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Lyapunov Functions for Shuffle Asymptotic Stability
of Discrete-Time Switched Systems

Antoine Girard1 and Paolo Mason1

Abstract— In this paper, we investigate stability of discrete-
time switched systems under shuffled switching signals. A
switching signal is said to be shuffled if each mode of the
switched system is activated infinitely often. We introduce
the notion of shuffle Lyapunov functions and show that the
existence of such a function is a sufficient condition for global
uniform shuffle asymptotic stability. In the second part of the
paper, we show that for a specific class of switched systems, with
linear and invertible dynamics, existence of a shuffle Lyapunov
function is also necessary, even for the weaker notion of global
shuffle attractivity. Examples and numerical experiments are
used to illustrate the main results of the paper.

Index Terms— Switched systems; Shuffle stability; Lyapunov
methods

I. INTRODUCTION

Switched systems consist of a collection of dynamics with
a switching rule specifying at each time instant the dynamics
describing the evolution of the system. The popularity of
switched systems is due to the fact that despite the simplicity
of their mathematical formulation, they can exhibit com-
plex and non-intuitive behavior. Moreover, their relevance
in many engineering applications has motivated abundant
research for almost three decades.

Early work on stability of switched systems has focused on
stability for switching signals that are arbitrary or that satisfy
some (minimum or average) dwell-time condition (see e.g.
[1], [2], [3] and the references therein). More recently, several
works have considered the problem of proving stability for
subsets of switching signals. In general, such switching
signals are assumed to be generated by some finite state
automaton and stability is characterized either in term of
constrained joint spectral radius [4], [5], [6] or using Lya-
punov functions [7], [8], [9], [10]. However, there are some
subsets of switching signals that cannot be specified using
classical finite state automata. For instance, [11] considers
switching signals specified using weighted-automata.

In this paper, we consider the class of discrete-time
shuffled switching signals. A switching signal is said to
be shuffled if each mode of the switched system is acti-
vated infinitely often. Since the sets of liveness and safety
properties are disjoint [12], the set of shuffled switching
signals, which is an example of liveness property, cannot be
characterized using classical finite state automata that can
only describe safety properties. Actually, shuffled switching
signals may be seen as an example of ω-regular language
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which can be characterized using either non-deterministic
Büchi automata, deterministic Rabin automata, or deter-
ministic Muller automata, which are finite state automata
with various acceptance conditions (see e.g. [12]). Shuffled
switching signals have first been introduced in [13] for
switched linear systems, where a necessary and sufficient
condition for shuffle asymptotic stability (i.e. asymptotic
stability with respect to shuffled switching signals) has
been proposed based on the maximum spectral radius of
an infinite set of matrices. Shuffled switching signals are
also considered in [14], where it is shown that stability of a
class of switched systems with switching signals constrained
by an arbitrary ω-regular language is equivalent to shuffle
asymptotic stability of an associated lifted switched system.
In the same paper, it is shown that some robust notion
of shuffle asymptotic stability is equivalent to asymptotic
stability for arbitrary switching signals.

Shuffled switching signals can also be related to multi-
agent consensus with switching communication topologies
as follows. Consider that at each time instant only one
edge in the communication graph is active and is selected
by a switching signal. If one uses a shuffled switching
signal, then each edge is activated infinitely often so that
the union of future communication graphs is connected at
all time, and it is well-known (see e.g. [15], [16]) that the
consensus is asymptotically reached. On the contrary, if some
edges are never activated the union of future communication
graphs may be disconnected and the consensus cannot be
approached.

In this work, we develop for the first time a Lyapunov
approach to stability analysis for shuffled switching signals.
In Section III, we introduce the notion of shuffle Lyapunov
functions and show that the existence of such a function is
a sufficient condition for global uniform shuffle asymptotic
stability. In Section IV, we show that for a class of switched
systems, with linear and invertible dynamics, existence of
a shuffle Lyapunov function is also necessary, even for the
weaker notion of global shuffle attractivity. Several examples
are used to illustrate the main results of the paper. Finally,
in Section V, a numerical example is provided.

