
HAL Id: hal-02286661
https://hal.science/hal-02286661v1

Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Safety Synthesis for Incrementally Stable Switched
Systems using Discretization-Free Multi-Resolution

Abstractions
Antoine Girard, Gregor Gössler

To cite this version:
Antoine Girard, Gregor Gössler. Safety Synthesis for Incrementally Stable Switched Systems us-
ing Discretization-Free Multi-Resolution Abstractions. Acta Informatica, 2020, 57, pp.245-269.
�10.1007/s00236-019-00341-x�. �hal-02286661�

https://hal.science/hal-02286661v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Safety Synthesis for Incrementally Stable Switched
Systems using Discretization-Free Multi-Resolution
Abstractions

Antoine Girard · Gregor Gössler
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Abstract Control of continuous and hybrid systems using discrete abstrac-
tions often suffers from scalability issues, due to the use of state space parti-
tions as symbolic states. In this paper, for incrementally stable switched sys-
tems, we introduce a class of abstractions that do not rely on state space par-
titions but use mode sequences as symbolic states. Our approach differs from
existing works by the possibility of considering sequences of varying length,
giving the possibility to adjust locally the resolution of the abstraction. Tempo-
ral constraints on the switching signal can also be taken into account. We thus
define multi-resolution bisimilar abstractions that enjoy interesting properties
that can be used to design specific algorithms to synthesize safety controllers.
These algorithms need not compute the full abstraction that is built incre-
mentally during controller synthesis, exploring finer resolutions only when the
specification cannot be enforced at the coarser level. We illustrate the approach
by a numerical example inspired by road traffic regulation.
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1 Introduction

Abstraction-based control is a computational approach to systems design
where continuous dynamics are approximated by finite state dynamical sys-
tems, called discrete or symbolic abstractions (see e.g. [42,4] and the references
therein). The main advantage of using discrete abstractions is that they allow
to leverage a set of algorithmic techniques for synthesizing controllers enforc-
ing various specifications such as safety and reachability [27] or those described
by finite state automata [35] or temporal logic formula [30,29]. When the con-
tinuous dynamics and the discrete abstraction can be related by some formal
behavioral relationship such as simulation, bisimulation and their alternating
or approximate versions [42,13,37], controllers designed using the abstraction
can be refined into controllers for the original system with formal guaran-
tees of correctness. Most of the existing approaches for computing discrete
abstractions are based on partitions or discretizations of the continuous state
space [24,6,34,1,21,43,45,14,36,47,23,9]. As these typically scale exponen-
tially in the state space dimension, it is clear that these approaches, applied
naively, are only suitable for low dimensional dynamics.

In the recent years, people have extensively worked on novel abstraction
techniques that would allow to improve the scalability of the approach. For
systems that consist of interconnected components, compositional techniques
have been developed that first compute discrete abstractions of the compo-
nents that can be composed to compute an abstraction of the full system [32,
26,18,28,20,41] or that can be used to synthesize controllers for the compo-
nents, e.g. using assume-guarantee contracts that enforce a correct behavior
at the system level [10,19,33,40]. Other works have explored the efficient en-
coding of discrete abstractions, e.g. using binary decision diagrams and the
associated algorithms [38,5], or exploiting sparsity in the continuous dynam-
ics [15]. Multi-resolution, multi-scale and multi-layered abstractions, which can
adapt locally the precision of the approximation have been developed in several
works [44,7,17] and are often used in combination with lazy controller synthe-
sis algorithms that build the abstraction on-the-fly and adapt the precision to
the level required for enforcing the specification [39,31,12,16]. Finally, alter-
native abstraction techniques, which do not require the discretization of the
state space but use input sequences as symbolic states, have been developed
for systems enjoying an incremental stability property [22,11,46].

In this work, we present an approach that combines three features men-
tioned above. For incrementally stable switched systems, we develop an ab-
straction technique that does not need to discretize the state space. In our ap-
proach, symbolic states coincide with input sequences. However, unlike in [22,
11,46], the length of the input sequences is not fixed and can be adapted.
This results in multi-resolution bisimilar abstractions where longer or shorter
input sequences correspond to finer or coarser resolutions, respectively. Tem-
poral constraints on the switching signal can easily be taken into account in
our approach. Then, for safety properties, we develop two controller synthesis
algorithms that make it possible to compute the abstraction on-the-fly and
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only partially, by staying at the coarsest resolution required to enforce the
specification. The first algorithm allows to recover the same controller as if
the abstraction had been built exhaustively, while the second algorithm gives
a less permissive controller but is much more efficient. Remarkably, the set of
controllable initial states are the same using both algorithms.

Our synthesis approach has connections with the lazy safety synthesis ap-
proach developed in [16] for multi-layered partition-based abstractions intro-
duced in [17]: both approaches are sound and complete and the synthesized
controllers give priority to transitions leading to coarser resolutions. However,
in [16] controllers are defined algorithmically, while we first provide mathemat-
ical characterizations of controllers and then present algorithms for their com-
putation. Moreover, while the synthesis algorithm in [16] is based on backward
reachability computations our algorithms take advantage of the determinism
of our abstractions to use forward reachability computations. This makes it
possible to limit the exploration of the abstraction dynamics to states that
are reachable from a specified set of initial states. On the flipside we focus on
safety properties in this article, whereas [17] also considers reachability and
generalized Büchi objectives.

The paper is organized as follows. In Section 2, we introduce the notions
of multi-resolution transition systems and of multi-resolution abstraction. In
Section 3, we instantiate these notions in the context of incrementally stable
switched systems. In Section 4, we propose specific controller synthesis algo-
rithms, which exploit the properties of multi-resolution abstractions, for safety
properties. Finally, in Section 5, we show an application of our approach to a
variant of the road traffic model from [22].

Notations

Z, Z+
0 , Z+, R, R+

0 and R+ denote the sets of integers, nonnegative integers,
positive integers, real numbers, non-negative real numbers and positive real
numbers, respectively. Given two sets S1, S2 and a relation R ⊆ S1 × S2,
we define the inverse relation as R−1 = {(s2, s1) ∈ S2 × S1 | (s1, s2) ∈ R};
we denote R(s1) = {s2 ∈ S2 | (s1, s2) ∈ R} and for S′1 ⊆ S1, R(S′1) =⋃
s1∈S′

1
R(s1). Given a set S, a relation � ⊆ S × S, � is a partial order if

and only if: (i) for all s ∈ S, s � s; (ii) for all s1, s2, s3 ∈ S, s1 � s2 and
s2 � s3 implies s1 � s3; (iii) for all s1, s2 ∈ S, s1 � s2 and s2 � s1 implies
s1 = s2. s1 � s2 and s1 6= s2 is denoted s1 ≺ s2. A relation v ⊆ S × S is a
total pre-order if and only if: (i) for all s ∈ S, s v s; (ii) for all s1, s2, s3 ∈ S,
s1 v s2 and s2 v s3 implies s1 v s3; (iii) for all s1, s2 ∈ S, s1 v s2 or s2 v s1.

2 Multi-resolution abstraction

In this section, we briefly present the general modeling formalism of transition
systems and the associated abstraction framework based on (bi)simulation.
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Then, we introduce the new notion of multi-resolution abstraction that we
deal with in the paper.

2.1 Transition systems and (bi)simulation

Definition 1 A transition system is a tuple T = (X,U,∆,X0) consisting of:

– a set of states X;
– a set of inputs U ;
– a transition relation ∆ ⊆ X × U ×X;
– a set of initial states X0 ⊆ X.

The transition (x, u, x′) ∈ ∆ will be denoted x′ ∈ ∆(x, u); this means that
the system can evolve from state x to state x′ under the input u. An input
u ∈ U belongs to the set of enabled inputs at state x, denoted enab∆(x), if
∆(x, u) 6= ∅. The transition system is said to be non-blocking if for all x ∈ X,
enab∆(x) 6= ∅. The transition system is said to be deterministic if for all x ∈ X
and u ∈ enab∆(x), there exists a unique x′ ∈ ∆(x, u); in that case, we shall
write with a slight abuse of notation x′ = ∆(x, u). In this paper, for the sake of
simplicity, we only consider non-blocking and deterministic transition systems.

