ranging instrument that will retrieve
methane atmospheric weighted columns. MERLIN products will be assimilated into chemistry transport
models to infer methane emissions and sinks. Here the expected performance of MERLIN to reduce
uncertainties on methane emissions is estimated. A first complete error budget of the mission is proposed
based on an analysis of the plausible causes of random and systematic errors. Systematic errors are spatially
and temporally distributed on geophysical variables and then aggregated into an ensemble of 32 scenarios.
Observing System Simulation Experiments are conducted, originally carrying both random and systematic
errors. Although relatively small (±2.9 ppb), systematic errors are found to have a larger influence on MERLIN
performances than random errors. The expected global mean uncertainty reduction on methane emissions
compared to the prior knowledge is found to be 32%, limited by the impact of systematic errors. The
uncertainty reduction over land reaches 60% when the largest desert regions are removed. At the latitudinal
scale, the largest uncertainty reductions are achieved for temperate regions (84%) and then tropics (56%) and
high latitudes (53%). Similar Observing System Simulation Experiments based on error scenarios for
Greenhouse Gases Observing SATellite reveal that MERLIN should perform better than Greenhouse Gases
Observing SATellite for most continental regions. The integration of error scenarios for MERLIN in another
inversion system suggests similar results, albeit more optimistic in terms of uncertainty reduction.

Plain Language Summary Atmospheric methane is the second most important anthropogenic
greenhouse gas. Its evolution in the atmosphere reflects the balance between its emissions and its sinks, both
being still very uncertain. Observations and models are necessary to improve this situation and reduce the
uncertainties associated to the globalmethane cycle, which is critical considering climate change. In this context,
the MEthane Remote LIdar missioN (MERLIN) German-French space satellite mission, scheduled for launch in
2023, will retrieve methane atmospheric columns. MERLIN products will be integrated into atmospheric models
to improve estimates ofmethane emissions and sinks. In this paper, we establish the first complete error budget
of the futureMERLIN instrument and use it to estimate the reduction of uncertainties onmethane emissions that
can be expected once the satellite is launched. The two main findings are that the uncertainties should be
reduced on average by 60% over land, where most methane emissions are located, and that MERLIN should
perform better than the main methane sounder currently on orbit for most continental regions.

1. Introduction

Atmospheric methane is a potent greenhouse gas (GHG), responsible for about 20% of the additional radia-
tive forcing due to human activities since the industrial revolution (Ciais et al., 2013). It received increasing
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attention in the past years because of the still much debated atmospheric concentration variations, which
reflect the evolving balance between surface emissions on one side and the atmospheric and surface sinks
on the other side (Kirschke et al., 2013; Nisbet et al., 2014, 2016; Saunois et al., 2017; Schaefer et al., 2016).
As compared to the longer lifetime of other major GHGs such as carbon dioxide and nitrous oxide, methane,
with a shorter lifetime of about 9 years (Prather et al., 2012), is a particularly appropriate target for climate
change mitigation policies.

Methane emissions have various sources, mostly anthropogenic (~60%), which can be related to three pro-
cesses (Saunois et al., 2016): the biogenic anaerobic degradation of organic matter by Archaea (natural wet-
lands and inland waters, termites, enteric fermentation and manure, rice cultivation, and waste
management), thermogenic formation in the Earth crust at high temperature and pressure (natural degas-
sing of the Earth’s crust and exploitation of fossil fuels), and the pyrogenic combustion of biomass under
low-O2 conditions (biomass and biofuel burning). Total emissions are estimated at 558 Tg CH4/year (range
[554–568]) for the decade 2003–2012. Methane sinks are mainly due to oxidation by OH radicals in the tropo-
sphere (~90%) but also occur in the stratosphere (reactions with O(1D), OH, and Cl radicals), in the marine
boundary layer (reaction with Cl radicals), and in dry soils (methanotrophy).

The estimation of methane sources and sinks can be done using approaches that can be categorized as either
bottom-up (process-based model, data-driven extrapolations, and emission inventories) or top-down (atmo-
spheric inversions; Kirschke et al., 2013). With the objective to estimate sources and sinks together with their
residual uncertainties after observation assimilation, atmospheric inversions optimally combine methane
atmospheric observations; some prior knowledge of emissions and sinks are generally provided by
bottom-up approaches and a model of chemistry-transport linking emissions and sinks to atmospheric mole
fractions, in a Bayesian way (Rodgers, 2000).

Up to the mid-2000s, atmospheric inversions relied exclusively on methane observations provided by surface
networks to constrain regional to global methane emissions (Bergamaschi et al., 2005; Bousquet et al., 2006;
Houweling et al., 1999). Surface networks have the advantage of delivering very precise and accurate
methane observations (<0.1% errors), but they remain sparse and unevenly distributed in space and time
(Dlugokencky et al., 2011). The introduction of satellite data into the field of GHG science offers a revolution-
ary vision of the global atmospheric distribution of these gases and has a large potential to improve our
knowledge about their sources and sinks. Past and present missions using shortwave infrared include the
Scanning Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY on board
European Space Agency’s [ESA’s] ENVISAT, 2002–2012; Buchwitz et al., 2006; Burrows et al., 1995; Dils et al.,
2006; Frankenberg et al., 2006), Japan Aerospace Exploration Agency’s satellite Greenhouse Gases
Observing SATellite (GOSAT, 2009–; Butz et al., 2011; Morino et al., 2011), and, more recently,
TROPOspheric Monitoring Instrument (TROPOMI) on ESA’s Sentinel 5 Precursor (2017–; Hu et al., 2016).
Global and regional inverse modeling of methane fluxes made use of SCIAMACHY (Bergamaschi et al.,
2007, 2013; Houweling et al., 2014; Meirink et al., 2008) and GOSAT (Cressot et al., 2014; Locatelli et al.,
2015; Monteil et al., 2013) satellite retrievals to infer methane emissions. The Infrared Atmospheric
Sounding Interferometer (2006–), developed by the French space agency (Centre national d’études spatiales
[CNES]) in collaboration with Eumetsat, and operating in the thermal infrared (Crevoisier et al., 2009), can also
provide consistent surface emissions with the other data sets (Cressot et al., 2014), although with very low
sensitivity to the boundary layer. More detail on past, current, and planned methane space mission can be
found in (Jacob et al., 2016) and (Gerhard Ehret et al., 2017).

To date, satellite data still need improvements in precision and accuracy to become a robust actor for sources
and sinks estimation in the context of climate change mitigation. For instance, the use of SCIAMACHY neces-
sitates significant bias correction, especially after 2005 due to sensor degradation. These bias corrections vary
with latitude by up to ~40 ppb and are possibly linked to clouds and aerosols (Alexe et al., 2015; Bergamaschi
et al., 2009; Houweling et al., 2014). Although GOSAT retrievals still present significant unexplained biases of
4–6 ppb (Buchwitz et al., 2016) and limited sampling in cloud-covered regions and in the high-latitude winter,
these measurements represent an important improvement compared to SCIAMACHY for both random and
systematic errors (see Table S2 of Buchwitz et al., 2016).

