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Abstract

In this paper, stability and stabilizability of discrete-time dual switching linear systems is investigated. The switched systems
under consideration have two switching variables. One of them is stochastic, described by an underlying Markov chain; the other
one can be regarded either as a deterministic disturbance or as a control input, leading to stability or stabilizability problems,
respectively. For the considered class of systems, sufficient conditions for mean square stability (with or without control gain
synthesis) and mean square stabilizability are provided in terms of matrix inequalities. When the stochastic switching is driven
by an independent identically distributed sequence, we establish simpler conditions without additional conservatism. Then,
it is shown how the proposed framework can be used to study aperiodic sampled-data systems with stochastic computation
times. The results are illustrated on examples borrowed from the literature.
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1 Introduction

Switched systems constitute a powerful modeling frame-
work making it possible to describe faithfully the in-
teraction between physical systems and digital compo-
nents such as computers or communication networks in-
volved in modern control applications. Switched systems
have been the subject of extensive research over the past
two decades and is by now a well studied topic (see
e.g. (Liberzon 2003, Lin & Antsaklis 2009) and the ref-
erences therein). The dynamics of a switched system is
described by a collection of continuous dynamics, each
of them describing the behavior of the system in some
operating mode. The transition from one mode to the
other is given by switching variables evolving according
to some switching rule. The switching rule may be a pri-
ori unknown, in which case switching variables have to be
regarded as disturbances (Ahmadi et al. 2014, Philippe
et al. 2016). On the contrary, the switching rule may be
regarded as control input (Geromel & Colaneri 2006, Fi-

? This research was partially supported by Labex Digi-
Cosme (project ANR-11-LABEX-0045-DIGICOSME) op-
erated by ANR as part of the program ”Investissement
d’Avenir” Idex Paris Saclay (ANR-11-IDEX-0003-02).

acchini et al. 2016). When one assumes that the switch-
ing variables are driven by an underlying Markov chain,
a linear switched system turns into a Markov jump lin-
ear system (Costa et al. 2006). In recent years, moti-
vated by the study of networked control systems, new
modeling frameworks have been proposed where only a
subset of the switching variables are driven by a Markov
chain, while for the others no statistical information is
provided (Bolzern et al. 2010, 2013, 2016). Adopting the
terminology introduced in these works, we refer to such
systems as dual switching systems. Such models are use-
ful in a wide range of application encompassing for in-
stance supervisory control (Bolzern et al. 2013) or self-
triggered control (as illustrated in the second part of this
paper). In this paper, we deal with stability properties
of discrete-time dual switching linear systems. The non-
stochastic switching variables can be regarded either as
deterministic disturbances or as control inputs, leading
to stability or stabilizability problems, respectively.

In the first part of the paper, we present several suf-
ficient conditions, in terms of matrix inequalities, for
mean square stability (with or without control gain syn-
thesis) and for mean square stabilizability. In particular,
while Theorem 6 and Theorem 14 are similar to results

Preprint submitted to Automatica 13 September 2019



presented in (Lutz & Stilwell 2016) and (Bolzern et al.
2016), we make the following substantial contributions.
We present linear matrix inequalities (LMIs) allowing
us to synthesize stabilizing linear gains for discrete-
time dual switching linear systems. We also introduce
two novel stabilizing switching rules, one stochastic and
one deterministic, which provide possible alternatives
to the min-switching strategy introduced in (Bolzern
et al. 2016). In addition, for the special case when the
stochastic switching sequence is driven by an indepen-
dent identically distributed process, we establish much
simpler stability and stabilizability conditions without
additional conservatism. In the second part of the pa-
per, we show how the considered framework can be used
to study aperiodic sampled-data systems with stochas-
tic computation times, under non-preemptive and pre-
emptive scheduling policies. We propose a discrete-time
dual switching linear system model for the system where
stochastic switching variables describe varying compu-
tation times (due e.g. to varying loads on the computa-
tional platform) and other switching variables describe
the prescription of the scheduler. We then show how sta-
bility of the system can be assessed using the theoretical
results developed in the first part of the paper: when no
assumption is made on the scheduling algorithm, besides
lower and upper bounds for the time-varying sampling
period (see e.g. (Al Khatib et al. 2017)), our stability
conditions can be used; if one is also interested in de-
signing the control algorithm, a self-triggered scheduling
policy (see e.g. (Wang & Lemmon 2009, Velasco et al.
2003)) can be synthesized using our stabilizability con-
ditions.

The paper is organized as follows. Section 2 introduces
the class of discrete-time dual switching linear systems
and presents the stability and stabilizability problems
under consideration. Section 3 presents several results
for stability analysis of discrete-time dual switching lin-
ear systems, without or with control gain synthesis. Sec-
tion 4 deals with stabilizability results and introduces
several stabilizing switching rules. Section 5 shows the
application of the framework to aperiodic sampled data
systems. Finally, some concluding statements are pro-
vided in Section 6.