A trajectory of the transition system is a finite or infinite sequence of tran-
sitions, σ = (x0, u0)(x1, u1)(x2, u2) . . . where ui ∈ enab∆(xi), and xi+1 =
∆(xi, ui), for all i = 0, 1, . . . ; it is initialized if x0 ∈ X0. A state x ∈ X is
reachable if there exists an initialized trajectory reaching x; the set of reachable
states of T is denoted reach(T ).

In the following, we will consider abstraction relationships between transi-
tion systems in the sense of (bi)simulation [42]:

Definition 2 Let Ti = (Xi, Ui, ∆i, X
0
i ), i = 1, 2, be non-blocking and deter-

ministic transition systems; R ⊆ X1 ×X2 is said to be a simulation relation
from T1 to T2, if for all (x1, x2) ∈ R,

∀u1 ∈ enab∆1
(x1),∃u2 ∈ enab∆2

(x2), such that (x′1, x
′
2) ∈ R

where x′1 = ∆1(x1, u1), x′2 = ∆2(x2, u2).

R is said to be a bisimulation relation between T1 and T2 if R is a simulation
relation from T1 to T2 and R−1 is a simulation relation from T2 to T1. We say
that T2 simulates T1, denoted T1 � T2, if there exists a simulation relation R
from T1 to T2 such that X0

1 ⊆ R−1(X0
2 ). The transition systems T1 and T2 are

said to be bisimilar, denoted T1 ∼ T2, if if there exists a bisimulation relation
R between T1 and T2 such that X0

1 ⊆ R−1(X0
2 ) and X0

2 ⊆ R(X0
1 ).

The notion of simulation relation leads to the following approximation
result that is stated without proof, which is a straightforward consequence of
Definition 2:
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Proposition 1 Let Ti = (Xi, Ui, ∆i, X
0
i ), i = 1, 2, be non-blocking and de-

terministic transition systems such that T1 � T2; then for any initialized tra-
jectory of T1, σ1 = (x01, u

0
1)(x11, u

1
1) . . . , there exists an initialized trajectory of

T2, σ2 = (x02, u
0
2)(x12, u

1
2) . . . , such that (xi1, x

i
2) ∈ R, for all i = 0, 1, . . .

Let us note that for bisimilar transition systems a symmetrical result holds
as well (all trajectories of T2 can be matched by trajectories of T1).

Remark 1 We consider transition systems without outputs. If the transition
systems are observed over a common set of outputs Y through output maps
Θi : Xi → Y , i = 1, 2, notions of exact and approximate (bi)simulation rela-
tions [42,13] can be recovered by adding the following conditions, respectively:

– If for all (x1, x2) ∈ R, Θ1(x1) = Θ2(x2), then R is an exact (bi)simulation
relation;

– If for all (x1, x2) ∈ R, d(Θ1(x1), Θ2(x2)) ≤ ε where d is a metric on Y and
ε ∈ R+

0 , then R is an approximate (bi)simulation relation.

Remark 2 We consider deterministic transition systems for the sake of simplic-
ity and because non-deterministic systems are not needed for the application
to incrementally stable switched systems, which are considered in this paper.
However, results presented in the paper can be extended to non-deterministic
systems by resorting to the notion of alternating (bi)simulation relations [42].

2.2 Multi-resolution abstraction

We now introduce the notion of multi-resolution abstraction, which we will
deal with in the paper:

Definition 3 Let T = (X,U,∆,X0) be a non-blocking and deterministic
transition system, T is a multi-resolution transition system if X is equipped
with a partial order �X such that:

– for all x ∈ X, u ∈ enab∆(x) and x′ = ∆(x, u), for all z, z′ ∈ X

(z �X x) ∧ (x′ �X z′) =⇒ ∃v ∈ enab∆(z), z′ = ∆(z, v).

– for all x ∈ X0, for all z ∈ X, x �X z =⇒ z ∈ X0.

Let us provide some discussion on the previous definition: x �X z means
that states x and z are related states at different resolutions (finer for x, coarser
for z). Intuitively, the previous definition states that it is always possible to
move from finer to coarser scales. The first item of the definition states that
a transition can be matched by a transition starting from any related states
at finer resolutions, and ending at any related states at coarser resolutions, as
illustrated on Figure 1. The second item of the definition states that for all
initial states, the related states at coarser resolutions are also initial.

Definition 4 Let Ti = (Xi, Ui, ∆i, X
0
i ), i = 1, 2, be non-blocking and deter-

ministic transition systems, T1 is a multi-resolution abstraction of T2 if
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x x′

z′

�
X

�
X

z
Fig. 1 Properties of the transition relation in a multi-resolution system: existence of the
solid transition implies the existence of the dashed transitions.

– T1 is a multi-resolution transition system, and
– T1 � T2 or T1 ∼ T2 where the (bi)simulation relation R ⊆ X1×X2 satisfies

for all x, z ∈ X1, x �X1
z =⇒ R(x) ⊆ R(z).

Hence, in a multi-resolution abstraction, the (bi)simulation relation R is
consistent with the partial order �X1 . In that case, x �X1 z means that the
abstract state x represents a subset of concrete states R(x), which is a subset
of the concrete states R(z) represented by z. Hence, finer or coarser resolutions
of T1 correspond to more or less precise abstractions of T2, respectively.

In the next section, we will give a construction of bisimilar multi-resolution
abstractions for a class of incrementally stable switched systems. Then, in
Section 4, we will show how such abstractions can be used for efficient safety
synthesis.

3 Multi-resolution abstractions of switched systems

In this section, we provide a construction of multi-resolution bisimilar ab-
stractions for a class of switched systems, enjoying an incremental stability
property.

In the following, a continuous function α : R+
0 → R+

0 is said to belong to
class K if it is strictly increasing, and α(0) = 0. It is of class K∞ if it is of class
K and α(r)→ +∞ when r → +∞. A continuous function β : R+

0 ×R+
0 → R+

0

is said to belong to class KL if for all fixed s, the map r 7→ β(r, s) belongs to
class K and for all fixed r > 0, the map s 7→ β(r, s) is strictly decreasing and
β(r, s)→ 0 when s→ +∞.

3.1 Incrementally stable switched systems

We first introduce the class of switched systems under consideration, which is
similar to that in [14].

Definition 5 A switched system is a quadruple Σ = (Rn, P,P, F ), consisting
of:

– a state space Rn;
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– a finite set of modes P = {1, . . . ,m};
– a set of switching signals P ⊆ S(R+

0 , P ), which denotes the set of piecewise
constant functions from R+

0 to P , continuous from the right and with a
finite number of discontinuities on every bounded interval of R+

0 ;
– a collection of smooth vector fields F = {fp : Rn → Rn | p ∈ P}.

A continuous function x : R+
0 → Rn is said to be a trajectory of Σ if there

exists a switching signal p ∈ P such that, at each t ∈ R+
0 where the function

p is continuous, x is continuously differentiable and satisfies:

ẋ(t) = fp(t)(x(t)).

We make the assumption that the vector fields fp are such that for all initial
conditions x ∈ Rn, for all switching signals p ∈ P, there exists a unique
trajectory of Σ, denoted x(., x,p) or by x(., x, p) if p is constantly equal to
p ∈ P .