In this context, the MEthane LIdar missioN (MERLIN), a joint French (CNES) and German (Deutsches Zentrum
für Luft- und Raumfahrt [DLR]) space mission, proposes an active measurement approach to retrieve XCH4.
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MERLIN is based on an integrated path differential absorption nadir-viewing LIDAR (LIght Detecting And
Ranging; Gerhard Ehret et al., 2017; Kiemle et al., 2011, 2014; Pierangelo et al., 2015). MERLIN is scheduled
for launch in 2023 (Gerhard Ehret et al., 2017). The integrated path differential absorption technique relies
on differential absorption LIDAR measurements using a pulsed laser emitting at two wavelengths around
the methane doublet at 1.645 μm, one wavelength accurately locked on a spectral feature of the methane
absorption line, and the other wavelength, almost free from absorption, used as reference (Gerhard Ehret
et al., 2017). The system specification for upper bound of the random error is 27 ppb (for a 50-km aggregation
of shot-by-shot measurements along the satellite track). This active method enables measurements for all
seasons, at all latitudes, for both daytime and night-time, while in the differential approach, the small size
of the laser spot (~120 m at the surface along the track), the short length of the laser pulses, and the short
interpulse period are expected to guarantee low systematic errors (target<3.7 ppb) with almost no contam-
ination by water vapor and aerosols. Because the laser light is emitted as a very short pulse (typically 20 ns)
and the received backscattered signal is recorded temporally, the hard target echo can be clearly separated
from the light scattered by aerosols. MERLIN observations will be assimilated by atmospheric inversion sys-
tems to constrain methane surface emissions. A complete description of the MERLIN mission can be found
in (Gerhard Ehret et al., 2017).

Based on inversion systems, Observing System Simulation Experiments (OSSE) have been conducted to study
the impact on GHG surface emissions of uncorrelated random measurement errors (Chevallier et al., 2009;
Houweling et al., 2004; Hungershoefer et al., 2010), of correlated random measurement errors (Chevallier,
2007), of systematic measurement errors (Chevallier et al., 2007), or of transport model errors as a whole
(Chevallier et al., 2010; Houweling et al., 2010). Focusing only on the random part of the errors provides a
too optimistic view of the performances of the tested observing networks to constrain surface emissions.
Indeed, uncorrelated random errors statistically diminish with the time accumulation of raw satellite data
(e.g., 3 Hz for SCIAMACHY, 0.25 Hz for GOSAT, and 20 Hz for MERLIN). On the contrary, systematic errors
remain when accumulating data, and ultimately limit the exploitation of satellite data to constrain
surface emissions.

In this paper, based on an original OSSE system that carries both random and systematic errors and on a
detailed analysis of the plausible causes or these errors along the processing chain, we propose the first
assessment of the potential impact of the MERLIN mission to improve knowledge on methane emissions
from regional to global scale. The impact of MERLIN data on methane sinks is not addressed in this paper.
Section 2 summarizes the OSSE system used. Section 3 presents the methodology employed to derive
MERLIN random and systematic error scenarios on XCH4 and the simulations performed. In order to make
a comparison with an existing mission, section 3 also develops error scenarios for the GOSAT mission.
Section 3 is supported by supporting information Text S1. Section 4 presents and discusses the results
obtained in terms of uncertainty reduction for methane emissions assimilating MERLIN data, together with
a comparison with GOSAT.

2. Inversion Frameworks

In this paper, we conduct a series of OSSE using inverse frameworks integrating error statistics on errors for
future satellite retrievals and prior emissions and sinks, and two different transport models (see supporting
information Text S1).

In brief, posterior error statistics for the CH4 surface fluxes are computed, given (i) the sensitivity of the atmo-
spheric CH4 concentrations to the CH4 surface fluxes (H), (ii) the a priori error statistics (B) on the CH4 surface
fluxes, and (iii) the statistics on the observation errors R (i.e., the measurement errors and errors related to the
chemistry transport model used to compute the sensitivity of concentrations to the surface fluxes). The pos-
terior error covariance matrix (or analysis) A, in a Bayesian framework, is expressed as

A ¼ HtR�1Hþ B�1
� ��1

(1)

with the assumption that the prior uncertainties observation errors, and consequently the posterior uncer-
tainties, follow Gaussian distribution statistics and are unbiased (i.e., with zero mean). According to equa-
tion (1), posterior error statistics do not depend on methane mixing ratios. It is therefore possible to assess
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the impact of any existing or future observing system without actual measurement data as long as their
location, their precision, and the precision of prior emissions in equation (1) can be estimated. An
important limitation of such an approach is that observations and emissions are assumed to be unbiased,
which has not been the case so far for satellite data (Buchwitz et al., 2016) in particular because of aerosol
interference. Here the capability to convert an observation systematic error into an emission systematic
error has been implemented, which is original considering most previous OSSE analyses (e.g., Wecht et al.,
2014). The impact of observation systematic error βy is a systematic error βx on the surface fluxes that can
be expressed as (see supporting information Text S1 for the derivation)

βx ¼ AHtR�1βy (2)

Two inversion frameworks have been used in this paper, one from France (hereafter referred to as SIMGHG)
and one from Germany (hereafter referred as MPI-Jena), differing by the transport model used and the inver-
sion technique and setup implemented. Their description can be found in supporting information Text S1.

3. Error Scenarios on XCH4 for MERLIN and GOSAT
3.1. General View

The assessment of the uncertainty reduction on methane emissions obtained from MERLIN data simulations
requires performing a rigorous error analysis, from the MERLIN signals (level 0 data; see Gerhard Ehret et al.,
2017) to the XCH4 retrievals (level 2 data). At this early stage of the mission, the ongoing development of the
processing chain does not allow using it for a complete error estimate. Therefore, we perform here an analysis
based on a preliminary estimate of the different causes of errors and on some hypotheses on their spatiotem-
poral distribution. Errors statistics shall include random and systematic errors. We define the random errors as
the uncorrelated (or high-frequency) part of the errors and the systematic errors as the low-frequency varying
part, spatially and/or temporally correlated. The threshold between low and high corresponds typically to a
few seconds time duration, for a satellite speed of typically 7 km/s (MERLIN case). By our restrictive definition,
the random error is strictly noncorrelated between two measurements.

In the following, for both random and systematic errors, we estimate errors due to the payload, to the
Numerical Weather Prediction (NWP) data used for the retrieval of XCH4, to the spectroscopy, to the satellite,
and to the data processing (Figure 1). Errors of these different components are estimated and spatially and
temporally distributed on geophysical variables: surface reflectivity, aerosol optical depth (AOD), and surface
pressure for random errors; and latitude, albedo, aerosol transmission, surface pressure, topography, and
season for systematic errors. This analysis (section 3.2) is detailed below and leads us to define scenarios
of random and systematic errors for MERLIN XCH4 that are then applied to the atmospheric inversion sys-
tems. The outcome is an estimate of the residual uncertainty on methane emissions when assimilating
MERLIN (level 4 data; see sections 2 and 4). We also develop scenarios of uncertainty for GOSAT mission
(section 3.3) in order to compare GOSAT and MERLIN performances for uncertainty reduction on
methane emissions.