Notations: R+ denotes the set of non-negative real num-

bers. SN =
{
λ ∈ RN | ∀i, λi ≥ 0,

∑N
i=1 λi = 1

}
is the

canonical unit simplex. For a vector v, |v| denotes its
Euclidean norm. For a vector or a matrix v, v′ denotes
its transpose. For a symmetric matrix M , λmin(M) and
λmax(M) denote its smallest and largest eigenvalues, re-
spectively. For two symmetric matrices P andQwe write
P > Q if P −Q is positive definite (P ≥ Q if P −Q is
positive semidefinite). For integrable random variables
X,Y , E[X] denotes the expectation of X and E[X|Y ]
denotes the conditional expectation of X knowing Y .

2 Definitions and problem statement

We consider discrete-time dual switching linear systems
(Dt-DSLS), a class of switched linear systems with both
stochastic and deterministic switching variables. For-
mally, let us consider the system:

xk+1 = Ā(dk,sk)xk + B̄(dk,sk)uk, k ∈ N, (1)

where the vectors xk ∈ Rn, uk ∈ Rp and the switching
variables dk ∈ D = {1, . . . , Nd}, sk ∈ S = {1, . . . , Ns},
for all k ∈ N. Defining the real-valued control input as
uk = K(dk,sk)xk and the matrices A(dk,sk) = Ā(dk,sk) +

B̄(dk,sk)K(dk,sk) one has:

xk+1 = A(dk,sk)xk, k ∈ N. (2)

We assume that the switching sequence (sk)k∈N is driven
by a stochastic process defined on the probability space
(Ω,F ,P) where Ω is the space of elementary events, F
is the associated sigma-algebra and P is the probability
measure:

Definition 1 (Time homogeneous Markov chain)
We say that (sk)k∈N is a time homogeneous Markov
chain if for all k ∈ N,

P(sk+1 = ik+1|sk = ik, . . . , s0 = i0)

= P(sk+1 = ik+1|sk = ik) = pikik+1
.

We define the transition matrix P = (pij)i,j∈S . The ini-
tial probability distribution of sk is given by

π0 :=
(
P(s0 = 1), . . . ,P(s0 = Ns)

)
∈ SN

s

.

Definition 2 (i.i.d. process) We say that (sk)k∈N is
an independent and identically distributed (i.i.d.) process
if for all k ∈ N, for all j ∈ S,P(sk = j) = pj .

Note that i.i.d. processes form a special class of time
homogeneous Markov chains where for all i, j ∈ S, pij =
pj . For i.i.d. processes, we will assume in the following
(without loss of generality) that pj > 0 for all j ∈ S.
The switching sequence (dk)k∈N can be regarded either
as a deterministic disturbance or as a control input. In
the first case, assessing stability of system (2) is a robust
stability problem:

Definition 3 (Mean square stability) Dt-DSLS (2)
is mean square stable (MSS) if for any initial condition
x0 ∈ Rn, and any switching sequence

(
dk
)
k∈N,

lim
k→∞

E
[
|xk|2

]
= 0. (3)

When (dk)k∈N is regarded as a control input, the prob-
lem at hand is a stabilization problem and requires the
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computation of a switching control law. We assume that
at time step k ≥ 1, the controller must choose the value
of dk based on the knowledge of the current value of state
xk and of the previous value of switching variables dk−1,
sk−1. In this work, two kinds of switching control laws
will be considered: deterministic and stochastic ones. In
all generality, deterministic control laws can be seen as
special cases of stochastic control laws. Deterministic
control laws are given by d0 ∈ D and for all k ≥ 1:

dk = θ(xk, dk−1, sk−1), (4)

where θ : Rn ×D×S → D. We also consider stochastic
control laws where (dk)k∈N is a stochastic process with

initial probability distribution πd0 ∈ SNd

and such that
for all k ≥ 1, m ∈ D, x ∈ Rn, l ∈ D, i ∈ S:

P(dk = m|xk = x, dk−1 = l, sk−1 = i) = pd(m,x, l, i).
(5)

Definition 4 (Mean square stabilizability) Dt-
DSLS (2) is mean square stabilizable if there exists a
switching control law, of the form (4) or (5), such that
for any initial condition x0 ∈ Rn, (3) holds.

Next, we recall a result that allows us to study stability
properties using Lyapunov-like functions.

Theorem 5 ((Morozan 1968)) If for some α, β, γ >
0 and continuous functions Vk : Rn → R+, we have for
all k ∈ N,

H1: α|x|2 ≤ Vk(x) ≤ β|x|2,
H2: E

[
Vk+1(xk+1)

]
≤ E

[
Vk(xk)

]
− γE

[
|xk|2

]
,

then, (3) holds.