The results presented in this section apply to switched systems satisfying
the incremental stability property [2,14]:

Definition 6 A switched system Σ is incrementally globally uniformly asymp-
totically stable (δ-GUAS) if there exists a KL function β such that for all
t ∈ R+

0 , for all x1, x2 ∈ Rn, for all switching signals p ∈ P, the following
condition is satisfied:

‖x(t, x1,p)− x(t, x2,p)‖ ≤ β(‖x1 − x2‖, t).
Intuitively, a switched system is incrementally stable if the distance be-

tween trajectories associated with the same switching signal converges asymp-
totically to zero independently of their initial condition. This property is quite
strong but can be found in several applications of interest such as power con-
verters [14], thermal dynamics in buildings [33] or road traffic networks [22].
Moreover, feedback control may be used to enforce incremental stability on
other systems [48]. As shown in [14], incremental stability of a switched sys-
tem can be characterized using Lyapunov functions:

Definition 7 A smooth function V : Rn × Rn → R+
0 is a common δ-GUAS

Lyapunov function for Σ if there exist K∞ functions α, α and κ ∈ R+ such
that for all x1, x2 ∈ Rn, and for all p ∈ P :

α(‖x1 − x2‖) ≤ V (x1, x2) ≤ α(‖x1 − x2‖); (1)
∂V
∂x1

(x1, x2)fp(x1) + ∂V
∂x2

(x1, x2)fp(x2) ≤ −κV (x1, x2). (2)

Theorem 1 [14] Consider a switched system Σ = (Rn, P,P, F ) with a com-
mon δ-GUAS Lyapunov function, then Σ is δ-GUAS.

Let us remark that V ′ given by V ′(x1, x2) = V (x1, x2)+V (x2, x1) is also a
δ-GUAS Lyapunov function. Hence, there is no loss of generality in assuming
that V (x1, x2) = V (x2, x1), for all x1, x2 ∈ Rn. We would also like to point out
that in Definition 7, V actually needs to be differentiable only at (x1, x2) ∈
Rn × Rn with x1 6= x2. Similarly, (2) needs to hold only for x1 6= x2.
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Remark 3 For switched systems with affine dynamics (i.e. fp(x) = Apx+ bp),
it is convenient to seek for δ-GUAS Lyapunov functions of the form

V (x1, x2) =
√

(x1 − x2)>M(x1 − x2) (3)

where M is a symmetric positive definite matrix. Indeed, functions of that
form can be computed by solving a set of linear matrix inequalities [14]. For
non-affine dynamics, the problem of computing δ-GUAS Lyapunov functions
becomes more involved. Theoretical tools such as matrix measures [25] or
contraction metrics [3] can help to obtain (state-dependent) linear matrix in-
equalities for incremental stability that are similar to those for affine dynamics.
In the case of polynomial dynamics of moderate dimension, such inequalities
may be solved using sum of squares programming.

In the following sections, we will make the supplementary assumption on
the δ-GUAS Lyapunov function that there exists γ ∈ R+, γ ≥ 1, such that for
all x1, x2, x3 ∈ Rn

|V (x1, x2)− V (x1, x3)| ≤ γV (x2, x3). (4)

Remark 4 Equation (4) can be interpreted as a relaxed triangular inequality,
which needs to be satisfied by V . It should be noted that if V is of the form
(3), then (4) holds with γ = 1, which coincides with the traditional triangular
inequality. Otherwise, if the first order derivatives of V are bounded, since we
will be working on compact domains C ⊆ Rn, there is no loss of generality (see
e.g. [14]) to assume that for all x1, x2, x3 ∈ C,

|V (x1, x2)− V (x1, x3)| ≤ γ′‖x2 − x3‖.
Then, assuming that for all r ∈ [0, r̄], α(r) ≥ cαr, where r̄ = maxx,y∈C ‖x−y‖,
it follows that for all x1, x2, x3 ∈ C,

|V (x1, x2)− V (x1, x3)| ≤ γ′

cα
V (x2, x3).

Let Σ = (Rn, P,P, F ) be a switched system where P = S(R+
0 , P ). We

assume in the following that Σ is δ-GUAS and that there exists a common
δ-GUAS Lyapunov function V satisfying (4).

Definition 8 Let τ ∈ R+ be a time sampling parameter, the sampled dy-
namics of the switched system Σ is described by the transition system
Tτ (Σ) = (X,P,∆X , X

0) where:

– the set of states is X = Rn;
– the set of inputs is the set of modes P ;
– the transition relation is given for x ∈ X, p ∈ P by x′ ∈ ∆X(x, p) if and

only if x′ = x(τ, x, p) i.e. the switched system moves from state x to state
x′ by applying constant mode p for duration τ ;

– the set of initial states is X0 ⊆ Rn.

Tτ (Σ) is non-blocking and deterministic and its state space is uncountable.
The set of initial states is intentionally left unspecified and will be subject of
further discussions later.
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3.2 Construction of the abstraction

We now describe the construction of symbolic abstractions approximating the
transition system Tτ (Σ). Our approach uses finite mode sequences as sym-
bolic states as in [22,46]. A noticeable difference with those work is that we
consider sequences of variable length, as opposed to sequences of fixed length.
Each length corresponding to a specific resolution of the abstraction, longer
sequences corresponding to finer resolutions.

The symbolic states consist of mode sequences of varying length. Let
N1, N2 ∈ Z+, such that N1 ≤ N2 be the resolution parameters. In the follow-
ing, we assume for simplicity that N1 ≥ 2. Similar results hold for the case
N1 = 1 though technical proofs are slightly different. Let P [1,N2] =

⋃k=N2

k=1 P k

denote the set of mode sequences of length smaller than or equal to N2. Let
P [N1,N2] =

⋃k=N2

k=N1
P k denote the set of mode sequences of length ranging from

N1 to N2, clearly P [N1,N2] ⊆ P [1,N2].
For w = (p1, . . . , pk) ∈ P [1,N2], let |w| = k denote the length of the sequence

w, and let pw be the switching signal defined on the time interval [0, kτ) by

pw(t) = pk−i, ∀t ∈ [iτ, (i+ 1)τ), i = 0, . . . , k − 1.

Let us remark that the mode sequence w is applied backward in the switching
signal pw: pk is applied first while p1 is applied last.

Let xs ∈ Rn be a source state, then let y : P [1,N2] → X be given by

y(w) = x(|w|τ, xs,pw). (5)

Hence, y(w) is the unique state reached at time |w|τ , from the source state xs,
by applying switching signal pw. In the abstraction, the symbolic state w will
actually represent a set of concrete states defined as a neighborhood of y(w),
which contains all the states that can be reached by the switched system from
the source state xs, by applying any switching sequence, of any length, ending
with pw.

Formally, the symbolic abstraction is given by the transition system

T
[N1,N2]
τ (Σ) = (W,P ′, ∆W ,W

0) where

– the set of states is W = P [N1,N2];
– the set of inputs is the set of modes P ′ = P × {N1, . . . , N2};
– the transition relation is given for w = (p1, . . . , pk) ∈ W , (p, l) ∈ P ′ by
w′ ∈ ∆W (w, (p, l)) if and only if

w′ = (p, p1, . . . , pl−1) and N1 ≤ l ≤ min(k + 1, N2)

– the set of initial states is W 0 ⊆ P [N1,N2].

As an illustration, a partial view of the transition relation of T
[N1,N2]
τ (Σ)

is shown in Figure 2. T
[N1,N2]
τ (Σ) is non-blocking and deterministic and its

state space is finite. Moreover, for all w ∈ W , (p, l) ∈ enab∆W (w) and w′ =
∆W (w, (p, l)) it holds |w′| = l and N1 ≤ l ≤ min(|w|+ 1, N2).

Let us remark that the choice of the set of initial states remains open and
will be discussed later.
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(1, 1)(0, 0) (0, 1) (1, 0)

(0, 0, 1) (0, 1, 0) (1, 0, 1) (1, 1, 0)

(0, 1, 0, 1) (1, 1, 0, 1)

(0, 2)

(0, 3)

(0, 2)

(0, 3)

(0, 4)

(1, 2)

(1, 3)

(1, 2)

(1, 3)

(1, 4)

Fig. 2 Symbolic states of T
[2,4]
τ (Σ) with P = {0, 1}; transitions initiating from the states

(0, 1) and (1, 0, 1).