Figure 1. Relative share of contributors to the random error (a) and to the systematic error (b) for MERLIN XCH4. Note that
the representation is linear (parts per billion in the pies), while the actual summation of contributors is quadratic
(percentages in the legend). NWP = the Numerical Weather Prediction data used to perform the level 2 retrievals;
Spectro = spectroscopy; MERLIN = MEthane Remote LIdar missioN.
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3.2. MERLIN Error Statistics
3.2.1. Random Errors
We define random observation errors as all random errors related to the inability of the model to represent
the observations (Rmatrix in equation (1), Rodgers, 2000). It should include the measurement error on XCH4,
the transport model error, and the aggregation error.
3.2.1.1. Measurement Errors
For the measurement error, the potential causes of random error include the payload, the NWP data used for
the retrieval of level 2 MERLIN product, the platform, the spectroscopy, and the data processing. This part of
the error reduces in when aggregating measurements. The instrument noise contributors are such that this
reduction remains valid up to 50 km, the typical aggregation length chosen here, the speckle noise, for
instance, being negligible. As detailed in the supporting information Text S2 and summarized in Figure 1a,
the dominant (~3/4) cause of random error for MERLIN XCH4 comes from the payload and more precisely
from the measured DAOD (differential absorption optical depth), using a commercially available avalanche
photo diode that does not require extra cooling as the detector unit. The individual noise terms of such an
avalanche photo diode device and how these terms contribute to the overall radiometric resolution can
be found in (G. Ehret et al., 2008, Eqs. 7 to 11). For the calculation of the radiometric performance, we used
equation (S2d) which is a more compact version provided by the payload supplier. XCH4 is linked to DAOD
by the following relationship:

XCH4 ¼ DAOD

∫0PsurfWF dP
(3)

where WF is the MERLIN specific weighting function (Gerhard Ehret et al., 2017). Other minor causes of ran-
dom errors for XCH4 come from the vertical weighting function WF and include the impact of spectroscopy,
of external NWP data (temperature, surface pressure, and humidity, necessary in the retrieval procedure of
XCH4), and of estimations of the target scattering surface elevation. They appear however negligible when
quadratically summed up with the payload errors. As the processing of MERLIN data up to level 2 can be writ-
ten in a fully analytical form, the error budget for XCH4 is estimated mostly through an analytical approach
(see supporting information Text S2). XCH4 errors have been calculated and tabulated once for all for a 50-
km aggregation along the satellite track as a function of the parameters determining the analytical expres-
sion of XCH4 errors (see equations (S2a)–(S2h) in the supporting information Text S2): surface reflectivity
(assumed to be reflectance/π, calculated from 0.01 to 0.4 by steps of 0.01), AOD (from 0 to 0.5 by steps of
0.1), and surface pressure (from 500 to 1050 hPa by steps of 50 hPa.

From these random error causes for MERLIN observations, we have developed one scenario of random
measurement error for MERLIN to be used in the OSSE system (see Text S2 for details). The nominal ran-
dom measurement error for MERLIN for a clear-sky optimal scene of surface reflectivity 0.1 sr�1 and 50-
km averaging is found at ±22 ppb, compliant with the system specification requirements (±27 ppb).
However, random errors for other scenes (i.e., with different values of surface reflectivity or AOD) are
generally larger than this reference situation, and for MERLIN they range from 18 to 93 ppb (respectively
5th and 95th percentiles of the distribution), with a minimum of 6 ppb, a 68th percentile of 47 ppb, and
a mean of 42 ppb.
3.2.1.2. Transport and Aggregation Errors
The transport model error has been estimated from two simulations performed with LMDZ, using two dif-
ferent convection schemes, following either Tiedtke (1989) or Emanuel (1991). This approach has been
chosen as parametrizations of the vertical transport are one of the main causes of errors in modeled
transport (Locatelli et al., 2015). Monthly averaged methane columns from the two LMDZ simulations
have been subtracted and used to represent the spatiotemporal patterns of the model error. The magni-
tude of the model error is obtained by scaling these monthly differences between 8 and 23 ppb in order
to have similar variations as the error statistics obtained in Cressot et al. (2014) using a different but more
comprehensive approach to estimate the magnitude of model errors. We assume here that this range
includes aggregation errors as well. The transport model error defined that way show quite strong spatial
gradients, especially between the two hemispheres, and a pronounced temporal variability. The model
error is added on top of previous random errors and is not reduced by the square root of the number
of measurements.
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3.2.1.3. Total Random Error
The spatial breakdown of the total random observation error (measurement + model) are shown in Figure 2a
for continents and Figure 2b for oceans. Total random observation errors range from 16 to 60 ppb over land
and from 22 to 105 ppb over oceans (5th and 95th percentiles), with larger errors over oceans as compared to
continents, which is mostly explained by the decrease of the XCH4 errors with the surface reflectivity (higher
for land than for ocean). The highest error values can be related to cloud covers limiting the number of clear-
sky observations (e.g., equatorial continents), to reflectance effects (e.g., southern oceans or snow surfaces
that have lower reflectivity than soil/vegetation surfaces at the MERLIN wavelength, such as Canada or
Siberia, to aerosol presence (e.g., tropical Atlantic) or to transport errors (e.g., Asia, tropical continents, and
Siberia). Figure 2 looks very similar to the first estimate of MERLIN precisions made by Kiemle et al. (2014;
see their Figure 5) using a composite database of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observation cloud/aerosol optical depths and Moderate Resolution Imaging Spectroradiometer/Global
Modeling and Assimilation Office reflectances for year 2007. The maps of Figure 2 are used to fill the diagonal
(variances) of the Rmatrix of equations (1) and (2). The total number of MERLIN data aggregated over 1 year is
about 1,600,000 (650,000 over lands).
3.2.2. Systematic Errors
Following our definition, systematic errors consist in spatially and/or temporally correlated errors. For
instance, an error that would depend on surface pressure is spatially correlated because of the relatively
smooth patterns of surface variations on certain areas (plains, oceans…). Consequently, their impact in terms
of fluxes error strongly depends on their spatial and temporal distribution. In the following, a systematic error
of y ppb is to be interpreted such that 68% of the data are in the range ±y ppb around the mean value of the

Figure 2. (a, b) Yearly average at 50 km of MERLIN random error for the methane atmospheric columns (ppb) for each
LMDZ grid cell over continental regions (a) and over oceanic regions (b). Color scales are different between the two
maps reflecting larger random errors over the oceans. (c, d) Two examples of scenarios for MERLIN systematic errors (ppb)
with identical (c) or opposed signs (d) when combining albedo and surface pressure. All scenarios are presented in
Figure S4b. MERLIN = MEthane Remote LIdar missioN.
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error. This corresponds to one sigma convention for a Gaussian distribution but may be easily extended to
non-Gaussian distributions. The constant part of the error is removed in the assimilation process through
the optimization of a global offset. Here we ignore model error correlations (off diagonal term of the R
matrix in equation (1), as in most OSSE.

Several possible causes of systematic errors have been identified for MERLIN (Ehret et al., 2017): from the pay-
load, the DAOD calibration variations between on and off wavelengths (thermoelastic effects inside the
instrument) and linearity issues (variation of the received flux leading to a nonlinear detector response).
The requirement for the relative online/off-line calibration stability is ~8.10–4 in order to meet the error bud-
get given in the second column of Table 1. The envisaged calibration concept described in Ehret et al. (2017)
has been studied in detail in the laboratory and was applied by the MERLIN airborne demonstrator named
CHARM-F where a calibration stability of about 1 part to the 104 could be demonstrated using the Allen var-
iance method (Fix et al., 2015). A similar data analysis will be used in the ground processing to analyze the
calibration stability of the MERLINmeasurements in orbit. The XCH4 error due to the detector nonlinearity will
be characterized on ground with an accuracy better than 0.1% which corresponds to a nonlinearity error of
similar amount. For quantification of a possible detector degradation on orbit, we will use the long-term
monitoring function for comparing two pairs of online/off-line measurements over regions with high reflec-
tivity (deserts) to those from regions with low reflectivity (water or snow). The spectral control (frequency jit-
ter, spectral purity, etc.) of the online and off-line wavelengths will be performed by a dedicated frequency
reference unit which is part of the payload subsystem as described in Ehret et al. (2017). Note that an inde-
pendent and very sensitive monitor of the spectral purity on orbit is given from a comparison of the lidar
echoes at different optical depth. For this, the cloud echoes which provide significantly reduced DAOD values
will be compared to the ground returns. Other possible causes of error regarding the payload include con-
stant error on DAOD converting into variable error on XCH4, temperature or pressure errors from NWP mod-
els, errors on satellite altitude after orbit restitution, limited knowledge in the spectroscopy model, and data
processing (averaging at 50 km along the track).

