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Abstract 14 

Chromium is a toxic element naturally present in natural waters whose chemical speciation 15 

regulates its cycling, mobility and bioavailability. We present here: 1- an improved analytical 16 

method for chromium speciation (Cr(VI) vs Cr(III)) in estuarine samples by catalytic 17 

adsorptive cathodic stripping voltammetric (cat-AdCSV) and 2- a study highlighting a 18 

significant change of redox speciation during summer and winter. Initial measurements first 19 

revealed that surface-active substances (SAS) present in estuarine samples strongly influenced 20 

the analytical determination of Cr by partially masking the Cr peak through an increase of the 21 

background current. We found that the application of a low negative accumulation potential (-22 

1.65 V) resulted in much better voltammograms compared to those obtained using the usual 23 

accumulation potential of -1.0 V . Using humic acid (HA) as a model SAS of natural origin, 24 

we show that this negative potential clearly prevents adsorption of SAS on the Hg-electrode 25 

surface, which in turns benefits the adsorption of the in-situ formed Cr(III)-DTPA complex 26 

and the resulting signal. The optimised method was applied to determine chromium redox 27 

speciation and distribution along the 23 km long salinity gradient, well oxygenated, Krka 28 

River estuary (Croatia). Cr(VI) was found to be the dominant redox species in both summer 29 

and winter,  with Cr(III) contribution being lower in summer (up to ~30%, average of ~5%) 30 

than in winter (up to ~50%, average of ~30%).  In summer, lower concentrations of Cr(VI) 31 

were found in the freshwater end-member (2.5 nM) than in the seawater end-member (4-5 32 

nM), while the opposite trend was found in winter. Hexavalent chromium exhibited a non-33 

conservative behaviour along the salinity gradient for both seasons. Chromium predominantly 34 

exists in dissolved phase, and contribution of particles reactive Cr(III) was minor.  35 

Keywords: chromium redox speciation, estuary, organic matter, surface active substances 36 
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1. Introduction 37 

Chromium (Cr) is a redox-sensitive element which, in natural waters, predominantly exists in 38 

two stable oxidation states: trivalent {Cr(III)} and hexavalent {Cr(VI)} [1, 2]. The major 39 

interest and concern for chromium redox speciation determination in natural waters (including 40 

drinking waters) is driven by the fact that in trivalent form (+3) it is an essential element (at 41 

trace levels), whereas hexavalent form (+6) is reported to be toxic for both humans and 42 

animals (being a possible human carcinogen and mutagen), as well as for other organisms 43 

living in natural waters [3, 4]. Natural sources of chromium are varied, from ore mineral, 44 

shales, river suspended matter and soils, particularly fine grain size soils. Anthropogenic 45 

sources are mainly from metallurgy, electroplating and leather tanning [5]. Cr(VI) is the major 46 

oxidation state in oxygenated waters, whereas Cr(III) predominates in anoxic conditions. 47 

Under typical conditions in natural waters, Cr(VI) is highly water soluble and mainly exists in 48 

forms of stable oxo-compounds CrO4
2
-and Cr2O7

2-
, and the complexation with organic and 49 

inorganic ligands is thought to be insignificant. In freshwaters, predominant inorganic forms 50 

of Cr(III) are hydro complexes (Cr(OH)
2+

, Cr(OH)3), while in the presence of chloride 51 

(seawater) it forms hexaaquo complex ([Cr(H2O)6]Cl3). Unlike the hexavalent form, Cr(III) 52 

has affinity to form complexes with natural or anthropogenic organic substances and to adsorb 53 

on suspended particulate matter [6, 7]. The oxidation state primarily depends on the aeration 54 

status of the water body. In anaerobic conditions, chromium is reduced to Cr(III) by ferrous 55 

oxide at pH above 5.5, and by hydrogen sulphide (H2S) if pH is below that value [8].  56 

The two major issues related to the redox speciation of chromium are identified as 57 

environmental [9] and methodological [10, 11]. The ratio of concentrations of Cr redox 58 

species in natural waters is highly variable depending on the specific physicochemical 59 

conditions of the water column (pH, redox potential, oxygen concentration, presence of 60 

appropriate reducers/oxidizers, photochemical redox transformations, mediators acting as 61 

ligands or catalysts). However, some experimental evidences show that their actual ratio 62 

could deviate from theoretical predictions [12].  63 

Alike other metals, chromium speciation methodology usually involves the following steps: 1. 64 

sampling, 2. preservation/storage, 3. species preconcentration/separation, 4. species detection. 65 