3.3 Bisimulation relation

In this section, we establish the existence of a bisimulation relation between

the symbolic model T
[N1,N2]
τ (Σ) and Tτ (Σ).

Theorem 2 Let us assume that the switched system Σ admits a common
δ-GUAS Lyapunov function V satisfying (4). Let us consider time sampling
parameter τ ∈ R+, source state xs ∈ Rn and resolution parameters N1, N2 ∈
Z+, with 2 ≤ N1 ≤ N2. Let R ⊆W ×X be given by

R =

{
(w, x) ∈W ×X | V (x, y(w)) ≤ e−(|w|−N1)κτ

1− e−κτ γηN1(xs)

}
(6)

where

ηN1(xs) = max
w∈PN1 ,p∈P

V
(
x(τ, y(w), p), y(∆W (w, (p,N1)))

)
. (7)

Then, R is a bisimulation relation between T
[N1,N2]
τ (Σ) and Tτ (Σ).

Proof Let (w, x) ∈ R, with w = (p1, . . . , pk), p ∈ P , and let x′ ∈ ∆X(x, p) and
w′ ∈ ∆W (w, (p, l)). We consider two different cases depending on the value of
l and thus of |w′|. Let us recall that N1 ≤ |w′| ≤ min(|w|+ 1, N2).

Case 1: If |w′| = |w|+1, then w′ = (p, p1, . . . , pk) and y(w′) = x(τ, y(w), p).
It follows from (2) and (6) that

V
(
x′, y(w′)

)
= V

(
x(τ, x, p),x(τ, y(w), p)

)
≤ e−κτV

(
x, y(w)

)
≤ e−κτ

e−(|w|−N1)κτ

1− e−κτ γηN1(xs) =
e−(|w

′|−N1)κτ

1− e−κτ γηN1(xs). (8)
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Then, (w′, x′) ∈ R.
Case 2: If |w′| < |w|+ 1, then w′ = (p, p1, . . . , pj) with N1− 1 ≤ j ≤ k− 1.

Let w′i = (p, p1, . . . , pi) for i = j, . . . , k, then w′ = w′j and from (4)

V
(
x′, y(w′)

)
= V

(
x′, y(w′j)

)
≤ V

(
x′, y(w′k)

)
+ γ

k∑
i=j+1

V
(
y(w′i), y(w′i−1)

)
.

Since y(w′k) = x(τ, y(w), p), we get

V
(
x′, y(w′)

)
≤ V

(
x(τ, x, p),x(τ, y(w), p)

)
+ γ

k∑
i=j+1

V
(
y(w′i), y(w′i−1)

)
.

By (2) and (6) we get

V
(
x′, y(w′)

)
≤ e−κτ e

−(|w|−N1)κτ

1− e−κτ γηN1(xs) + γ

k∑
i=j+1

V
(
y(w′i), y(w′i−1)

)
. (9)

By (2) and (7), we have for all i = j + 1, . . . , k,

V
(
y(w′i), y(w′i−1)

)
≤ e−κ(i−N1)τηN1(xs).

Hence, (9) gives

V
(
x′, y(w′)

)
≤ e−(|w|+1−N1)κτ

1− e−κτ γηN1(xs) + γ

k∑
i=j+1

e−κ(i−N1)τηN1(xs).

≤ e−(|w|+1−N1)κτ

1− e−κτ γηN1(xs) +

e−(j+1−N1)κτ − e−(k+1−N1)κτ

1− e−κτ γηN1(xs)

≤ e−(j+1−N1)κτ

1− e−κτ γηN1(xs) =
e−(|w

′|−N1)κτ

1− e−κτ γηN1(xs).

Then, (w′, x′) ∈ R.
Thus, we have shown that for all (w, x) ∈ R, p ∈ P , x′ ∈ ∆X(x, p) and w′ ∈

∆W (w, (p, l)), it holds (w′, x′) ∈ R. Hence, it follows that R is a bisimulation

relation between T
[N1,N2]
τ (Σ) and Tτ (Σ). ut

Let us remark that when N1 = N2, our approach encompasses those
presented in [22,46]. The concrete system Tτ (Σ) and the abstract system

T
[N1,N2]
τ (Σ) do not have output functions. Intuitively, the symbolic state
w ∈ W is meant to represent all concrete states belonging to R(w) where
R is given by (6). Let us remark that R(w) is actually a neighborhood of
the concrete state y(w) = x(|w|τ, xs,pw), defined by level-sets of the δ-GUAS
Lyapunov function V . The properties of the δ-GUAS Lyapunov function V
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are instrumental for the proof of Theorem 2 since they allow us to bound the
set of reachable states from the neighborhoods R(w) as done e.g. in [14]. It is
noticeable that the size of the neighborhoods, and thus the precision of approx-
imation, is not uniform over all symbolic states but depends on |w|: shorter or
longer sequences correspond to coarser or finer approximation resolutions re-
spectively. The degree of precision that is gained when using longer sequences
is directly related to the parameter κ, which quantifies the decay rate of the
δ-GUAS Lyapunov function. Then, it appears that computing a good δ-GUAS
Lyapunov function with decay rate as large as possible is important.

Remark 5 The precision also depends linearly on ηN1(xs). Let us first inves-
tigate the dependency on parameter N1. For w = (p1, . . . , pN1

) ∈ PN1 and
p ∈ P , ∆W (w, (p,N1)) = w′ = (p, p1, . . . , pN1−1). Then, by (2), we have that

V
(
x(τ, y(w), p), y(∆W (w, (p,N1)))

)
= V

(
x(N1τ,x(τ, xs, pN1

),pw′),x(N1τ, xs,pw′)
)

≤ e−N1κτV
(
x(τ, xs, pN1

), xs
)
.

It then follows that

ηN1(xs) ≤ e−N1κτη0(xs) where η0(xs) = max
p∈P

V
(
x(τ, xs, p), xs

)
. (10)

Hence, ηN1(xs) can be made arbitrarily small, and thus the approximation
arbitrarily precise (even at the coarsest level) by choosing N1 large enough.
Finally, the precision also depends on the choice of the source state xs: it can
be optimized by minimizing ηN1(xs) or η0(xs) given by equations (7) and (10),
respectively (note that these are minimax optimization problems).

The systems T
[N1,N2]
τ (Σ) and Tτ (Σ) are approximately bisimilar if their

sets of initial states can be related through R:

Corollary 1 Under the assumptions of Theorem 2, let us assume that X0 ⊆
R(W ). Let W 0 = R−1(X0), then T

[N1,N2]
τ (Σ) ∼ Tτ (Σ).

Proof By definition W 0 ⊆ R−1(X0). Let x ∈ X0, it follows from X0 ⊆ R(W )
that there exists w ∈ W such that (x,w) ∈ R. Then, W 0 = R−1(X0) gives

that w ∈W 0. Hence, X0 ⊆ R(W 0). Therefore, T
[N1,N2]
τ (Σ) ∼ Tτ (Σ). ut

The previous corollary provides constraints on the set of initial states of

Tτ (Σ) so that we can choose an adequate set of initial states for T
[N1,N2]
τ (Σ)

and ensure approximate bisimilarity of the two systems. If these constraints
are not met, one can always provide the following asymptotic approximation
result:

Proposition 2 Under the assumptions of Theorem 2, for all trajectories of

Tτ (Σ), σ1 = (x0, p0)(x1, p1) . . . and all trajectories of T
[N1,N2]
τ (Σ), σ2 =

(w0, (p0, l0))(w1, (p1, l1)) . . . , it holds for all i = 0, 1, . . .