The representation of atmospheric transport can also cause systematic errors. The assimilation of atmo-
spheric columns limits the impact of the usual underestimation of synoptic variability at the surface of coarse
global models (Geels et al., 2007). However, most global models underestimate the sharp methane gradient
in the stratosphere with possible latitudinal differences, which can lead systematic errors (Patra et al., 2011).

Table 1
Contributors to Systematic Errors, Their Amplitude, Their Root Cause, the Associated Geographical Pattern, and Their Dependency Mathematical Relation

Level 2 systematic error
contributor

Relative
systematic
error (RSE) Potential root cause Geographical pattern

Dependency
relation

DAOD calibration path variations
between on and off

0,084% Thermoelastic effects inside the instrument Latitude (50%)/season (50%) Sine/sine

DAOD linearity residuals 0.099% Variation of the received flux on the detector
chain

Reflectivity × aerosol transmission Linear

Surface pressure (NWP) 0.024% Regional errors in NWP models Regional
Scattering surface elevation 0.059% Errors on satellite altitude after orbit

restitution
Latitude Sine

Temperature (NWP) 0.028% Latitudinal and/or regional errors in NWP
models

Latitude Sine

Spectroscopy model knowledge 0.035% Limited knowledge of spectroscopy model;
its impact depends on pressure and also on
temperature

Surface pressure Linear

Processing (averaging of data) 0.056% Averaging along 50 km and associated bias
correction

Topography (25%) reflectivity/aerosol (75%) Linked to SP
changes/Linear

Constant error on DAOD 0.03% Constant error on DAOD gives variable error
on XCH4

Surface pressure Linear

Total (quadratic) 0.164%
Total in ppb 2.926

Note. A detailed analysis is provided in supporting information Texts S2 and S3. SP = surface pressure; DAOD = differential absorption optical depth; NWP =
Numerical Weather Prediction.
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We do not address this issue explicitly but assume here a possible
latitudinal dependency of the nonuniform contribution of such an error
(Tables 1 and 2).

Based on the expertise at CNES and DLR, the individual systematic errors
have been estimated and distributed spatially and temporally on geophy-
sical variables (Table 1): latitude, surface pressure, topography, albedo
(reflectivity), AOD, and seasons (see supporting information Text S2 and
Figure S4a). For instance, thermoelastic effects have been distributed
50% in latitude (short-term effects) and 50% on seasons (long-term
effects). Processing effects have been distributed according to topogra-
phy, albedo, and AOD. The total value in Table 1 (~ 2.9 ppb), in parts per
billion, corresponds to the best estimation of total systematic error at this
point of the mission. It is important to notice that, at this stage, it complies
with the objective to keep total systematic error below 3.7 ppb. Once all

causes of systematic errors are distributed, wemerge the contributors having the same patterns to get a view
of the systematic error per pattern type (Table 2). Overall, the main patterns contributing (quadratic sum) to
the 2.9 ppb total systematic error is albedo (2.5 ppb) followed by latitude (1.6 ppb), seasons (1.1 ppb), and
surface pressure (0.8 ppb).

Table 2 is not sufficient to get a mixed error global distribution, because the question still holds on how to
account for the sign (positive or negative) when combining the individual patterns of systematic errors.
Therefore, a statistical approach is chosen to perform the combination, in which total monthly systematic
error maps are generated for all possible sign combinations of the five different spatial and temporal patterns
of Table 2 (seasons, latitude, albedo × transmission, surface pressure, and topography) when multiplying
each weighted pattern by +1 or �1. Doing so, 32 scenarios (25 = 32) of possible total systematic errors have
been generated for MERLIN (Figure S4b) to be used as inputs for the OSSE (equation (2), βy vectors). Each map
is scaled such that 68% of the distribution is at 2.9 ppb. An illustration of the spatial distribution of two error
scenarios is provided in Figures 2c and 2d.

In reality, the residual systematic error patterns (after correction of identified biases) will be unknown. The
distribution of systematic errors generated here aims to be statistically representative and conservative
regarding error distributions but does not claim to be the actual distribution.

3.3. GOSAT Error Statistics

We have compared the expected MERLIN performances with GOSAT ones. To do so, for GOSAT, we use the
SRPR product, version 2.3.7, of ESA’s Climate Change Initiative (http://www.esa-ghg-cci.org/) for GOSAT (Butz
et al., 2010). SRPR, produced by SRON (Netherlands Institute for Space Research), includes a best uncertainty
description attached to each XCH4 data. This uncertainty corresponds to the Bayesian estimate of the
measurement uncertainty that is degraded (R. Detmers, personal communication, October 2016) to account
for the comparison with data from the Total Carbon Column Observing Network (Wunch et al., 2011). We
use these modified values (factor ~1.5 increase) to represent the random error of GOSAT data (not shown).
GOSAT random error ranges from 14 to 29 ppb, (respectively 5th and 95th percentiles), with 68% of the data
within ±20 ppb (mean of 19 ppb), about 3 times lower on average than the MERLIN random errors at 50-km
resolution. However, the total number of GOSAT data aggregated over 1 year is about 280,000, only 20% of
the number of MERLIN data. The SRPR product includes bias-corrected XCH4 and the bias correction applied
by the SRON team to the raw data. Once centered, the bias correction field appears to have a ±2.6 ppb
spread (at 68%), which makes our scenario S1 for GOSAT.

Bias-corrected SRON data still contain systematic errors, which have been estimated in the range
[4.6–6.3] ppb by comparison with Total Carbon Column Observing Network data (Buchwitz et al.,
2016). The patterns of these residual systematic errors are largely unknown, but the usual suspects
for such a passive measurement as performed by GOSAT are aerosols, water vapor, and thin clouds
(S. Houweling, personal communication, October 2016). We therefore distribute the residual systematic
errors of GOSAT on the distribution of these geophysical parameters. Aerosols are derived from
Moderate Resolution Imaging Spectroradiometer climatology products (Frey et al., 2008; Remer et al.,

Table 2
Weight Attributed to the Individual Systematic Error Patterns to Get the
Mixed Scenarios

Pattern Amplitude of the relative systematic error In ppb

Seasonal 0.059% 1.057
Latitude 0.088% 1.575
Albedo*Tatm 0.141% 2.510
Regional 0.024% 0.427
Surface pressure 0.046% 0.821
Topography 0.014% 0.250
Total (quadratic) 0.164% 2.926

Note. The same convention as for the random error applies here: The value
given here in parts per billion (ppb) corresponds to the value such that
68% of the histogram has an absolute value error below.
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2005); water vapor fields come from European Centre for Medium-Range Weather Forecasts ERA-Interim
re-analysis (Dee et al., 2011); thin clouds are identified from the CALIOP_05 km CLay cloud mask (O’Dell
et al., 2017) as clouds having a value of the integrated attenuated backscatter below 0.001. In addition,
similar to MERLIN, a bias dependent on latitude is taken into account for GOSAT, linked to possible
transport model errors (see section 3.2.2), but also to stratospheric aerosol (O’Dell et al., 2017). We
then combine Scenario S1 with each of these geophysical biases to get a total systematic error
pattern for GOSAT. Again, as for MERLIN systematic errors, the sign of each contributor is uncertain
and we therefore generate all possible scenarios by multiplying each individual pattern by +1 or �1.
Doing so, we obtain 32 scenarios of total systematic error for GOSAT (Figure S4c) to be used as
inputs for equation (2) (βy vectors). Lacking more precise information, weighting coefficients have been
arbitrarily defined for each pattern: it is unity for the SRON retrieval bias and 0.25 for each of the four
geophysical biases. The total bias for each scenario is further scaled to get a spread at 68% of
±5.45 ppb, which corresponds to the mean of the residual error (between 4.6 and 6.3 ppb) estimated
in (Buchwitz et al., 2016).