Notations: In this paper, ‖.‖ denotes the usual Eu-
clidean norm on Rn. A function γ : R+

0 → R+
0 is a

K function if it is continuous, strictly increasing and with
γ(0) = 0; it is a K∞ function if it is a K function and
additionally limr→+∞ γ(r) = +∞. A function β : R+

0 ×
R+

0 → R+
0 is a KL function if for all s ∈ R+

0 , β(., s) is a
K function and for all r ∈ R+

0 , β(r, .) is non-increasing and
lims→+∞ β(r, s) = 0.



II. SHUFFLE ASYMPTOTIC STABILITY

We consider a discrete-time switched system of the fol-
lowing form:

x(t+ 1) = fθ(t)(x(t)), t ∈ N (1)

where x : N → Rn is the trajectory and θ : N → Σ is
the switching signal. Σ = {1, . . . ,m}, with m ≥ 2, is the
finite set of modes and {fσ : Rn → Rn |σ ∈ Σ} is the
collection of vector fields. Given an initial state x0 ∈ Rn,
and a switching signal θ, the trajectory defined by (1) with
x(0) = x0 is unique and denoted x(., x0, θ).

In this paper, we are interested in a particular class of
switching signals called shuffled. In words, a switching
signal is said to be shuffled if each mode in Σ is activated
infinitely often. This translates formally as below:

Definition 1. A switching signal θ : N→ Σ is shuffled if

∀σ ∈ Σ,∀T ∈ N,∃t ≥ T : θ(t) = σ.

The sequence of shuffling instants (τθk )k∈N is defined by
τθ0 = 0 and for all k ∈ N,

τθk+1 = min

{
t > τθk

∣∣∣ ∀σ ∈ Σ,∃s ∈ N :
τθk ≤ s < t and θ(s) = σ

}
.

The shuffling index κθ : N→ N is given by

κθ(t) = max{k ∈ N| τθk ≤ t}.

Intuitively, between the instants τθk and τθk+1 − 1, each
mode in Σ is activated at least once. For a shuffled switching
signal, the sequence of shuffling instants is well-defined,
strictly increasing and thus goes to +∞. Similarly, the
shuffling index is well-defined, non-decreasing and goes to
+∞. An illustration of these concepts is shown in Figure 1.

We study stability properties of switched system (1) under
the effect of shuffled switching signals.

Definition 2. Switched system (1) is said to be
• globally shuffle attractive (GSA) if for all x0 ∈ Rn, for

all shuffled switching signal θ:

lim
t→+∞

‖x(t, x0, θ)‖ = 0;

• globally uniformly shuffle asymptotically stable
(GUSAS) if there exists a KL function β such that for
all x0 ∈ Rn, for all shuffled switching signal θ:

‖x(t, x0, θ)‖ ≤ β(‖x0‖, κθ(t)), ∀t ∈ N.

We first establish some relations between stability notions:

Proposition 1. If switched system (1) is GUSAS, then it is
GSA and for all x0 ∈ Rn, for all switching signal θ:

‖x(t, x0, θ)‖ ≤ β(‖x0‖, 0), ∀t ∈ N.

Proof. If switched system (1) is GUSAS, then for all x0 ∈
Rn, for all shuffled switching signal θ

lim
t→+∞

‖x(t, x0, θ)‖ ≤ lim
t→+∞

β(‖x0‖, κθ(t)) = 0.

t

θ(t)

t

κθ(t)

τθ0 τθ1 τθ2 τθ3

Fig. 1. A switching signal (with m = 2) and the associated shuffling
instants and index.

For the second part of the proposition, let x0 ∈ Rn, and θ be
a switching signal (not necessarily shuffled). Let t ∈ N, it is
clear that there exists a shuffled switching signal θt, which
coincides with θ up to time t. Then, we get

‖x(t, x0, θ)‖ = ‖x(t, x0, θt)‖
≤ β(‖x0‖, κθt(t)) ≤ β(‖x0‖, 0).

It is important to remark that the second part of Propo-
sition 1 holds for all switching signals (not only shuffled).
Then, if a switched system is GUSAS, it is also Lyapunov
stable for all arbitrary switching signals. It is also clear that
if a switched system is globally uniformly asymptotically
stable for all switching signals then it is GUSAS. However,
the converse is not true (see Example 1). In addition, a GSA
switched system need not be GUSAS (see Example 2).