V
(
xi, y(wi)

)
≤ e−(|w

i|−N1)κτ

1− e−κτ γN1η(xs) + γe−iκτV
(
x0, y(w0)

)
.
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Proof Consider the trajectory of Tτ (Σ), σ̃1 = (x̃0, p0, ỹ01)(x̃1, p1, ỹ11) . . . where
x̃0 = y(w0). Then, it follows from (2) that

V
(
xi, x̃i

)
≤ e−iκτV

(
x0, x̃0

)
. (11)

Moreover, we have V
(
x̃0, y(w0)

)
= 0, which gives (w0, x̃0) ∈ R. From the proof

of Theorem 2, it follows that (wi, x̃i) ∈ R for all i = 0, 1, . . . . Then, from (4):

V
(
xi, y(wi)

)
≤ γV

(
xi, x̃i

)
+ V

(
x̃i, y(wi)

)
which, with (11) and (6), leads to the conclusion. ut

3.4 Prefix order and multi-resolution property

In this section, we show that T
[N1,N2]
τ (Σ) is a multi-resolution bisimilar ab-

straction in the sense of Definition 4. Let us define the partial order on
W = P [N1,N2] defined by w �W w if and only if w is a prefix of w: i.e.
w = (p1, . . . , pk) and w = (p1, . . . , pk′) and with k′ ≤ k.

Lemma 1 Under the assumptions of Theorem 2, with R given by (6), for all
w,w ∈ P [N1,N2], if w �W w, then R(w) ⊆ R(w).

Proof Let w,w with w �W w, then w = (p1, . . . , pj) and w = (p1, . . . , pj′)
with j′ ≤ j. If j = j′, then w = w and the conclusion is obvious. If j′ < j, let
x ∈ R(w) and wi = (p1, . . . , pi) for j′ ≤ i ≤ j. Then from (4) and (6), we have

V
(
x, y(w)

)
= V

(
x, y(w′j)

)
≤ V

(
x, y(wj)

)
+ γ

j∑
i=j′+1

V
(
y(wi), y(wi−1)

)
≤ V

(
x, y(w)

)
+ γ

j∑
i=j′+1

V
(
y(wi), y(wi−1)

)
≤ e−(|(w|−N1)κτ

1− e−κτ γηN1(xs) + γ

j∑
i=j′+1

V
(
y(wi), y(wi−1)

)
. (12)

By (2) and (7), we have for all i = j′ + 1, . . . , j,

V
(
y(wi), y(wi−1)

)
≤ e−κ(i−N1−1)τηN1(xs).
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Hence, (12) gives

V
(
x, y(w)

)
≤ e−(|(w|−N1)κτ

1− e−κτ γηN1(xs) + γ

j∑
i=j′+1

e−κ(i−N1−1)τηN1(xs).

≤ e−(|w|+1−N1)κτ

1− e−κτ γηN1(xs) +

e−(j
′−N1)κτ − e−(j−N1)κτ

1− e−κτ γηN1(xs)

≤ e−(j−N1)κτ

1− e−κτ γηN1(xs) =
e−(|w|−N1)κτ

1− e−κτ γηN1(xs).

Then, from (6), x ∈ R(w). ut

An interpretation of the previous result can be given as follows. Intuitively,
the symbolic state w represents the set of states that are reachable by the
switched system from the source state xs by applying any switching sequences
ending with pw. Thus, if w �W w, a switching sequence ending with pw also
ends with pw, it is therefore consistent that states represented by symbolic
state w are also represented, at a different scale by w, and hence R(w) ⊆ R(w).
Let us remark that properties of the δ-GUAS Lyapunov function are again
instrumental for the proof of Lemma 1.

Theorem 3 Under the assumptions of Theorem 2 and Corollary 1,

T
[N1,N2]
τ (Σ) is a multi-resolution bisimilar abstraction of Tτ (Σ).

Proof Firstly, it is straightforward to check from the definition of ∆W that
the first item of Definition 3 holds. Then, let w ∈ W 0 = R−1(X0), then
R(w)∩X0 6= ∅. Then, for all w ∈W such that w �W w we have by Lemma 1
that R(w) ⊆ R(w) and hence R(w) ∩ X0 6= ∅, which gives w ∈ W 0. Thus,

the second item of Definition 3 holds as well and T
[N1,N2]
τ (Σ) is a multi-

resolution transition system. Secondly, from Theorem 2 and Corollary 1, we

have T
[N1,N2]
τ (Σ) ∼ Tτ (Σ), which together with Lemma 1 gives that the sec-

ond item of Definition 4 holds. ut

The properties of the symbolic abstraction stated in Theorem 2, Lemma 1
and Theorem 3 are illustrated in Figure 3

3.5 Switched systems with constrained switching

In this section, we show how to consider constraints on the set of admissi-
ble switching signals of the switched system. Particularly, we focus on infi-
nite switching sequences generated by a transition system A = (Q,P,∆Q, Q

0)
where the set of states Q is finite and the set of inputs is the set of modes P .



Safety Synthesis using Discretization-Free Multi-Resolution Abstractions 15

(0, 1) y(0, 0)

y(0, 0, 1)

y(1, 0)

y(1, 0, 1)

Symbolic states Concrete states

(0, 0) (1, 0)

(0, 0, 1) (1, 0, 1)

(0, 2) (1, 2)

(0, 3) (1, 3)

y(0, 1)

∆X(x, 0)

∆X(x, 1)

x

Fig. 3 Illustration of the different properties of the symbolic abstraction T
[2,3]
τ (Σ) with P =

{0, 1}. Left: symbolic transitions initiating from symbolic state (0, 1); Right: corresponding
transitions in the concrete state space, the neighborhoods are related to symbolic states
of the same color. If x ∈ R(0, 1), then ∆X(x, 0) ∈ R(0, 0, 1) ⊆ R(0, 0) and ∆X(x, 1) ∈
R(1, 0, 1) ⊆ R(1, 0).

The sampled dynamics of switched system Σ where switching sequences
are constrained by transition system A can then be described by the composed
transition system Tτ (Σ)||A = (X×Q,P,∆X×Q, X0×Q0) where the transition
relation is formally given for (x, q), (x′, q′) ∈ X ×Q, p ∈ P by

(x′, q′) ∈ ∆X×Q((x, q), p) ⇐⇒ x′ ∈ ∆X(x, p) ∧ q′ ∈ ∆Q(q, p).

Similarly, we can define the composition of the symbolic abstraction

T
[N1,N2]
τ (Σ) with transition system A as the composed transition system

T
[N1,N2]
τ (Σ)||A = (W ×Q,P ′, ∆W×Q,W 0 ×Q0) where the transition relation

is formally given for (w, q), (w′, q′) ∈W ×Q, (p, l) ∈ P ′ by

(w′, q′) ∈ ∆W×Q((w, q), (p, l)) ⇐⇒ w′ ∈ ∆W (w, (p, l)) ∧ q′ ∈ ∆Q(q, p).

The partial order on W can be naturally lifted to W ×Q as follows:

(w, q) �W×Q (w, q) ⇐⇒ w �W w ∧ q = q.

Let us remark that if q 6= q, then the states (w, q) and (w, q) are incomparable.
Then, the following result is a direct consequence of Theorems 2 and 3 and

Corollary 1:

Corollary 2 Under the assumptions of Theorem 2 and Corollary 1, let R′ ⊆
W ×Q×X ×Q be given by

R′ = {(w, q1, x, q2) ∈W ×Q×X ×Q | (w, x) ∈ R ∧ q1 = q2} .

Then, R′ is a bisimulation relation between T
[N1,N2]
τ (Σ)||A and Tτ (Σ)||A.

T
[N1,N2]
τ (Σ)||A is a multi-resolution bisimilar abstraction of Tτ (Σ)||A.
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4 Safety synthesis using multi-resolution abstractions

In this section, we show how multi-resolution abstractions can be used for
safety synthesis. For efficiency, we do not explore nor compute the abstract
transition relation exhaustively but adaptively during controller synthesis. The
exploration should favor abstract states at coarser resolutions in order to keep
the number of explored states as small as possible. Abstract states at finer
resolutions are only explored when all related states at coarser resolutions are
unsafe.