Each of these steps can modify the natural speciation distribution; the goal is thus to minimize 66 

their influences. The first issue of concern for Cr speciation in natural water is sample storage, 67 

i.e. preservation of its original concentration and redox speciation. The typical storage 68 

conditions for metals are acidification to pH < 2 (if only the dissolved concentration has to be 69 
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determined), or at natural pH (if speciation is of primary interest). However, this storage 70 

scheme is not adequate for Cr. On one hand, at natural pH of ~ 8, Cr(VI) is stable (especially 71 

under a CO2 blanket [13]) but Cr(III) is rapidly (minutes to hours) removed from the solution 72 

due to adsorption on the container walls. On the other hand,  in acidic conditions, Cr(VI) 73 

could be reduced to Cr(III) by the oxidation of organic matter. In addition to these storage 74 

issues, the relatively low Cr concentration encountered in natural waters (0.1 - 16 nM in 75 

seawater, 0.5 - 100 nM in freshwater) is also presenting an analytical challenge.  76 

As a result, there are only scarce studies [3, 14-16] that describe the behaviour and actual 77 

distribution of Cr(III) and Cr(VI) in the aquatic environment. Thus, field studies and 78 

laboratory model experiments under well-controlled conditions are of importance to help 79 

improving our understanding of chromium behaviour and its environmental impact in natural 80 

aquatic systems.  81 

From an analytical point of view, the most used techniques for chromium redox speciation 82 

measurements in natural waters are high performance liquid chromatography hyphenated to 83 

inductively coupled plasma mass spectrometry (HPLC/ICP-MS) [17] and the catalytic 84 

adsorptive cathodic stripping voltammetry (Cat-AdCSV) [10, 18-20]. Despite numerous 85 

variations of the latter, Cr speciation still remains a challenging task and there is a need for 86 

improvement of existing analytical procedures [20-24]. 87 

This work is aiming to: (i) develop an improved Cat-AdCSV procedure for Cr determination 88 

in samples having a high concentration of organic matter and surface active substances (SAS) 89 

and (ii) use this procedure to determine the distribution and behaviour of Cr redox species 90 

along the salinity gradient of an estuary (Krka, Croatia). 91 

 92 

2. Study site 93 

Krka River and its estuary are part of National Park Krka, which is situated on the eastern 94 

coast of Adriatic Sea (Croatia).The river is characterized by numerous lakes formed by tufa 95 

barriers, each finishing with waterfalls. Measured flow in Krka River over the last 50 years 96 

range from 5-450 m
3
s

-1
, while in the period from 2001 to 2013, the average annual flow spans 97 

from 40-60 m
3
s

-
 [25]. This highly stratified estuary is restricted between the last and largest 98 

waterfall (Skradinski buk) and Šibenik Channel, measuring in total of ~23 km.  The map of 99 

the estuary with marked sampling locations is presented in Fig.1. The Krka River estuary is a 100 

typical, highly stratified salt-wedge estuary. Its vertical gradient is characterized by three 101 
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layers: (1) surface fresh/brackish layer (FWL), (2) freshwater-seawater interface (FSI) and (3) 102 

seawater layer (SWL). While FWL flows downstream (seaward), the bottom SWL flows in 103 

opposite direction, upstream (landward). The halocline is usually positioned between 1.5 and 104 

3 m, and its "thickness" varies between few cm only to 1 m. Due to numerous tufa barriers 105 

preceding the estuary and the absence of  significant anthropogenic sources, the terrigenous 106 

material, nutrients  and trace metal river input [26] are very low. 107 

 108 

3. Sampling and storage 109 

Sampling was performed using FEP Nalgene bottles which were previously cleaned with 10% 110 

HNO3 (suprapur) and thoroughly rinsed with MQ water (18.2 MΩ, Millipore, USA). Samples 111 

were collected using a van Dorn horizontal acrylic sampler or by using grab sampling with 1 112 

L FEP bottle at 16 sites along the whole estuary (Fig. 1). Three sampling campaigns were 113 

conducted: summer 2017 and 2018 and winter 2017. For the summer campaigns (summer 114 