III. SUFFICIENT CONDITIONS BASED ON
LYAPUNOV FUNCTIONS

In this section, we establish sufficient conditions for a
switched system to be GUSAS based on the following notion
of Lyapunov function:

Definition 3. A function V : Σ × Rn → R+
0 is called a

shuffle Lyapunov function if there exists K∞ functions α1,
α2, and a K function ρ with ρ(r) < r for all r > 0, such
that for all x ∈ Rn, the following hold:

α1(‖x‖) ≤ V (σ, x) ≤ α2(‖x‖), σ ∈ Σ (2)
V (σ, fσ′(x)) ≤ V (σ, x), σ, σ′ ∈ Σ, σ 6= σ′ (3)
V (σ + 1, fσ(x)) ≤ V (σ, x), σ ∈ Σ \ {m} (4)
V (1, fm(x)) ≤ ρ(V (m,x)) (5)

Theorem 1. If there exists a shuffle Lyapunov function, then
the switched system (1) is GUSAS.

Proof. Let us consider an initial condition x0 ∈ Rn and a
shuffled switching signal θ, let us denote x(.) = x(., x0, θ).



η = 1 η = 2 η = m
θ = 1

θ 6= 1 θ 6= 2

θ = 2 θ = m− 1

θ 6= m

θ = m

Fig. 2. Automaton describing the dynamics of η.

Let η : N → Σ be defined by η(0) = 1 and the following
rules:

if θ(t) 6= η(t), then η(t+ 1) = η(t);

if θ(t) = η(t) and η(t) 6= m, then η(t+ 1) = η(t) + 1;

if θ(t) = η(t) and η(t) = m, then η(t+ 1) = 1.
(6)

Equivalently, the evolution of η can be described by the finite
state automaton shown on Figure 2. Now, let us consider
W : N → R+

0 , defined by W (t) = V (η(t), x(t)), for all
t ∈ N. According to the dynamics of x and η, it follows
from (3), (4) and (5) that for all t ∈ N, W (t+ 1) ≤W (t).

Let k ∈ N, between the shuffling instants τθk and τθk+1−1,
there exists an instant t such that θ(t) = η(τθk ). Then, it
follows that either η(τθk+1) ≥ η(τθk ) + 1 or there exists an
instant t between τθk and τθk+1 − 1 such that η(t) = m and
η(t+ 1) = 1. From the previous statement, we can conclude
that between the instants τθk and τθk+m − 1, there exists an
instant t such that η(t) = m and η(t+ 1) = 1, which from
(5) gives that W (t + 1) ≤ ρ(W (t)). Using the fact that W
is non-increasing the rest of the time, we get for all k ∈ N,
W (τθk+m) ≤ ρ(W (τθk )). Hence, it follows that

∀i ∈ N, W (τθi×m) ≤ ψ(W (τθ0 ), i) = ψ(W (0), i) (7)

where ψ : R+
0 × N → R+

0 is given for all r ∈ R+
0 by

ψ(r, 0) = r and ψ(r, i + 1) = ρ(ψ(r, i)), for i ∈ N. Since
ρ is a K function, ψ(., i) is also a K function for all i ∈ N.
Since 0 ≤ ρ(s) < s for all s > 0, we get that for all r > 0,
ψ(r, .) is strictly decreasing and bounded below by 0. By
continuity of ρ we get that limi→+∞ ψ(r, i) = 0. Then, there
exists a KL function ψ : R+

0 × R+
0 → R+

0 such that for all
r ∈ R+

0 and i ∈ N, ψ(r, i+ 1) = ψ(r, i).
Let t ∈ N, and let i ∈ N such that t ∈ [τθi×m, τ

θ
(i+1)×m),

we get that i×m ≤ κθ(t) < (i+1)×m. Using monotonicity
properties of W and ψ and by (7), we have

W (t) ≤ W (τθi×m) ≤ ψ(W (0), i)

≤ ψ(W (0), i+ 1) ≤ ψ(W (0), κθ(t)/m)

Then, by (2), we get that for all t ∈ N,

‖x(t)‖ ≤ α−11

(
ψ
(
α2(‖x(0)‖), κθ(t)/m

))
Let β : R+

0 ×R
+
0 → R+

0 , be given for r, s ∈ R+
0 by β(r, s) =

α−11

(
ψ
(
α2(r), s/m

))
. Using the properties of α1, α2 and

ψ, we get that β is a KL function.

The intuition of the proof of Theorem 1 is the following.
The function W is always non-increasing and is strictly
decreasing when the value of η transitions from m to 1. By
construction of the dynamics of η, this happens an infinite
number of times if and only if θ is a shuffled switching
signal. Thus W asymptotically converges towards 0.