About the GOSAT/MERLIN comparison, one could argue that the known bias correction for GOSAT
should be applied to correct GOSAT data. We did not do so to make a fair comparison with MERLIN
for which we do not know at this stage what part of the systematic errors will be possibly corrected,
when actual data are there. Also, a more physically based analysis of MERLIN systematic errors in the
future, using the instrument simulator currently under development, will allow realistic scenarios among
the 32 generated (Figure S4b). This may reduce the impact of systematic errors if amplifying scenarios
can be discarded based on physical arguments. For this reason, the systematic errors estimated here are
probably conservative.

3.4. Simulations and Diagnostics

The error scenarios developed to represent MERLIN and GOSAT random and systematic errors have been run
in the SIMGHG flux simulator. For the two satellites, each scenario is converted into geographically distribu-
ted errors on methane emissions using the SIMGHG simulator (βxfrom equation (2), which also provides the
residual random error (σrandom) from the diagonal of A matrix from equation (1). Assuming their indepen-
dence, βx and σrandom errors are quadratically combined to generate the total residual error on methane
emissions after inversion for each scenario (root-mean-square [RMS] in mg CH4·m

�2·day�1). Finally, this total

residual error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2random þ β2x

q
is converted into uncertainty reduction (Ered in percent) as compared to the prior

(random only) error on surface fluxes (σprior) following equation (4):

Ered ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2random þ β2x

q

σprior

0
@

1
A�100 (4)

Under the Bayesian theory, the higher the information content brought by the assimilated data is, the lower
σrandom is compared to σprior. However, the introduction of systematic errors (βx) can cause the overall uncer-

tainty on the posterior emissions (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2random þ β2x

q
) to be higher than σprior, which implies a negative error

reduction with our formalism (Ered < 0). If biased data could be identified, they would be discarded from
the inversion and, in this case, the uncertainty reduction would remain positive or null. However, in the
real world, biased data are not always identified, which justifies to keep the negative values of Ered as indi-
cators of regions where unknown systematic errors could degrade knowledge on surface emissions (e.g.,
Chevallier et al., 2007).

SIMGHG solves the inversion problem for 254 continental regions. It is also possible to aggregate the calcu-
lated variances and covariances for each SIMGHG region and each week (from equations (1) and (2) into
larger regions (e.g., Europe, Tropical Asia, …), following the region map of the Tracer Transport Model
Intercomparison Project (TransCom, Gurney et al., 2004) and on a yearly basis, in order to get annual error
budgets for broader regions or at global scale. In the next section, we present both uncertainty reductions
(%) and residual errors per large region (Tg CH4/year) for the ensemble of scenarios described in this section.
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4. Results and Discussion
4.1. Uncertainties at Regional Scale

Solving for equations (1) and (2) leads to random and systematic uncertainties on methane emissions that
can be quadratically combined into the total residual error. The random part of the residual uncertainty
(σrandom, Figure 3b) shows smaller values than the prior estimate (Figure 3a) for all continental and oceanic
regions as, mathematically from equation (1), σrandom is smaller or equal to σprior (Rodgers, 2000). The smaller
σrandom, the larger the constraints brought by the MERLIN data. The difference between σrandom and σprior is
especially visible on continental regions (e.g., tropics or midlatitudes). The systematic part of the residual
uncertainty (βx) shows more contrasted results, with most continental regions showing smaller uncertainties
than σprior but with some continental regions and most oceanic regions showing comparable to larger

Figure 3. Errors on methane emissions (mg CH4·m
�2·day�1. (a) The prior random errors as injected in the OSSE (σprior, B

matrix, see section 3.2.1). (b) The residual random error σrandom as estimated by the OSSE. Maps (c) to (e) represent the total
residual errors

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2random þ β2x

q
dominated by βx for MERLIN scenario 14 (see section 3.2.2) in different configurations: All

MERLIN data are assimilated (c), only MERLIN data over land are assimilated (d), and only MERLIN data over oceans are
assimilated (e). (f) The residual systematic errors βx for GOSAT scenario 14 (see section 3.3). MERLIN = MEthane Remote
LIdar missioN; OSSE = Observing System Simulation Experiments; GOSAT = Greenhouse Gases Observing SATellite.
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uncertainties compared to σprior. Figure 3c illustrates this for scenario 14 (all scenarios are visible in Figure S4d).
Differences remain small and not visible for ocean regions in Figure 3 because methane emissions and their
uncertainties are small over ocean regions (global uncertainty of 4 Tg/year only). Using only data over land
(Figure 3c) or oceans (Figure 3d) leads to similar total residual errors as with all data. However, regional
changes in the magnitude of residual uncertainties can be observed in Figure 3, with some regions even
presenting smaller residual uncertainties (e.g., deserts). In order to analyze more precisely the differences
between these configurations, we now present the uncertainty reductions calculated from equation (4).

At the scale of the regions inverted by the SIMGHG simulator, Figure 4a shows the spatial pattern of the
uncertainty reductions on CH4 emissions when only accounting for MERLIN random errors. Unsurprisingly,
when removing systematic errors, uncertainty reductions are excellent over land (range 40–80%) and signif-
icant above coastal ocean regions (range 0–30%). When including the effect of systematic errors (Figure 4b,
example of scenario 14, see supporting information Figure S4d), most continental regions still show positive,
but generally smaller, uncertainty reduction indicating that MERLIN data bring information there. However,

Figure 4. Example of uncertainty reduction Ered (%; see equation (4)) on methane emissions when only random errors are
taken into account (a) and for the same three configurations of systematic error scenario 14 as shown in Figure 3 (b, c, d).
(b) All MERLIN data are assimilated. (c) Only MERLIN data over land are assimilated. (d) Only MERLIN data over oceans are
assimilated. (e) All GOSAT data are assimilated. A negative uncertainty reduction indicates regions where systematic
errors lead to larger uncertainties than the current uncertainty on surface emissions. Contributions of the different regions
to the global methane emissions are shown in Figure 7 and printed in Table 3. Residual uncertainties on emissions
for all scenarios are presented in Figures S4d (MERLIN) and S4e (GOSAT). MERLIN = MEthane Remote LIdar missioN; GOSAT
= Greenhouse Gases Observing SATellite.
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most oceanic regions and deserts show negative error reductions (bluish colors in Figure 4b). As could be
expected, systematic errors dominate the residual error budget and can significantly degrade uncertainty
reductions to smaller positive values (~ most continental regions) or even to negative values (~ oceans
and deserts). This negative result has to be moderated by the fact that oceans and deserts represent only
3% at most of global methane emissions (Saunois et al., 2016). In our approach, such low emissions are asso-
ciated to a very small prior uncertainty (σprior, Figure 3a), therefore enhancing the relative impact of systema-
tic errors on uncertainty reductions. Our choice to distribute one part of the systematic error proportional to
the surface albedo is the main cause of such large negative values. Whether such choice is physically realistic
or not cannot be assessed at present.