2017/2018), both surface (~0.2 m below the surface) and bottom seawater samples were 115 

collected, whereas for the winter campaign, due to logistic difficulties, only surface samples 116 

were taken. Samples were filtered either immediately onboard or in the laboratory within few 117 

hours by using precleaned (MQ +sample) syringe filters 0.22 µm (cellulose-acetate, Minisart, 118 

Sartorius). All samples were stored at natural pH at +4°C until analysis in 125 mL FEP bottles 119 

which were previously washed using trace metals clean procedure. For total chromium 120 

determination, samples were UV-irradiated at 254 nm directly in the FEP bottle for 24h prior 121 

to measurement. Concentrations of Cr(VI) in estuarine samples were always determined 122 

within two days of sampling. Repeated analyses on the same filtered samples stored for up to 123 

5 days in the dark and at +4 °C did not show any significant differences (within experimental 124 

uncertainty, i.e. 10% [12]). This result indicates that adsorption of Cr(III) on the container 125 

walls did not occurr, in contrast to previously reported [10], possibly because fluorinated 126 

(FEP) bottles were used in this study. Vertical profiles of physico-chemical parameters (S, T, 127 

O2, pH and Chl-a) were recorded using the EXO2 multiparameter CTD probe (YSI).  128 

 129 

4. Equipment and chemicals 130 

Voltammetric measurements were performed using a µAutolabIII (EcoChemie) potentiostat 131 

coupled with a three-electrode cell (663 VA Stand, Metrohm) with a static mercury drop 132 

(SMDE),  Ag|AgCl|sat. NaCl and Pt wire as the working, reference and auxiliary electrodes 133 
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respectively. A home-made sample-changer, five Cavro XE 1000 syringe pumps and home-134 

made software VoltAA were used in conjunction with the potentiostat allowing fully 135 

automated measurements to be performed.  136 

Sodium nitrate (3 M stock solution) was prepared by mixing HNO3 (suprapur Merck) and 137 

NaOH (suprapur Merck), Diethylenetriaminepentaacetic acid (DTPA; 0.25 M stock solution 138 

prepared) was purchased from Fluka (analytical grade) and  2-(N-morpholino)ethanesulfonic 139 

acid (MES; 1 M stock solution prepared) was purchased from VWR (ultrapure). Stock 140 

solutions of Cr(VI) were prepared by appropriate dissolution of K2CrO4 (Fluka). Humic acid 141 

(HA) was from Sigma-Aldrich. All laboratory solutions were stored in polyethylene bottles, 142 

while all the samples were stored in acid-washed FEP (Nalgene) bottles. 143 

 144 

5. Basics of Cat-AdCSV method for Cr analysis 145 

The method for chromium determination in freshwater and seawater is based on the in-situ 146 

formation and adsorption of the Cr(III)-DTPA complex (from Cr(VI) reduction which exists 147 

in the solution at potentials more negative than -0.05 V) during the accumulation step. During 148 

the stripping step, this complex is further reduced to Cr(II) which is immediately oxidised 149 

back to Cr(III) by nitrate, resulting in an enhancement of the signal due to this catalytic effect 150 

[10, 18, 19, 27]. Since the original description of this method [28], numerous authors reported 151 

on using AdCSV to measure trace levels of chromium in different matrices and using 152 

different working electrodes [10, 18, 21, 22, 29-31]. Even though the method was widely 153 

used, its analytical application was limited until the mechanism of reaction, formation, 154 

adsorption and electrode reaction of Cr(III)-DTPA complex were fully studied [27, 30]. The 155 

critical step of the methodology is that the Cr(III) originally present in the solution slowly 156 

forms an electro-inactive complex with DTPA. At room temperature, the kinetics of this 157 

complexation is believed to take 30 min, allowing then the sole determination of Cr(VI) 158 

(increasing the temperature decreases this time [32]).   159 

In this work, the determination of Cr concentrations was performed in buffered samples 160 

(MES, pH 5.5) using the following fully automated procedure: rinsing of the cell between 161 

samples by acidified MQ (pH 2, 10 mM HCl), sample exchange, addition of reagents (DTPA, 162 