4.1 Problem formulation

Let Ti = (Xi, Ui, ∆i, X
0
i ), i = 1, 2, be non-blocking and deterministic tran-

sition systems such that T1 is a multi-resolution abstraction of T2. Let R ⊆
X1 ×X2 be the (bi)simulation relation between T1 and T2, and let Xs

2 ⊆ X2

denote a subset of safe states of T2. Let Xs
1 = {x1 ∈ X1 | R(x1) ⊆ Xs

2} be the
associated set of safe states of T1. Let us remark that by Definition 4, we have

∀x ∈ Xs
1 , ∀z ∈ X1, z �X1 x =⇒ z ∈ Xs

1 . (13)

In the rest of the section, we only deal with transition system T1, so to
simplify the notation the index will be dropped: T1 = T = (X,U,∆,X0),
Xs

1 = Xs and �X1=�X . For a subset X ′ ⊆ X, the set of maximal elements
of X ′ is given by max�(X ′) = X ′ \ {x ∈ X ′ | ∃x′ ∈ X ′, x ≺ x′}. The
lower sets of X ′ are given by low�(X ′) = {x ∈ X | ∃x′ ∈ X ′, x � x′} and
low≺(X ′) = {x ∈ X | ∃x′ ∈ X ′, x ≺ x′}.
Definition 9 X ′ ⊆ Xs is a safe invariant set of T if

∀x ∈ X ′,∃u ∈ enab∆(x), such that x′ ∈ X ′ where x′ = ∆(x, u). (14)

Starting from an initial state x0 ∈ X ′, one can then generate infinite trajec-
tories of T , σ = (x0, u0)(x1, u1) . . . , such that xi ∈ X ′, for all i ≥ 0.

4.1.1 Maximal safe invariant

There exists in general several safe invariant sets, however, it is well known
that there exists one that is maximal (see e.g. [35,42]):

Lemma 2 There exists a unique safe invariant set X∗ ⊆ Xs such that for all
safe invariant sets X ′ ⊆ Xs, X ′ ⊆ X∗.
X∗ is called the maximal safe invariant set of T . The computation of the max-
imal safe invariants set generally requires the full exploration of the transition
relation. However, a partial exploration is possible by exploiting the multi-
resolution property of transition system T . Let us consider the set X# ⊆ X
given by:

X# = max�X (X∗). (15)

Then, the following result holds:
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Lemma 3 X# is a safe invariant set of T .

Proof Firstly, we have X# ⊆ X∗ ⊆ Xs. Secondly, let x ∈ X#, then x ∈ X∗
and since X∗ is a safe invariant set, there exists u ∈ enab∆(x) such that
x′ ∈ X∗ where x′ = ∆(x, u). From (15), there exists z′ ∈ X#, such that
x′ �X z′ (note that we may have x′ = z′). Then, from Definition 3, there
exists v ∈ enab∆(x) such that z′ = ∆(x, v). Hence, equation (14) holds. ut

The following result shows that the maximal safe invariant set X∗ can be
easily obtained from X#:

Theorem 4 X∗ = low�X (X#).

Proof Firstly, by definition of maximal elements and lower sets and by (15),
the following inclusions hold:

X∗ ⊆ low�X (max�X (X∗)) = low�X (X#).

Let us now show that low�X (X#) is a safe invariant set. Let z ∈ low�X (X#),
then there exists x ∈ X# such that z �X x. Since x ∈ X# ⊆ Xs, by (13), we
get that z ∈ Xs. By Lemma 3, there exists u ∈ enab∆(x), such that x′ ∈ X#

where x′ = ∆(x, u). From Definition 3, there exists v ∈ enab∆(z) such that
x′ = ∆(z, v). Hence, equation (14) holds. Therefore, low�X (X#) is a safe
invariant set. By maximality of X∗, it follows that low�X (X#) ⊆ X∗. ut

Thus, one can see that to compute the maximal safe invariant set X∗, it is
actually sufficient to compute X#. Let us now define the controlled transition
system T# = (X#, U,∆#, X0#) where the set of initial states is given by
X0# = X0 ∩ X#, and the transition relation is given for all x ∈ X# and
u ∈ U by

u ∈ enab∆#(x) ⇐⇒ (u ∈ enab∆(x) ∧∆(x, u) ∈ X#)

and for all u ∈ enab∆#(x), ∆#(x, u) = ∆(x, u). We then have

Proposition 3 The transition system T# satisfies the following properties:

– All trajectories of T# are trajectories of T ;
– The set of reachable states reach(T#) is a subset of the safe invariant X#;
– T# is non-blocking and deterministic.

Proof The first two items are direct consequence of the definition of T#. More-
over T# is deterministic because T is deterministic. Finally, since X# is a safe
invariant set of T , it follows from Definition 9 and the definition of the transi-
tion relation ∆# that for all x ∈ X#, there exists u ∈ enab∆#(x). Hence, T#

is non-blocking. ut

Hence T# allow generating safe and infinite trajectories of T . Let us remark
that to characterize T# it is not necessary to compute X#, it is actually
sufficient to compute reach(T#). Let us remark that reach(T#) = X# if X0 =
X.
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(0, 0)

(0, 0, 0) (0, 0, 1) (0, 1, 0)

(1, 3)

(0, 2)(0, 2)
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(0, 3)

(0, 3)
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Fig. 4 Illustration of the different notions of invariants for symbolic ab-

straction T
[2,3]
τ (Σ) with P = {0, 1} and safety specification Xs =

{(0, 0), (0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 0)}. Top: maximal safe invariant X∗ and
associated safe transitions (note that (1, 1, 0) /∈ X∗); Bottom: safe invariant X#, the four
transitions belong to ∆#, only the three plain transitions belong to ∆\.

4.1.2 Maximal coarsest safe invariant

In this section, we consider further complexity reduction. Let us assume that
X is equipped with a total pre-order vX ⊆ X × X which is consistent with
the partial order �X in the sense that for all x, z ∈ X such that x �X z we
have x vX z. Intuitively, while x �X z means that states x and z are related
at finer and coarser resolutions, x vX z means that x lies at a finer resolution
than z but they don’t need to be related. For instance, for symbolic states
given by sequences of variables length, as in our construction, x �X z means
that z is a prefix of x, while x vX z means that the z is shorter than x.

Let us now define the transition system T \, obtained by selecting tran-
sitions of T# that end at the coarsest possible scale. Formally, T \ =
(X#, U,∆\, X0#) where the transition relation is given for all x ∈ X# and
u ∈ U by

u ∈ enab∆\(x) ⇐⇒
(
u ∈ enab∆#(x)∧

(
∀v ∈ enab∆#(x), ∆(x, v) vX ∆(x, u)

))
and for all u ∈ enab∆\(x), ∆\(x, u) = ∆(x, u). By construction, T \ inherits the
properties of T# stated in Proposition 3. Let us remark also that to character-
ize T \ it is not necessary to compute X#, it is actually sufficient to compute
reach(T \).
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The different notions of invariants presented in this section are illustrated
in Figure 4. In the next section, we present algorithms for the computation of
reach(T#) and reach(T \).

4.2 Algorithms

The synthesis problems we consider are thus: given a (concrete) state space X2,
a safe set Xs

2 ⊆ X2, a multi-resolution transition system T = (X,U,∆,X0)
with partial order relation �X ⊆ X × X, and a bisimulation relation R ⊆
X ×X2 as in Definition 4,

– synthesize the safe invariant set reach(T#);
– synthesize the coarsest safe invariant set reach(T \).

The synthesis algorithm for the reachable states reach(T#) (if coarse =
false) and reach(T \) (if coarse = true) is shown in Algorithm 1. It calls function
explore in Algorithm 2 for the initial states X0, starting from the coarsest level,
and keeps refining each state x as long as it has neither found to be controllable
(that is, explore returned false) nor unsafe (line 9). At each call to explore, the
set of states visited so far is contained in Xc∪Xu1 ∪ low�X(Xu2)∪Xv, where
Xc is the set of controllable states. Xu1 is a set of uncontrollable states of type
1, for which some related states at finer resolutions may be controllable. Xu2

is a set of uncontrollable states of type 2, for which all related states at finer
resolutions are uncontrollable. Hence, it is sufficient to store only the maximal
elements among the uncontrollable states of type 2. Finally, Xv is the set of
states visited along one path from some initial state in X0 to (excluding) the
current state x.