Overall, the mean uncertainty reduction for MERLIN is +32% (range �1%/+65%) for continental regions and
�200% (range �400%/�100%) for oceanic regions. These estimates account for the spatial and temporal
error correlations between emitting regions (off diagonal terms of the A matrix in equation (1). Removing
Sahara and central Australia from the residual error budget increases the global mean uncertainty reduction
at the scale of the regions used in the inversion from 32% to 60% (range +29%/+92%).

The combination of individual components of the systematic errors can also penalize the uncertainty reduc-
tion. This is the case for most ocean regions (e.g., North and South Pacific and North Atlantic) when albedo
effects have the same sign in the combination as surface pressure effects (scenarios 1, 2, 7–10, 15–18, 23–
26, 31, and 32). When albedo effects have opposite sign as surface pressure effects (other scenarios), the
ocean/continent contrast is enhanced and brings contradictory information to coastal land and ocean
regions, especially when strong western winds link these regions through atmospheric transport (e.g., south
of South America, Coastal regions of Australia, or boreal north America). Such situations degrade the con-
straints brought by the data and lead to negative uncertainty reductions. Again, when more physical models
of MERLIN are available, it should be possible to determine whether such combinations are physical or not.

The way systematic errors are prescribed here can generate large ocean/land contrasts. In order to evaluate
the impact of this approach, we have performed simulations assimilating only land data or only ocean data.
When only assimilating MERLIN data over continents, uncertainty reductions show less negative values over
open oceans and coastal zones, with the exception of southern oceans where only few data are assimilated in
this case (Figure 4c). The uncertainty reductions achieved in this case for continental regions are of the same
order, albeit smaller (deserts removed), than with all data (~ +42%, with values ranging between �19% and
89%) with similar zones of negative values. Oceanic regions still show a degradation although slightly less
pronounced than with all data. When only assimilating MERLIN data over oceans, areas with positive
uncertainty reductions remain over land, albeit generally smaller for individual regions (Figure 4d).
Negative values largely disappear, implying a better global performance. This result may be explained by
the smoother structure of systematic errors above oceans compared to above continents (see supporting
information Figure S4a), by the suppression of the longitudinal gradient of the systematic error over coastline
regions and by the smoothing of continental signals when transported from (mostly continental) emission
zones to remote oceanic data locations. However, here error correlations caused by transport model uncer-
tainty are only indirectly accounted for as a latitudinal dependency (section 3.2.2): Taking their longitudinal
part into account would likely degrade this configuration because of systematic errors in the representation
of methane plumes far from their emission location over land.

4.2. Annual Residual Errors at Continental Scale

The total residual uncertainty onmethane emissions calculated from SIMGHG inversions are now aggregated
onto the 11 continental regions defined in the TRANSCOM experiment (Gurney et al., 2004) for MERLIN error
scenarios, allowing a more synthetic analysis at a larger scale than the previous smaller regions. Error correla-
tions are taken into account when doing both spatial and temporal aggregations. For each TRANSCOM
region, a boxplot represents the results of all scenarios for systematic errors on CH4 emissions (bias) as well

as for the total residual error (RMS, corresponding to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2random þ β2x

q
). They are compared to the correspond-

ing prior and posterior (random) errors. Large desert areas in Northern Africa and Australia have been
removed from the analysis because these regions have null or very low methane emissions but, under our
assumptions, contribute strongly to systematic errors through the chosen albedo dependency of the
systematic errors (cf. section 4.1 and Figure 4b).
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At this spatial scale, the residual random errors are small (average generally<2 Tg CH4/year). The large num-
ber of observations assimilated allows the random part of the uncertainty to largely be decreased, although
MERLIN expected random errors at a 50-km resolution are not the smallest of the existing or planned mis-
sions (Gerhard Ehret et al., 2017; Jacob et al., 2016). However, the contribution of random error on the total
error budget remains limited, the latter being dominated by the impact of systematic errors for all regions,
for all mean values per regions, and for most individual scenarios (Figure 5). This is visible with the boxplots
of Figure 5 showing total residual uncertainties (RMS) which remain very close to boxplots accounting only
for the systematic errors (BIAS). This result stresses again the importance of properly accounting for systema-
tic errors and, whenever possible, correcting them, if one wants to robustly improve the estimation of
methane emission estimates.

Figure 5. Posterior error statistics of regional methane emissions for MERLIN and GOSAT (Tg CH4/year) using SIMGHG. For 11 continental regions, a comparison
between residual errors on methane emissions between MERLIN (blue) and GOSAT (orange) is proposed: Dark blue/orange boxplots (the two rightmost boxplots
of each region) represent the MERLIN/GOSAT residual total error (RMS), light blue/orange boxplots (the two leftmost boxplots of each region) represent the
MERLIN/GOSAT residual systematic error, and dashed blue/orange lines are the MERLIN/GOSAT residual random error. The prior error is shown as the dashed gray
lines. The box extends from the lower to upper quartile values of the data, with the median values shown in black; the whiskers show the range of the data
between the first and third quartiles ±1.5 times the interquartile range. White continental areas correspond to desert zones of Australia and Sahara that have been
removed from the analysis (see text). MERLIN = MEthane Remote LIdar missioN; GOSAT = Greenhouse Gases Observing SATellite; RMS = root-mean-square;
SIMGHG = OSSE system based on LMDZ model (see section 2).
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The median of residual biases ranges generally between 2 and 4 Tg CH4/year at this subcontinental scale. For
all regions but Australia and Boreal North America, the RMS of all scenarios are smaller than the initial
(random only) error, indicating a clear improvement in the knowledge of methane emissions with MERLIN
data, mostly thanks to the lower systematic errors compared to other missions.

In terms of uncertainty reduction for the 11 (continental) regions (Table 3), the values range from �132%
(Australia) to +87% (temperate Asia). Only Australia shows negative error reductions, associated to low emis-
sions and low prior uncertainty (see section 4.1). The largest uncertainty reductions are achieved for tempe-
rate regions and for tropical regions (Gerhard Ehret et al., 2017, see their Figure 7), with uncertainty
reductions from 54% (temperate North America) to 87% (temperate Asia) for temperate regions and from
42% (northern Africa) to 68% (tropical America) for the tropics. Boreal regions also show significant uncer-
tainty reduction from 8% (boreal North America) to 58% (boreal Asia).

For boreal North America, although the median RMS is below the prior error, some scenarios infer a degrada-
tion. The situation is worse for Australia with no scenario improving the prior error. Indeed, we identified in
section 4.1 albedo and surface pressure and their relative sign in the error combination as the main cause
limiting the uncertainty reductions for subregions inside boreal North America and Australia. The penalty
is largest for Australia (negative uncertainty reduction) andmore limited for boreal North America (small posi-
tive uncertainty reduction). Even when removing the desert areas of these two regions (white zones in
Figure 5) the issue remains, as also possibly related with the coastal effect noticed in section 4.1.