NaNO3) and Cr(VI) standard using syringe burettes. Adequate volume of Cr standard was 163 

determined by using predefined sensitivity. Prepared samples were measured ~ 1 h after the 164 

addition of reagents when all originally present Cr(III) was transferred into an electroinactive 165 
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complex. Total Cr is determined after 24h UV-irradiation of the sample at neutral or slightly 166 

acidic pH (to convert the existing Cr(III) to Cr(VI)). Cr(III) concentration is calculated as the 167 

difference between total Cr and Cr(VI). Typical voltammetric conditions were: 3 min initial 168 

purging, accumulation at -1.65 V for 60 s, stripping from -0.95 to -1.35 V using differential 169 

pulse mode (2 mV potential step, 0.1 s interval time, 0.040 s pulse time, 10 or 40 mV 170 

amplitude). 171 

 172 

6. Results and discussion 173 

6.1. Optimization of the analytical procedure 174 

Analytical parameters used for Cr voltammetric determination by various authors [10, 21, 30, 175 

31] are shown in Table 1. Except for the work of Korolczuk [21] who used a very negative 176 

deposition potential (-1.7 V) in conjunction with a matrix exchange procedure, all other work 177 

applied the usual deposition potential of -1.0 V. Solutions were always buffered at pH ranging 178 

from 5 to 6.5, depending on if freshwater or seawater is analysed. We found here that the 179 

addition of 5 mM MES buffer at pH 5.5 resulted in a similar sensitivity at all salinities (0 – 180 

38). While this is contrast to Li and Xue [30] who reported a low sensitivity when using MES 181 

as a buffer, it agrees with the approach proposed by Korolczuk [33]. Previous studies showed 182 

that deviations from the optimized pH may cause decrease in sensitivity [10, 30], but the 183 

optimized pH varies from study to study, ranging from 5 to 6.5 (Table 1). In this study pH = 184 

5.5 was used and the sensitivity were found to be adequate for the field study across the 185 

salinity range (Fig. S1), so no further tests on the pH was performed. 186 

Initial tests in estuarine samples revealed that the sensitivity and the shape of voltammograms 187 

were changing from sample to sample when using a deposition potential of -1.0 V. In 188 

contrast, we obtained much better stability and better-shaped peaks when using a more 189 

negative deposition potential (e.g. -1.65 V). This is also corroborated by previous studies: a 190 

low deposition potential was found optimal by Korolczuk et. al [21, 22] when used with a 191 

medium exchange procedure and an increase of the Cr peak was also reported at low 192 

deposition potentials (-1.8 V) at a vibrating silver amalgam microwire electrode [20], 193 

although that potential was not suggested as the optimum one. The same study reported that 194 

Cr(VI) determination in samples without UV-irradiation step was not possible due to 195 

interference by dissolved organic matter (DOM), although no further study was performed by 196 

the authors. Surface active substances (SAS), naturally present in aqueous samples, were 197 

identified to have interference in the determination of chromium by AdCSV [23] and were 198 
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removed using a fumed silica column. It is thus likely that the application of a low deposition 199 

potential minimise the interference from SAS, similar to what was observed for Cu 200 

complexation studies [34] or for the determination of platinum [35]. 201 

Below, we show that the use of a low deposition potential removes SAS interferences from 202 

our estuarine samples, without the need of a medium exchange procedure such as that used by 203 

Korolczuk et. al  [21]. Humic acid (HA) was used as a model of natural organic substance, 204 

which is common in coastal environment [36]. The concentration of HA was increased up to 1 205 

mg/L, which is equivalent to ~0.5 mg/L dissolved organic carbon (DOC). This DOC 206 

concentration is lower than that previously reported for the Krka River estuary (0.8-1.5 mg/L) 207 

[25], but humic substances (HS) are not the sole contributor to DOC. Voltammograms were 208 

recorded in UV-irradiated seawater spiked with 6 nM Cr(VI) at deposition potentials of -1.0 209 

and -1.65 V (Fig. 2). When using the former, HA visibly interferes: the baseline current is 210 

strongly increased at more negative potentials, while the Cr peak gradually diminished and 211 

practically disappeared at HA concentration of 1 mg/L. At HA concentrations above 0.5 212 

mg/L, the chromium peak is poorly expressed, even at such high Cr concentrations. When 213 

using a more negative accumulation potential of -1.65 V (Fig 2., inset), the Cr peak and 214 

background currents are clearly much less affected by addition of HA. A very small increase 215 

of the baseline current is still observed at more negative potentials (note the difference in the 216 

range of Y-axis for two plots), but the Cr peak remains well shaped, despite decreasing down 217 

to around 30% of the initial value (without HA addition). This decrease suggests that the 218 

interferences from SAS is not entirely removed or that Cr(VI) is complexed by HA. 219 