The function call explore(x,Xv) returns whether state x is controllable. A
state x is controllable if

– it has an immediate controllable successor x′ (line 18 of Algorithm 2), in
that case x and all states in Xv are added recursively to Xc (line 20); or

Algorithm 1: Computation of reach(T#) or of reach(T \)

Input: transition system T = (X,U,∆,X0), safe set Xs
2 ⊆ X2, partial order

�X ⊆ X ×X, bisimulation relation R ⊆ X ×X2

Output: controllable states Xc ⊆ X
1 Global variables: Xc, Xu1 , Xu2 ⊆ X
2 Local variable: todo ⊆ X (set of states to be explored)
3 Invariant I: ∀x ∈ Xc ∀x′ ∈ X : x ≺ x′ =⇒ x′ ∈ Xu1

4 begin
5 (Xc, Xu1 , Xu2 , todo) := (∅, ∅, ∅,max�X

0) ;
6 for x ∈ todo do
7 todo := todo \ {x} ;
8 if ¬explore(x, ∅) then
9 todo := todo ∪

(
max�X

(
X0 ∩ low≺X ({x})

)
\ low�X (Xu2 )

)
10 return Xc
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Algorithm 2: explore(x, Xv)

Parameter : coarse ∈ B, true for maximal coarsest safe invariant

Input: state x ∈ X, visited states Xv ⊆ X
Output: true if and only if x is controllable

1 Local variable: foundSucc ∈ B, needRef ∈ B, todo ⊆ X, m ⊆ X
2 begin

3 if x ∈ Xc ∪Xv then

4 return true

5 if x ∈ Xu1 ∪ low�X (Xu2 ) then

6 return false

7 if R(x) 6⊆ Xs
2 then

8 if R(x) ∩Xs
2 = ∅ then

9 Xu2 := Xu2 ∪ {x}

10 return false

11 foundSucc := false ;

12 todo :=
⋃
u∈U ∆(x, u) \

(
low�X (Xu2 ) ∪Xu1

)
;

13 while todo 6= ∅ ∧ ¬(coarse ∧ foundSucc) do

14 m := maxvX (todo) ;

15 needRef := false;

16 for x′ ∈ m do

17 todo := todo \ {x′} ;

18 if explore(x′, Xv ∪ {x}) then

19 todo := todo \ low�X ({x′}) ;

20 Xc := Xc ∪ {x} ;

21 foundSucc := true

22 else if x′ ∈ low�X (Xu2 ) then

23 todo := todo \ low�X ({x′})

24 else if x′ ∈ Xu1 then

25 needRef := true

26 if foundSucc then

27 return true

28 if needRef then

29 Xu1 := Xu1 ∪ {x}

30 else

31 Xu2 := Xu2 ∪ {x}

32 return false

– it has already been found to be controllable (i.e., x ∈ Xc), or it has been
visited along the current path Xv (i.e. x ∈ Xv) (line 3) — hence, lying on a
cyclic path of safe states, in that case all states in Xv are added recursively
to Xc.

In contrast, x is determined to be uncontrollable if

– it has been found to be uncontrollable before (line 5), or if R(x) intersects
(type 1) or is contained (type 2) in the unsafe set (line 8); or
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– all its successors are uncontrollable. Refinement is needed (type 1) if some
successor x′ of x is itself in Xu1 (line 29); otherwise it is added to Xu2

(line 31).

Hence, at the end of each call to explore, the sets Xc, Xu1 and low�X(Xu2)
contain all the controllable states, states that are uncontrollable or to be re-
fined, and unsafe states, respectively, that have been explored.

Let us remark that explore involves some computation in the concrete
state space (only at lines 7 and 8). In the case of switched systems, these two
tests involve checking containment or intersection of the level sets of the δ-
GUAS Lyapunov functions with the safe set Xs

2 . In particular, if the δ-GUAS
Lyapunov function is of the form (3) and Xs

2 is a polytope or an ellipsoid,
these operations can be performed efficiently. It is also possible to perform
these tests conservatively using over-approximations of R(x). In this case, the
algorithm remains sound (it computes a safe invariant), however the relation
to the maximal safe invariant may be lost.

Proposition 4 Given a symbolic multi-resolution abstraction T#, the result
of Algorithm 1 is reach(T#) if coarse = false and reach(T \) otherwise. Algo-
rithm 1 is guaranteed to terminate if T# (resp. T \) is finite.

Proof Let T = (X,U,∆,X0) be a symbolic multi-resolution abstraction with
safe states Xs.

We first show that Xc is a safe invariant with respect to Xs. For all x ∈ Xc,
safety with respect to Xs follows from the fact that condition R(x) ⊆ Xs

2 holds
in line 20. Invariance of safety under ∆ is ensured by the fact that a state is
added to Xc in line 20 only if it has a successor in Xc ∪Xv.

Next we prove invariance of I as defined in line 3 of Algorithm 1. Clearly,
I holds by vacuity after the initialization in line 5 of Algorithm 1. Let x ∈
Xc. The loops of Algorithm 2 (lines 13 and 16) explore trajectories through
the successor states x′ of x under all inputs, provided that x′ has not been
recognized as unsafe yet, visiting maximal successors first (line 16). Whenever
a state x′ is safe but not controllable, the next finer abstraction is explored.
Hence, if x ∈ Xc then all strictly coarser states x′ with x ≺ x′ have been
explored and added to Xu1 (line 29) as none of them is controllable.

We now show, for coarse = false, that Xc is the maximal safe invariant of
T#, that is, Xc = reach(T#). Since in Algorithm 1, function explore is called
on the initial states in max�(X0) with increasing refinement until each initial
state is either found to be controllable, uncontrollable, or unsafe, it follows (1)
with invariant I that Xc ⊆ X# and (2) that Xc is the maximal reachable set
satisfying this condition. Therefore, Xc = reach(X#).

The proof that Xc = reach(T \), for coarse = true, is similar, with explore
being called only if no coarser controllable successor has been found before
(line 13). The claim then follows from the unicity of X\.

If X is finite, termination follows from the fact that the body of explore
(lines 11 to 25) is executed at most once for each element x of X. ut
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5 Application to a Road Traffic Model

We apply our approach to a variant of the road traffic model from [22]. The
model Σ of a road, divided in 5 sections with 3 entrances and 2 exits, is
illustrated in Fig. 5. The entrances to sections 1 and 4 are controlled by traffic
lights f1 and f2 respectively, that enable (green light) or not (red light) the
vehicles to pass.

54321

Fig. 5 Model Σ of a road divided into 5 sections with 2 entrances and 2 exits.

In Σ, the dynamic we want to observe is the density of traffic ϕi, given
in vehicles per section, for each section i of the road. The state of Σ is
the 5-dimensions vector x = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5) and its set of modes is
P = {0, 1, 2, 3} where:

– mode 0 means both lights red;
– mode 1 means f1 green and f2 red;
– mode 2 means f1 red and f2 green;
– mode 3 means both lights green.