Thanks to its active measurement technique, MERLIN is expected to improve our knowledge on methane
emissions all around the world and all year round, including at high latitudes. The breakdown of
TRANSCOM regions does not allow one to assess the impact of MERLIN data on Boreal regions as a whole
because Europe is not separated into boreal and temperate regions. Therefore, we extracted a boreal region
from the individual regions of section 4.1 to estimate the uncertainty reduction induced by MERLIN data
(Figure 6). At this more latitudinal scale, and for all error scenarios, residual total errors for MERLIN are lower
than the initial error, with an uncertainty reduction of about 50%, indicating a significant improvement of the
knowledge on methane emissions for this important climate-sensitive zone (Figure 6).

4.3. Comparison With GOSAT

We now compare the expected performances of MERLIN with the estimated ones of GOSAT based on the
error scenarios developed for this already flying satellite (section 3.3). At the scale of individual regions used
in the OSSE, for all regions but deserts, GOSAT present comparable to larger residual errors than MERLIN
(Figure 3f), indicating that MERLIN is generally reducing uncertainties on methane emissions more than

Table 3
Mean (Median) and Range of Uncertainty Reductions (%) on Methane Emissions Inferred by SIMGHG for 11 Regions Mapping all Continents for MERLIN (Left Columns),
GOSAT (Central Columns), and for Cressot et al. (2014) (Right Columns)

Regions

MERLIN GOSAT (this study) GOSAT, (Cressot et al., 2014)
Fraction of global
emissions (%)Mean (median) Range Mean (median) Range Mean

Europe 80 (80) 73/90 54 (55) 25/80 18 5
Boreal Asia 58 (59) 37/77 10 (10) �34/53 11 7
Temperate Asia 87 (88) 71/94 63 (58) 47/86 40 18
Tropical Asia 65 (66) 46/83 17 (17) �2/39 30 20
Australia �132 (�111) �287/�30 �40 (�41) �83/3 1 2
Northern Africa 42 (45) 4/67 11 (13) �24/48 53 8
Southern Africa 66 (65) 53/79 47 (46) 39/54 13 8
Boreal North America 8 (14) �76/75 19 (22) �23/46 7 4
Temperate North America 54 (53) 40/68 28 (30) 4/53 18 7
Tropical America 68 (70) 46/90 22 (22) �2/47 20 17
South America 66 (68) 48/77 27 (26) 15/39 30 3

Note. The rightmost column indicates the % of the global methane emissions due to the associated region. A negative uncertainty reduction indicates regions
where systematic errors lead to larger uncertainties than the current uncertainty on surface emissions. By construction, Cressot et al. (2014) cannot have negative
values. Sahara and Central Australia have been removed from the analysis (see text). Fractions of global emissions per region (last column) are estimated
from Saunois et al. (2016). The missing 1% in the fraction of global emissions stands for oceanic emissions. MERLIN = MEthane Remote LIdar missioN;
GOSAT = Greenhouse Gases Observing SATellite.
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GOSAT. More precisely, uncertainty reductions achieved by GOSAT for continental regions are 23% on
average over all scenarios (ranging from �40% to 78%, example in Figure 4e for scenario 14). The smaller
random errors prescribed for GOSAT as compared to MERLIN are more than compensated by larger
average systematic errors for GOSAT (Figure S4e). Negative uncertainty reductions also appear for GOSAT
but for different regions than for MERLIN, as a result of the spatial structure of the systematic errors
prescribed for GOSAT (albedo, aerosols, water vapor, and thin clouds). In this case negative uncertainty
reductions are found mainly for tropical oceans and continents, boreal North America and boreal North
Asia, and the Sahara, mainly. The mean uncertainty reduction for GOSAT over the oceans is about �80%
(�200% to 22%). This value, not as bad as the�200% found for MERLIN, is probably explained by the penalty
imposed by the combined effects of surface albedo and surface pressure for MERLIN above oceans. However,
large negative values (albeit smaller absolute values than for MERLIN) in coastal areas are also visible for
GOSAT (Figure 4e) but appear less contrasted than for MERLIN, again linked to the spatial distribution of sys-
tematic errors but also to the fact that there are less GOSAT data over oceans (70,000 over oceans versus
210,000 observations over continents).

At the scale of TRANSCOM region (Table 3 and Figure 5), MERLIN (blue bars of Figure 5) does better
than GOSAT (orange bars of Figure 5) on average and for most scenarios. Total residual errors are gen-
erally lower for MERLIN than for GOSAT for all TRANSCOM regions and most scenarios. This means that
the impact of systematic errors is smaller for MERLIN than for GOSAT for all TRANSCOM regions and
most scenarios. This is particularly visible for tropical continental regions (tropical South America, north-
ern and southern Africa, and tropical Asia), for temperate South America, and for boreal Asia. The con-
trast between the performances achieved by the two instruments over tropical regions can be
explained by differences in terms of the number of data available and by the stronger impact of sys-
tematic errors in the tropics for GOSAT.

However, overlapping of extreme scenarios indicates that some GOSAT scenarios do better than some
MERLIN scenarios for some regions. For boreal North America and Australia, the mean residual error is larger
(worse) for MERLIN than for GOSAT, but still, some of the MERLIN error scenarios perform as well as the worst
GOSAT ones (boxplots overlap). This result is directly related to the choices made to distribute the systematic
errors for the MERLIN mission and the penalty effect already described in the previous sections. We develop
here a statistical approach for MERLIN as we do not have actual data as for GOSAT. Future refinements, pos-
sibly discarding some of the error scenarios, will occur when components of the instrument will be available
allowing a more physical estimate of biases and their spatial distribution.

In terms of uncertainty reduction, it is interesting to compare the GOSAT performances estimated in this
study with its actual performances derived from actual GOSAT observations. Using an objective approach
(at least in principle), (Cressot et al., 2014) estimated the uncertainty reduction achieved when

Figure 6. (left) Area (in red) of the model pixels used to define the boreal region. (right) Boxplot representing the residual error after inversion for the boreal region
(same color code as in Figure 5).
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assimilating actual GOSAT data in their inversion system (based on the
retrievals of Parker et al., 2011, on a more recent version of LMDZ trans-
port model and on a variational approach). The regional uncertainty
reductions obtained here for GOSAT are consistent with those of
Cressot et al. (2014; Table 3 and Figure 7). Although absolute values
may differ slightly, regions with the highest uncertainty reductions (tem-
perate Asia and Africa) and the lowest uncertainty reductions (boreal
Asia, boreal North America, and Australia) are consistent in both studies.
Residual errors are more degraded for Australia here (�40%) than in
Cressot et al. (2014; 1%), suggesting again a possibly too pessimistic
view here for the impact of systematic errors (for both GOSAT and
MERLIN). However, a more optimistic view is also found for some other
regions (e.g., Europe, South African regions, and South America) as com-
pared to Cressot et al. (2014). Table 3 and Figure 7 also show the rela-
tive contribution of each region to global methane emissions in order
to put uncertainty reductions in perspective. In this context, Australia,
boreal North America, and boreal Asia only represent respectively 2%,
4%, and 7% of global emissions. The overall consistency between our
work and Cressot et al. (2014) is satisfying for both studies and gives
confidence that uncertainty reductions estimated here for GOSAT and
MERLIN have the right order of magnitude.