Remark 1. If α1 and α2 are quadratic functions (α1(r) =
γ1r

2, α2(r) = γ2r
2, with 0 < α1 < α2) and if ρ is linear

(ρ(r) = λr with 0 < λ < 1), then we get that β is given by
the closed form expression β(r, s) =

√
γ2
γ1λ

λ
s

2m r.

Example 1. Let us consider a switched system in R3 with
2 modes, where the vector fields are given by fσ(x) = Aσx
where

A1 =

(
1 0 0
0 λ1 cos(φ1) −λ1 sin(φ1)
0 λ1 sin(φ1) λ1 cos(φ1)

)
, φ1 ∈ [0, 2π], λ1 ∈ (0, 1)

A2 =

(
λ2 cos(φ2) −λ2 sin(φ2) 0
λ2 sin(φ2) λ2 cos(φ2) 0

0 0 1

)
, φ2 ∈ [0, 2π], λ2 ∈ (0, 1).

It is clear that for unshuffled switching signals (i.e., in
this case, switching signals that remain constant after some
time), the state of the switched system will not converge
to 0 asymptotically. To verify that the switched system is
GUSAS, we use Theorem 1 with V (1, x) = x21 + x22 + x23
and V (2, x) = x21 +x22 +

x2
3

λ1
. To simplify the exposition, we

introduce the auxiliary function U(x) = x21 +
x2
2

λ1
+

x2
3

λ1
.

It is clear that (2) holds with α1(r) = r and α2(r) = r
λ1

.
Then, for (3), we check that

V (1, A2x) = λ2x
2
1 + λ2x

2
2 + x23 ≤ V (1, x)

and

V (2, A1x) ≤ U(A1x) = x21 + x22 + x33 ≤ V (2, x).

From above, we also have that V (2, A1x) ≤ V (1, x) and
thus (4) holds. Finally, we also have

V (1, A2x) ≤ max(λ1, λ2)V (2, x).

Then, (5) holds with ρ(r) = max(λ1, λ2)r. It follows that
the switched system is GUSAS.

IV. A CONVERSE LYAPUNOV RESULT

In this section, we identify a class of switched systems
for which the sufficient conditions exposed in the previous
section are also necessary for GUSAS. For this class of
systems, we actually show an even stronger result, since we
prove that if the switched system is GSA then there exists
a shuffle Lyapunov function. This class is characterized by
the following assumption:

Assumption 1. For all σ ∈ Σ, fσ(x) = Aσx where Aσ is
an invertible matrix.

Before stating our main theorem, let us establish instru-
mental preliminary results.



A. Preliminary results

Let I ∈ Rn×n denote the identity matrix, given a finite
sequence of matrices Mi ∈ Rn×n, i = N1, . . . , N2 with
N1, N2 ∈ N, N1 ≤ N2, we denote

N2∏
i=N1

Mi = MN2
× · · · ×MN1

.

Then, we define several sets of matrices:
• M consists of all finite products of matrices in
{Aσ | σ ∈ Σ}, together with the identity matrix;

• Mσ consists of all finite products of matrices in
{Aσ′ | σ′ ∈ Σ \ {σ}}, for σ ∈ Σ, together with the
identity matrix;

• Ms consists of all finite products of matrices in
{Aσ | σ ∈ Σ} where each matrix appears at least once.

Formally, we have:

M =

{
N∏
i=0

Aσi

∣∣∣ σi ∈ Σ,
i = 0, . . . , N, N ∈ N

}
∪
{
I
}
,

Mσ =

{
N∏
i=0

Aσi

∣∣∣ σi ∈ Σ \ {σ},
i = 0, . . . , N, N ∈ N

}
∪
{
I
}
,

Ms =

{
N∏
i=0

Aσi

∣∣∣ σi ∈ Σ, i = 0, . . . , N, N ∈ N
and ∀σ ∈ Σ,∃i : σi = σ

}
.

Clearly, we have Mσ ⊆M for all σ ∈ Σ and Ms ⊆M.
The first two lemmas show that the convergence of tra-

jectories towards 0 is equivalent to the convergence of the
product of matrices towards 0:

Lemma 1. Under Assumption 1, if the switched system (1)
is GSA, then for all shuffled switching signal θ:

lim
N→+∞

N∏
i=0

Aθ(i) = 0.