Let li be the length of section i in kilometers (km) and vi be the flow speed
of the vehicles in kilometers per hour (km/h). Inspired by the work of [8], the
model of a simple section (sections 3 and 5) is described by:

ϕ̇i = −vi
li
ϕi +

vi−1
li−1

ϕi−1

For sections 1 and 4 add the number of vehicles that can enter, and for section
2 subtract the number of vehicles that can exit. For equal section lengths
l and speed v in all sections, the system dynamics in mode p are given by
ϕ̇ = Apϕ+ bp where

A0 = A1 = A2 = A3 =


− v
l

0 0 0 0
v
l
− v
l

0 0 0
0 r3 × v

l
− v
l

0 0
0 0 v

l
− v
l

0
0 0 0 v

l
− v
l


and b0 = [r0 0 0 0 0]′, b1 = [r0 + r1 0 0 0 0]′, b2 = [r0 0 0 r4 0]′, and
b3 = [r0 + r1 0 0 r4 0]′. Take r3 = 0.5 and r0 = r1 = r4 = 5000 (in vehicles
per hour).
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One can find a δ-GUAS Lyapunov function V for Σ of the form (3) where
the corresponding matrix is

M =


4.4295 1.6556 1.4513 0.1861 −0.1101
1.6556 1.8611 0.9576 0.2494 −0.1414
1.4513 0.9576 2.6822 0.7420 −0.4135
0.1861 0.2494 0.7420 1.4219 −0.2338
−0.1101 −0.1414 −0.4135 −0.2338 1.1296


As for the choice of the source point xs as discussed in Remark 5, we use the
fminimax Matlab function that provides

xs = [26.7857 26.7857 13.3929 22.3214 22.3214]′.

The results of our algorithm for several specifications are summarized in
Table 1. Specifications are a conjunction of an upper bound on the traffic
density of the form ∀i : xi ≤ b and a behavioral specification. The behavioral
specification “lights red ≤ 1 t.u.” means that mode 0 (resp. mode 1, mode 2)
must be followed immediately by mode 3 (resp. mode 2 or 3, mode 1 or 3).
The columns “lengths” indicate the effective lengths, contained in [N1, N2], of
mode sequences in X# and X\, respectively. All computations were performed
on an Intel Core i7-4770 with 16GB RAM.

specification X# X\

b behavior states lengths time states lengths time
23 any 14 876 [8,10] <1s 331 8 <1s
24 any 22 265 [8,10] 1.1s 799 8 <1s
30 mode 0 forbidden 78 549 [6,10] 3.5s 745 [6,10] <1s
32 mode 0 forbidden 120 506 [5,10] 2.5s 191 [5,10] <1s
32 lights red ≤ 1 t.u. 177 853 [5,10] 2.9s 270 [5,9] <1s

Table 1 Results for N1 = 5, N2 = 10.

We are interested in extracting, from the cycles in T \, schedules that satisfy
some optimality criterion. We consider two measures. Let γ = (p1, ..., pkγ ) be

the sequence of modes labeling some cycle and let θi(γ) =
∑kγ
j=1 ci(pj)/kγ be

the average throughput at entrance i ∈ {1, 2}, where cj(p) indicates whether
lights of entrance j are green in mode p, that is, c1(0) = c2(0) = c1(2) =
c2(1) = 0 and c1(1) = c2(2) = c1(3) = c2(3) = 1. Thus, the total average
throughput during cycle γ is C1(γ) = θ1(γ) + θ2(γ) and the worst average
throughput over both entrances is C2(γ) = min{θ1(γ), θ2(γ)}. Table 2 ex-
hibits, for each of the specifications of Table 1, a cycle maximizing C1 and C2,
respectively, and its cost.

Among the synthesized maximal coarsest safe invariant sets, the best
average throughput is obtained with the schedule (1, 2, 3, 2, 1, 2, 3, 2, 1, 2) and
the best minimal throughput with schedule (1, 2). Figure 6 shows the traffic
densities for the former schedule.
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specification best total throughput best worst-case thr.

b behavior cycle γ C1(γ) cycle γ C2(γ)
23 any (0) 0 (0) 0
24 any (2, 0, 0, 0) 0.25 (0) 0
30 mode 0 forbidden (1, 2, 2) 1 (1, 2, 2) 0.333
32 mode 0 forbidden (1, 2, 3, 2, 1, 2, 3, 2, 1, 2) 1.2 (1, 2) 0.5
32 lights red ≤ 1 t.u. (1, 2) 1 (1, 2) 0.5

Table 2 Optimal schedules extracted from X\.
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Fig. 6 Traffic densities (solid blue) and upper bound (dashed red) on the five road segments
for schedule (1, 2, 3, 2, 1, 2, 3, 2, 1, 2).

Let us now apply our approach to a higher-dimensional model, a circular
peripherial highway divided in 20 segments, as illustrated in Figure 7. The
road has 4 entrances, each controlled by traffic lights, and 4 exits.

The state of the model is given by a 20-dimensional vector x =
(ϕ1, ϕ2, ..., ϕ20) of traffic densities and the set of modes is P = {0, 1, ..., 15}
where each mode is the binary encoding of the states of the traffic lights:

– mode 0 means (red, red, red, red);
– mode 1 means (red, red, red, green);
– mode 15 means (green, green, green, green).

As above, the dynamics for a simple segment i without entrance or exit is
given by

ϕ̇i = −vi
li
ϕi +

vi−1
li−1

ϕi−1
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Fig. 7 Model Σ of a road divided into 20 segments with 4 entrances and 4 exits.

For the segments with an entrance add the number of vehicles that can enter,
and for the segments with an exit subtract exit flow. We assume the relative
exit rates of the four exits to be 0.2, 0.5, 0.3, and 0.1, respectively. For equal
segment lengths `i = 100m and speed vi = 70km/h in all segments, the system
dynamics in mode p are given by ϕ̇ = Apx+ bp where A0 = A1 = ... = A15 =
(aij) ∈ R20×20 where

aij =

 −vi/`i if i = j
vi/`i × (1− outj) if j = i− 1 ∨ (i, j) = (1, 20)

0 otherwise

where out1 = 0.2, out4 = 0.5, out11 = 0.3, out14 = 0.1, and outi = 0 for
i /∈ {1, 4, 11, 14}. Furthermore let bi = 3600× bin(i)′ where bini is the binary
representation of i with bin(0) = (0 0 0 0), bin(1) = (0 0 0 1), ..., bin(15) =
(1 1 1 1), modeling the rate of each entrance as 1 vehicle per second when the
lights are green.

Again one can find a δ-GUAS Lyapunov function V of the form (3) for
our model. Following Remark 5 we determine the source point as xs =
[9.78, 10.40, ..., 9.78]. We take [N1, N2] = [4, 12] and require the specification
consisting of an upper bound of 14 on the traffic density in each segment,
and a behavioral specification modeling progress and fairness. More precisely,
we forbid mode 0 in which all lights are red; furthermore, none of the traffic
lights must stay red during more than one time unit. The controller synthe-
sis of X\ converges in 3.9 s, yielding 10413 controllable states of lengths in
[5, 12], from which two optimal cycles with respect to the criteria discussed
above can be extracted:

(
(green, green, red, green), (red, red, green, red)

)
and
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(green, red, red, green), (red, green, green, red)

)
. For the same parameters,

the computations of X∗ and X# did not terminate within ten minutes.

6 Conclusion

In this paper we presented an approach for safety synthesis for a class of
switched systems. The main contributions can be summarized as follows.
Firstly, we introduced general notions of multi-resolution transition systems
and of multi-resolution (bi)similar abstractions. Secondly, we have shown how
such abstractions can be computed for incrementally stable switched systems,
possibly with constrained switching signals. Thirdly, we have shown that the
multi-resolution structure can be exploited to define two particular safety con-
trollers, which keep the state of the abstraction at the coarsest possible resolu-
tion, and that are as good as the maximal safety controller in term of control-
lable initial states. Algorithms to synthesize these controllers are presented,
where the abstractions need not be computed a priori but are generated on
the fly during the synthesis: transitions to finer resolutions are only computed
when safety cannot be ensured at the coarser level. Examples inspired by road
traffic regulation show the effectiveness of the approach.

In future work, we will work towards the development of synthesis al-
gorithms for non-deterministic abstractions, as the algorithms presented in
Section 4.2 exploit the determinism of the abstraction. Extending such ap-
proaches beyond safety properties, e.g. for reachability or properties that can
be expressed in linear temporal logic, are also a challenging problem that re-
quires further research.
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