To identify if the decrease of the signal is due to SAS interference on the voltammetric signal 220 

or is due to complexation by HA, we carried out analytical determinations of Cr by the 221 

method of standard addition at both potentials (-1.0 and -1.65 V) at each HA concentration 222 

(calibrations not shown). At low HA concentrations, below 0.7 mg/L, despite a strong 223 

decrease of signal intensity, the accuracy of Cr determination is not significantly impacted, at 224 

both potentials. At higher HA concentrations, analysis of Cr using -1.0 V deposition potential 225 

was not possible, whereas using deposition at -1.65 V a reproducible and accurate 226 

determination of Cr was always obtained (recovery ~100%), suggesting that complexation of 227 

Cr(VI) with HA did not occur within the time frame of the experiment. The only problem that 228 

was sometimes observed when using an accumulation potential of -1.65 V was the 229 

dislodgement of the Hg-drop. However, as the accumulation time for most of the samples 230 

measured in natural water is only 60 s, this problem did not impact Cr determination because 231 
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duplicate or triplicate measurements were always performed (for the sample and for each 232 

addition of Cr standard).  233 

Figure 3 shows the variation of the peak intensity versus accumulation potential (so-called 234 

"pseudopolarograms")  at different HA concentrations in UV digested seawater. An initial 235 

increase of peak intensities with decreasing accumulation potentials was first observed, 236 

reaching a maximum at -1.05 V, followed by a strong decrease to an almost complete loss of 237 

the signal (-1.2 to -1.5 V) before finally increasing again up to the lowest deposition potential 238 

tested here (-1.7 V). The maxima at -1.05 V disappears at the highest HA concentration of 1 239 

mg/L while the signal at -1.7 V is much less affected. Very similar U-shaped relationships 240 

was also found in our estuarine samples of different salinities (Fig. S2, SI), similar to 241 

previously reported at a vibrating amalgam micro-wire electrode [20].  In seawater, the loss of 242 

the Hg drop was observed at accumulation potentials more negative than -1.7 V, possibly due 243 

to partial reduction of major cations. In freshwater, that negative accumulation potential limit 244 

was shifted far more negative (down to -2.4 V) (Fig. S2) with a much-improved sensitivity. 245 

For instance, the maximum peak height obtained at -2.2 V was ~4× higher than the one 246 

obtained at -1.0 V. 247 

The Cr redox mechanism occurring at accumulation potentials more negative than -1.5 V has 248 

already been described [18, 22]: Cr(VI) is reduced to its metallic state Cr(0) and accumulated 249 

at the Hg surface. At the start of the stripping (-0.95 V), Cr(0) is oxidised to Cr(III) that 250 

immediately forms a complex with DTPA and the stripping is occurring along the catalytic 251 

pathway described above (section 4).   252 

 253 

6.2. Voltammogram shape and baseline elimination 254 

The most common way of expressing sensitivity is in terms of nA/nM. However, in cases 255 

where the signal is positioned at the steep part of the baseline (as for Cr), the signal to 256 

baseline shape is much more important than just pure (and high) sensitivity expressed in 257 

nA/nM. A typical example is given in Fig. 4: while the peaks obtained at -1.0 and -1.65 V are 258 

of the same absolute intensity (~4.5 nA; determined using curvature baseline), the shape of 259 

the latter peak is much better resolved than the former (see also voltammograms in Fig. 2). 260 