Proof. Let θ be a shuffled switching signal, then

∀t ≥ 1,∀x0 ∈ Rn,x(t, x0, θ) =

t−1∏
i=0

Aθ(i)x0. (8)

Let us consider δ > 0 and let e1, . . . , en denote the vectors
of the canonical basis of Rn. Since the system is GSA, there
exists Tj , j = 1, . . . , n such that

∀j = 1, . . . , n, ∀t ≥ Tj , ‖x(t, ej , θ)‖ ≤
δ

n
.

Then, let x0 ∈ Rn with coordinates x0,1, . . . , x0,n, let T =
max(T1, . . . , Tn), by linearity, it follows from above that

∀t ≥ T, ‖x(t, x0, θ)‖ ≤
n∑
i=1

|x0,j |‖x(t, ej , θ)‖ ≤ ‖x0‖δ.

Then by (8) we get that

∀t ≥ T,
∥∥t−1∏
i=0

Aθ(i)
∥∥ ≤ δ,

which leads directly to the statement of Lemma 1.

The proof of the following result is straightforward from
the previous lemma:

Lemma 2. Under Assumption 1, if the switched system (1)
is GSA, then for all sequences of matrices (Mi)i∈N with
Mi ∈Ms we have

lim
N→+∞

N∏
i=0

Mi = 0.

Lemma 1 with Theorem 20 in [14] gives the following:

Lemma 3. Under Assumption 1, if the switched system (1)
is GSA, then there exists B > 0 such that for all M ∈ M,
‖M‖ ≤ B.

We finally get the following property:

Lemma 4. Under Assumption 1, if the switched system (1)
is GSA, then there exist λ ∈ (0, 1) and a norm of Rn denoted
‖.‖∗ such that for all M ∈Ms, ‖M‖∗ ≤ λ.

Proof. By Lemma 3, we get that all matrices in Ms

are bounded by B. Together with Lemma 2, we get from
Theorem 1 in [17], that the joint spectral radius of Ms

is strictly less than 1. Then, the conclusion is obtained by
Lemma 2 in [17].

B. Converse Lyapunov theorem

We can now state the main result of the section:

Theorem 2. Under Assumption 1, the switched system (1) is
GSA if and only if there exists a shuffle Lyapunov function.

Proof. The “if” part is a consequence of Theorem 1 and
Proposition 1. The proof of the “only if” part is as follows.
Let ‖.‖∗ be as in Lemma 4. Since all norms on Rn are
equivalent, there exist 0 < κ1 < κ2 such that for all x ∈ Rn,
κ1‖x‖ ≤ ‖x‖∗ ≤ κ2‖x‖.

Let V : Σ× Rn → R+
0 be defined for σ ∈ Σ \ {m} by

V (σ, x) = sup
Mm∈Mm,

Mm−1∈Mm−1,
...,

Mσ∈Mσ

∥∥Mm

(m−1∏
i=σ

AiMi

)
x
∥∥
∗, (9)

and
V (m,x) = sup

Mm∈Mm

∥∥Mmx
∥∥
∗. (10)

Let us prove that V is a shuffle Lyapunov function.
Since I belongs to Mσ for all σ ∈ Σ we get for all

σ ∈ Σ \ {m},

V (σ, x) ≥
∥∥(m−1∏

i=σ

Ai
)
x
∥∥
∗ ≥ κ1

∥∥(m−1∏
i=σ

Ai
)
x
∥∥

and V (m,x) ≥ ‖x‖∗ ≥ κ1‖x‖. Since all matrices Aσ
are invertible it follows that there exists γ1 > 0 such that
V (σ, x) ≥ γ1‖x‖ for all σ ∈ Σ, for all x ∈ Rn. From (9)
and (10), and from Lemma 3, we get that for all σ ∈ Σ, for
all x ∈ Rn

V (σ, x) ≤ sup
M∈M

∥∥Mx
∥∥
∗ ≤ κ2 sup

M∈M

∥∥Mx
∥∥ ≤ κ2B‖x‖.



Hence, (2) holds.
Let σ, σ′ ∈ Σ with σ 6= σ′. If σ 6= m,

V (σ,Aσ′x) = sup
Mm∈Mm,

Mm−1∈Mm−1,
...,

Mσ∈Mσ

∥∥Mm

(m−1∏
i=σ

AiMi

)
Aσ′x

∥∥
∗.