4.4. Comparison Between Two Inversion Frameworks

Results of atmospheric inversions are primarily sensitive to the data assimi-
lated, to the transport model used, and to their setup (e.g., Kirschke et al., 2013). Using the same set of ran-
dom and systematic error data, we have performed an OSSE for MERLIN using the error scenario 28 and the
two inversion frameworks based respectively on LMDZ (SIMGHG, see section 2) as previously, and on the TM3
transport model (MPI-Jena, see section 2). As systematic errors are the dominant factor contributing to total
residual errors on methane emissions, we only compare here magnitudes and spatial distributions of the bias
βx on methane emissions obtained by SIMGHG and the MPI system, both forced by the bias scenario 28, for
January and July (equation (4) and Figure 8).

The largest residual uncertainties in absolute values are located for the same regions for the two systems
with positive values in equatorial Africa, in China, in central to eastern Europe, Canada, eastern tropical
South America, and negative values in northern Africa, western tropical South America, India, and
Bangladesh (July only). Temperate South America appears different between LMDZ and TM3, with positive
values in LMDZ and more neutral values in TM3, in a region where coupling between atmospheric transport
and contradictory systematic errors between land and ocean makes the results very sensitive as noticed in
section 4.1.

At the scale of continental TRANSCOM regions, and on a yearly basis, biases have a similar sign for all regions
but Australia, tropical Asia, and southern Africa, indicating a generally consistent conversion of the systematic
errors on atmospheric columns into the emission space. Differences in tropical Africa and Asia may be due to
the different convection schemes in the two transport models. Spatial and seasonal contrasts between
regions are found to be larger for SIMGHG than for the MPI system (Figure 8, e.g., spatial dipoles in equatorial
Africa and South America and seasonal dipoles in India or South America). This result may be explained by the
fact that SIMGHG solves fluxes for 393 large regions only, whereas the MPI system solves fluxes at the trans-
port model resolution (3,314 pixels). This means that SIMGHG scales up or down larger regions than the MPI
system, possibly leading to larger residual emission biases. This is confirmed on a yearly basis with most resi-
dual biases inferred by SIMGHG being comparable to larger in absolute value than those inferred by the TM3
system, with the exceptions of tropical Asia and Australia. Indeed, the mean of positive biases at the scale of
TRANSCOM regions is 0.7 mg CH4·m

�2·day�1 for SIMGHG compared to only 0.2 mg CH4·m
�2·day�1 for the

MPI system. The consequence of this result, which needs to be confirmed by running more error scenarios
in both systems in a future work, is that the uncertainty reductions presented in section 4.2 may be too pes-
simistic compared to those inferred by the MPI system.

Figure 7. Mean uncertainty reduction for 11 regions mapping all continents
(%) for this study (red line) and using GOSAT actual data (black line; Cressot
et al., 2014). Errors bars on the red line represent 1 sigma standard deviations,
calculated from the range provided by the 32 MERLIN error scenarios by
considering that it represents 3 sigma values (99.7%). The percentages
printed in the figure represent the mean fraction of global annual methane
emissions from each region for the period 2003–2012, extracted from
(Saunois et al., 2016) and also printed in the rightmost column of Table 3. The
missing 1% in the total of percentages stands for oceanic emissions not
plotted here. MERLIN = MEthane Remote LIdar missioN; GOSAT =
Greenhouse Gases Observing SATellite.
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5. Conclusions

We have developed a first ensemble of scenarios to represent the expected random and systematic errors for
the French-German project of space LIDAR MERLIN. We adopt a statistical approach based on physical
assumptions where we identify, distribute in space and time, and combine causes of random and systematic
errors on XCH4 data. Thirty-two scenarios of systematic error have been produced and integrated with one
scenario of random errors in the SIMGHG simulator in order to estimate their impact on the performance
of MERLIN to reduce uncertainties onmethane emissions from regional to global scale. MERLIN performances
are also compared to those of GOSAT, the only shortwave infrared methane-dedicated instrument providing
open-access data in 2017. The originality of our inverse method is to account for the impact of both random
and systematic errors, therefore providing a more realistic and conservative view on the potential gain
brought by satellite data, as compared to many previous analyses only accounting for the random part of
the errors.

While almost 1 order of magnitude below the random errors in terms of parts per billion at the 50-km scale,
XCH4 systematic errors dominate the impact of MERLIN errors on the gain expected to improve regional
methane emissions. At the global scale, the average uncertainty reduction is of +60% over continental
regions (when Sahara and central Australia are removed from the analysis) but negative uncertainty reduc-
tions are found over oceanic regions indicating a major impact of systematic errors for these (low-emitting)
regions. Some combination of systematic errors generate large penalties, for deserts when albedo and sur-
face pressure effects have the same signs in the error combination, and for coastal regions of midlatitudes
exposed to strong western winds, when albedo and surface pressure effects have opposite signs in the
error combination.

At the scale of large continental regions, when removing desert areas (which have a negligible contribution
to methane emissions), the average error reduction ranges from�132% (Australia) to +87% (temperate Asia).
The largest uncertainty reductions are achieved for temperate (+84%) and for tropical regions (+56%). When
aggregating all boreal continental regions, the average uncertainty reduction is +53%, indicating that
MERLIN should bring significant constraints on average for the high latitudes, contrary to most current and

Figure 8. Comparison between LMDZ (left column) and TM3 (right column) for residual error statistics on methane emis-
sions due to one scenario of systematic errors (mg CH4·m

�2·day�1) for January (top row) and July (bottom row).
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planned passive GHGmissions. Accounting for all scenarios and among all continental regions out of deserts,
only boreal North America appears strongly impacted by systematic errors. More work is needed to fully ana-
lyze the robustness of this result. The comparison with GOSAT reveals that MERLIN reduces uncertainties on
methane emissions more than GOSAT for most regions, especially in the tropics. Finally, we note that the MPI
inversion system, based on the TM3 transport model, suggests more optimistic uncertainty reductions.

The targeted systematic errors for MERLIN are particularly ambitious (±3.7 ppb) regarding actual systematic
errors for past and current passive missions (Buchwitz et al., 2016). As shown by this work, MERLIN should
allow improving our knowledge of methane emissions for most of the continental regions of the world.
Still, even with such low values for systematic errors, their impact can be significant, possibly even canceling,
in few regions, the gain brought by the MERLIN. Moreover, our choice of geophysical variables to distribute
the plausible causes of error and the mathematical relations assumed between them (e.g., proportional)
remains largely hypothetical. Other choices may change the expected performances.

These conclusions have to be moderated by the possibility that the comprehensive statistical approach
developed here leads to a too pessimistic view for at least three reasons. First, the choice to distribute sys-
tematic errors on geophysical variables with a strong contrast between land and oceans largely drives the
occurrence of negative uncertainty reduction. Although we know that MERLIN performances will be better
over land than over oceans, this is a strong assumption that may be revisited while the instrument is built.
Second, the combination of systematic causes of errors leading to the largest penalties (i.e., effects of albedo
and surface pressure) may not be relevant in the end for MERLIN. Indeed, with the construction of the instru-
ment ongoing, error scenarios will be refined and nonphysical scenarios excluded from future analyses. Third,
it will probably be possible, during the construction of the instrument or during the mission, to identify and
correct some of the systematic errors, as has been done for GOSAT.

Finally, TROPOMI on Sentinel 5P (Butz et al., 2012) will soon provide much more methane data than GOSAT,
which will reduce the impact of random errors on the retrieval of methane emissions. However, to date, the
magnitude of TROPOMI systematic errors is expected to be larger than GOSAT (European Space Agency,
2014). If confirmed, our results suggest that TROPOMI impact to reduce the uncertainties on methane
emissions may be limited.
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