Thus, when optimising any voltammetric procedures, both the absolute intensity and the 261 

shape of the voltammogram should be improved. This is especially important at low signal 262 

amplitude, where the steep baseline could mask the analyte signal. In such cases, the 263 
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application of derivative transformations is beneficial: it eliminates the curvature of the 264 

baseline (see inset of Fig. 4) and consequently lower detection limits [35, 37]. We used here 265 

the peak height of the 2
nd

 derivative transformation for quantification of Cr concentration. 266 

 267 

6.3. Hydrography of the estuary 268 

Physico-chemical parameters for the sampling periods are presented in Fig. S3. The vertical 269 

and horizontal profiles of salinity are typical of two contrasting sampling periods (summer 270 

and winter): the halocline is deeper and the low salinity brackish layer extends more within 271 

the estuary in winter than in summer. The pH of samples (not shown) was between 8.4 (at the 272 

freshwater part) and 8.2 (at the seawater). Higher pH in freshwater part is related to CO2 273 

removal at waterfalls which precede the estuarine transect [25]. Temperature profiles follow a 274 

similar trend as those of salinity for both periods, whereas oxygen profiles were the most 275 

variable. A clear increase of oxygen levels below the halocline (reaching value up to 140 % of 276 

oxygen saturation) between 3
rd

 and 20
th

 kilometre were observed in summer, due to high 277 

productivity occurring in this lacustrine part of the estuary (Prokljan lake) [38]. On the other 278 

hand, hypoxic conditions were found in the deeper regions of the upstream part of the estuary 279 

during winter. This is due to progressive degradation of organic matter produced during 280 

summer period, associated with the high residence time of the seawater layer in that upper 281 

part of the estuary. Fig. S4 presents typical profiles of dissolved organic carbon (DOC) for the 282 

winter and summer periods. DOC concentrations were higher in summer (up to ~150 µM) 283 

than in winter (up to ~80 µM). Typically, DOC was lower (~50 µM) in winter in the 284 

freshwater end-member compared to the seawater end-member, whereas for the summer 285 

period it could be the opposite, due to developed biological productivity in the freshwater 286 

Visovac Lake, that is located before the waterfalls and the estuary [39]. 287 

 288 

6.4. Chromium distribution along the Krka River estuary 289 

The distributions of dissolved Cr(VI) and Cr(III) along the estuarine transect are presented in 290 

Fig. 5  as a function of salinity. Due to the fully oxygenated samples, Cr(VI) predominates 291 

both in summer and winter. Although the suspended particulate matter is generally low in the 292 

Krka River estuary (< 5 mg/L) [25], some portion of Cr(III), which is particle-reactive in 293 

contract to Cr(VI), could be adsorbed on the particulate matter. Thus, higher concentrations of 294 

Cr(III) in non-filtered samples were expected but these were not found. In unfiltered samples, 295 

slightly higher (<5 %) concentration of Cr(III) were found compared to the dissolved ones 296 
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(Fig. S5). One of the known challenge in Cr determination is that Cr(III) is strongly adsorbed 297 

on the bottle walls [10]. In cases when UV-irradiation of sample to remove organic matter is 298 

performed in separate, usually quartz tubes [20], the adsorbed Cr(III) is not recoverable 299 

because the sample is transferred from storage bottle to the UV-digestion vessel. In our work, 300 

Teflon (FEP) bottles were used to store the samples and UV-irradiation was performed 301 

directly in these bottles (FEP is UV transparent), with adaptation of samples pH to around 5. 302 

In this way, any adsorbed Cr(III) is expected to be recovered and reliably quantified.  303 

For both summer campaigns, very similar transects of both Cr redox species were obtained. 304 

Concentration of dissolved Cr(VI) slightly increased with the salinity (or distance), with a 305 

profile that could be characterised as non-conservative. The concentration level of Cr(VI) in 306 

the Krka River end-member was around 2.5 nM, while at the seawater end-member, it was 307 

between 4 and 5 nM  (Fig. 5). In contrast, an opposite trend was found in winter with higher 308 

Cr(VI) found at the lower salinities. In winter, higher concentrations in the freshwater end-309 

member can be explained by the higher river flow, leading to significant weathering processes 310 

while no significant differences were found in the seawater end member between winter and 311 

summer.  312 

As for Cr(VI), no clear difference was found between dissolved and unfiltered Cr(III) 313 

concentrations, indicating that the fraction of Cr(III) associated to particles was minor. 314 