For all Mσ ∈ Mσ , MσAσ′ ∈ Mσ and therefore it follows
that V (σ,Aσ′x) ≤ V (σ, x). If σ = m,

V (m,Aσ′x) = sup
Mm∈Mm

∥∥MmAσ′x
∥∥
∗.

For all Mm ∈Mm, MmAσ′ ∈Mm and therefore it follows
that V (m,Aσ′x) ≤ V (m,x). Hence (3) holds.

Let σ ∈ Σ \ {m}. If σ 6= m− 1, then

V (σ+ 1, Aσx) = sup
Mm∈Mm,

Mm−1∈Mm−1,
...,

Mσ+1∈Mσ+1

∥∥Mm

( m−1∏
i=σ+1

AiMi

)
Aσx

∥∥
∗.

Since I ∈Mσ , it follows that V (σ + 1, Aσx) ≤ V (σ, x). If
σ = m− 1, then

V (σ + 1, Aσx) = sup
Mm∈Mm

∥∥MmAm−1x
∥∥
∗.

Since I ∈Mm−1, it follows that V (σ+ 1, Aσx) ≤ V (σ, x).
Hence (4) holds.

Finally, from Lemma 4,

V (1, Amx) = sup
Mm∈Mm,

Mm−1∈Mm−1,
...,

M1∈M1

∥∥Mm

(m−1∏
i=1

AiMi

)
Amx

∥∥
∗

≤ sup
M∈Ms

∥∥Mx
∥∥
∗ ≤ λ‖x‖∗ ≤ λV (m,x).

Hence (5) holds and V is a shuffle Lyapunov function.

Corollary 1. Under Assumption 1, the switched system (1)
is GSA if and only if it is GUSAS.

Proof. The “if” part is a consequence of Proposition 1. For
the “only if” part, if the switched system (1) is GSA then
from Theorem 2, there exists a shuffle Lyapunov function,
and from Theorem 1, the switched system is GUSAS.

Example 2. The following example shows that by removing
Assumption 1, the converse Lyapunov result stated in The-
orem 2 does not hold anymore. Let us consider a switched
system in R2 with 2 modes, where the vector fields are given
by fσ(x) = Aσx where

A1 = ( 0 0
0 2 ) , A2 = ( 2 0

0 0 ) .

Clearly, the switched system is GSA since after both modes
have been activated, the state of the system is equal to 0 for
all time. We proceed by contradiction. Let us assume that
there exists a shuffle Lyapunov function, then by Theorem 1
the switched system is GUSAS. Hence, there exists a KL
function β such that for all x0 ∈ R2, for all shuffled
switching signal θ:

‖x(t, x0, θ)‖ ≤ β(‖x0‖, κθ(t)), ∀t ∈ N.

Consider x0 = ( 0
1 ), and for t ∈ N let θt be a shuffled

switching signal such that for all s = 0, . . . , t, θt(s) = 1.
Let us remark that x(t + 1, x0, θt) =

(
0
2t
)

while ‖x0‖ = 1
and κθt(t + 1) = 0. Hence, we should have for all t ∈ N,
2t ≤ β(1, 0), which yields a contradiction.

Remark 2. While the invertibility of the matrices Aσ ,
σ ∈ Σ is not used in the proofs for Lemmas 1 and 2, it
is crucial for Lemmas 3 and 4 (see the proof of Theorem 20
in [14]). However, when the switched system is GUSAS,
the conclusion of Lemma 3 (and thus of Lemma 4 and
Theorem 2) holds without the invertibility assumption. Thus,
it follows from Theorem 1, that a switched linear system is
GUSAS if and only if it admits a shuffle Lyapunov function.