Hexavalent chromium can be photo-reduced to its trivalent state that can be then rapidly 315 

complexed with naturally occurring dissolved organic matter [40, 41]. However, according to 316 

our results, this process does not seem to occur, even in summer. In the work of Achterberg 317 

and van den Berg [41] in which Cr distribution in Mediterranean waters was studied, Cr(III) 318 

was found higher in surface layers for both winter and summer periods. It was suggested that 319 

this is possibly caused by photochemical conversion of Cr(VI) to Cr(III) during summer 320 

periods and by atmospheric inputs during winter periods. Atmospheric input of Cr(III) could 321 

be envisaged since it is abundant in atmospheric particulate matter [42]. On the other hand, in 322 

summer period, Cr(III) could be photo-oxidized to Cr(VI) while in the winter time, such 323 

conversion is limited due to lower solar irradiance. Additional seasonal sampling campaigns 324 

would be required to tests the hypothesis that atmospheric/aerosol inputs of Cr(III) is 325 

regulating its concentration in the surface layer of the estuary and that Cr(III) is photo-326 

oxidised to Cr(VI).  327 

The transect of chromium in the bottom water is unusual. While an upstream increase of trace 328 

metals was recorded for many metals in the bottom layer [25], Cr concentrations here follow 329 
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an opposite trend, similar to that observed in surface water.  A lower concentration is detected 330 

on the freshwater side compared to those measured lower in the estuary (see Fig. S6), 331 

reaching a stable value of c.a. 4.4 nM from 6 km downstream. This unusual behaviour can be 332 

explained by a reduction of Cr(VI) to Cr(III) in the upstream part, followed by removal of 333 

Cr(III) through adsorption onto sinking particulate matter, which is known to be increased in 334 

that part of the estuary [25]. Reduction of Cr(VI) to Cr(III) can be favoured by the hypoxic 335 

conditions in that section of the estuary (Fig. S3) and/or through reduction by low molecular 336 

weight organic matter, as previously suggested [43].  337 

 338 

7. Conclusions 339 

We have developed here an optimised voltammetric procedure to measure Cr in presence of 340 

SAS, substances that are ubiquitous in natural waters. By applying a lower negative 341 

accumulation potential (-1.65 V) than the usual one (-1.0 V), the interfering effect of SAS 342 

adsorption on the mercury drop electrode is strongly minimised. Experiments performed in 343 

UV-digested seawater with addition of humic acid (HA) showed clear evidence of the benefits 344 

of using such low deposition potential. This optimised voltammetric procedure was 345 

successfully applied for the Cr speciation along the Krka River estuary in winter and summer. 346 

Cr(VI) was found to be the predominant redox species in all samples and higher Cr(III) 347 

concentrations were found in winter. While Cr concentration for summer samples increased 348 

towards the open sea, an opposite trend was found for winter campaign, probably related to 349 

weathering processes and higher Krka River flow, which increased Cr concentration in the 350 

freshwater part. 351 
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Table 1. Parameters of the method for cat-AdCSV measurement of trace levels of chromium 

using DTPA. 

 

Boussemart 

[10] 

Li and 

Xue [30] 

deSouza 

[31] 

Korolczuk 

[33] 
This study 

Deposition potential /V -1.0 -1.0 -1.0 -1.7* -1.65 

Deposition time /s 60 60 60 60 60 

DTPA / c(mM) 2.5 5 1.25 10 1.25 

NO3
-
 / c(mM) 500 500 1500 500 500 

MES / c(mM) - - - 10 5 

pH seawater 5.0 5.7 5.0 - 5.5 

pH freshwater 6.4 5.7 - 6.1 5.5 

* - with matrix exchange 

 

 

Table 1



Figure Captions 

 

Figure 1. Left: Map of the Krka River estuary with indicated locations of sampling sites (open 

diamonds). Right: horizontal bottom depth profile with positions of sampling sites and specific 

regions along the estuary. 

 

Figure 2. Voltammograms recorded in UV-irradiated seawater spiked with 6 nM Cr(VI) at 

varying concentrations of HA using -1.0 V (main plot) and -1.65 V (inset) as accumulation 

potentials. 

 

Figure 3. Variation of peak area on the accumulation potential without and with increasing 

concentration of HA in UV-irradiated seawater (UVSW) with total Cr concentration of 6 nM. 

 

Figure 4. Voltammograms obtained at -1.0 V and -1.65 V accumulation potential in seawater 

sample ([Cr] = 4.5 nM). Inset: 2
nd

 derivative vs potentials. 

 

Figure 5.  Distribution of dissolved chromium along the salinity gradient of the Krka River 

estuary in surface layer. Blue dotted line corresponds to conservative mixing line. 
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