V. NUMERICAL EXAMPLE

As an illustration of the results of the paper, we consider a
synchronization problem. We consider a multi-agent system
consisting of three discrete-time oscillators whose dynamics
is given by

zi(t+ 1) = Rzi(t) + ui(t), i = 1, . . . , 3

where zi(t) ∈ R2, ui(t) ∈ R2 and R =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
with φ = π

6 . The input ui(t) is used for synchronization
purpose and is based on the available information at time t.
There exist two communication channels: channel 1 between
agents 1 and 2 and channel 2 between agents 2 and 3. At
each instant, only one of these channels is active and the
active channel is selected by a switching signal θ : N →
Σ = {1, 2}. Then, the input value is given as follows

u1(t) =

{
γ(z2(t)− z1(t)), if θ(t) = 1
0 if θ(t) = 2

u2(t) =

{
γ(z1(t)− z2(t)), if θ(t) = 1
γ(z3(t)− z2(t)), if θ(t) = 2

u3(t) =

{
0, if θ(t) = 1
γ(z2(t)− z3(t)), if θ(t) = 2

where γ = 0.1. Denoting the vector of synchronization errors
as x(t) =

(
z2(t)−z1(t)
z3(t)−z2(t)

)
, the error dynamics is described by a

4-dimensional switched linear system with 2 modes given by
the following matrices where I2 is the 2 dimensional identity
matrix:

A1 =
(
R−2γI2 0
γI2 R

)
, A2 =

(
R γI2
0 R−2γI2

)
.

We want to show that the agents synchronize if both com-
munication channels are activated infinitely often. This can
be done by verifying that the error system is GUSAS.
We then look for a shuffle Lyapunov function of the form
V (σ, x) = x>Qσx where Qσ is a positive definite symmetric
matrix. For this form of function, for a linear function ρ given
by ρ(r) = λr with λ ∈ (0, 1), the conditions in Theorem 1
translate directly into the following linear matrix inequalities:

I ≤ Qσ, σ ∈ Σ

A>σ′QσAσ′ ≤ Qσ σ, σ′ ∈ Σ, σ 6= σ′

A>σQσ+1Aσ ≤ Qσ, σ ∈ Σ \ {m}
A>mQ1Am ≤ λQm.
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Fig. 3. Time evolution of the synchronization error x(t) (top fig-
ures), switching signal θ(t) (bottom left), and shuffle Lyapunov function
V (η(t), x(t)) (bottom right).

Solving these numerically, we find for λ = 0.88:

Q1 =

(
2.28I2 1.14I2
1.14I2 2.01I2

)
, Q2 =

(
2.00I2 1.02I2
1.02I2 2.05I2

)
.

Hence, the system is GUSAS.
For illustration, we consider the following scenario: for the

first 50 time units, communication channel 2 is constantly
activated, then at t = 50 a switch occurs and for the next 50
time units communication channel 1 is constantly activated,
after t = 100 the communication are activated randomly with
equal probability so that the switching signal is shuffled with
probability 1. The simulation results are shown in Figure 3.
It is interesting to remark that when the switching signal
remains constant the synchronization error does not go to
zero. Indeed, before t = 50, agents 2 and 3 synchronize
but not agents 1 and 2; and between t = 50 and t = 100,
agents 1 and 2 synchronize but agents 2 and 3 desynchronize.
After t = 100, the switching signal starts to shuffle and
one can see that all agents achieve synchronization. Similar
observations can be made on the evolution of the shuffle
Lyapunov function V (η(t), x(t)) where η(t) is defined as in
the proof of Theorem 1. As expected, this function is always
non-increasing. When the switching signal remains constant,
between t = 0 and t = 49, and between t = 50 and t = 99,
one can see that the Lyapunov function reaches a constant
value, which is not zero. As soon as the switching signal
starts to shuffle, the Lyapunov function approaches 0.

VI. CONCLUSION

In this paper, we have established several stability results
for discrete-time switched systems with shuffled switching
signals. The main contribution of the paper consists in a
sufficient condition for global uniform asymptotic stability
given by the existence of a shuffle Lyapunov function. For

a class of switched linear systems, this condition is also
shown to be necessary, even for the weaker notion of global
shuffle attractivity. We have shown on a numerical example,
how shuffle Lyapunov functions can be effectively computed
using linear matrix inequalities.

The current work opens several research directions for
the future. First, the development of numerical techniques to
compute shuffle Lyapunov functions is necessary for cases
where the simple linear matrix inequalities approach used
in the paper is not successful. Secondly, for switched linear
systems, it should be possible to define a joint spectral radius
related to shuffled switching signals. It would be interesting
to investigate its properties and to develop algorithms for
its approximation. Finally, as shuffle stability seems to be
related to stability with ω-regular switching sequences, it
would be interesting to develop a Lyapunov approach for
switched systems with switching signals specified by some
ω-regular language.
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