3 Stability analysis of a Dt-DSLS

3.1 Sufficient stability conditions

In this section, sufficient tractable conditions are pro-
vided to verify that a Dt-DSLS is MSS.

Theorem 6 If there exist symmetric matrices M(l,i) ∈
Rn×n with l ∈ D, i ∈ S, such that the following LMIs
are verified for all l,m ∈ D, i ∈ S:

M(l,i) > 0, (6a)∑
j∈S

pijA
′
(l,i)M(m,j)A(l,i) −M(l,i) < 0, (6b)

then, Dt-DSLS (2), where (sk)k∈N is a time homogeneous
Markov chain, is MSS.

By an appropriate reformulation of (2), the previous re-
sult can be seen as a special case of Theorem 4 in (Lutz

& Stilwell 2016). Furthermore it can be seen as a special
case of Theorem 2 in (Bolzern et al. 2016).

Remark 7 By considering Vk(xk) = x′kM(dk,sk−1)xk
and using similar arguments, one can show that Dt-DSLS
(2), where (sk)k∈N is a time homogeneous Markov chain,
is MSS, if the following LMIs hold for all l,m ∈ D, i ∈ S:
M(l,i) > 0 and

∑
j∈S pijA

′
(l,j)M(m,j)A(l,j) −M(l,i) < 0.

Remark 8 An alternative to study MSS of (2) is pos-
sible by adapting ideas of (Costa et al. 2006, Chapter
3). Consider the vector ξ(k) = (ξi(k))i∈S with ξi(k) =
V ec(E

[
xkx

′
kχ{sk=i}

]
) where V ec(M) is the vectorization

of matrix M , and χ is the indicator function. One can
show that ξ is a trajectory of a deterministic switched
linear systems of the form ξ(k + 1) = Adkξ(k). Since
asymptotic stability of this system is equivalent to MSS
of (2), the latter can be studied using existing approaches
for switched linear systems (e.g. (Liberzon 2003, Chesi
et al. 2012, Ahmadi et al. 2014)). The main drawback
of this approach is that the dimension of the system to
analyze is n2Ns, which is significantly more than the di-
mension of (2).

3.2 i.i.d. process

An interesting special case of the previous study, is de-
scribed when the elements of the stochastic sequence(
sk
)
k∈N are independent and identically distributed. By

imposing that for all l ∈ D, i ∈ S, M(l,i) = Ml and using
the fact that for all i, j ∈ S, pij = pj , Remark 7 gives:

Corollary 9 If there exist symmetric matrices Ml ∈
Rn×n with l ∈ D, such that the following LMIs are veri-
fied for all l,m ∈ D:

Ml > 0, (7a)∑
j∈S

pjA
′
(l,j)MmA(l,j) −Ml < 0, (7b)

then, Dt-DSLS (2), where (sk)k∈N is an i.i.d. process, is
MSS.

Note that with respect to Theorem 6 and Remark 7 the
number of variables and of inequalities is smaller. More-
over, this is without additional conservatism as shown
by the following result:

Proposition 10 Let pij = pj, for all i, j ∈ S, if the
LMIs (6) are feasible, then the LMIs (7) are feasible.

Proof. Let us assume that LMIs (6) are feasible for
some symmetric matrices M(l,i) with l ∈ D, i ∈ S. Since
by assumption pij = pj for all i, j ∈ S, (6b) becomes for
all l,m ∈ D, i ∈ S,∑

j∈S
pjA

′
(l,i)M(m,j)A(l,i) −M(l,i) < 0.

3



So, for all l,m ∈ D, i ∈ S,

A′(l,i)
(∑
j∈S

pjM(m,j)

)
A(l,i) −M(l,i) < 0.

Letting Qm =
(∑

j∈S pjM(m,j)

)
> 0, one gets for all

l,m ∈ D, i ∈ S, A′(l,i)QmA(l,i) −M(l,i) < 0. So, for all

l,m ∈ D,∑
i∈S

piA
′
(l,i)QmA(l,i) −

∑
i∈S

piM(l,i) < 0.

Therefore, ∀l,m ∈ D,
∑
i∈S piA

′
(l,i)QmA(l,i) − Ql < 0.

Hence Ql, with l ∈ D satisfy the LMIs (7). 2

Since the conditions of Theorem 6 imply the conditions
of Corollary 9 and the numbers of matrix variables and
of matrix inequalities in Corollary 9 are smaller, there is
no benefit of checking the LMIs of Theorem 6 instead of
those of Corollary 9 when

(
sk
)
k∈N is an i.i.d. process.

3.3 Gain synthesis

In the previous sections, we established sufficient con-
ditions for mean square stability in terms of LMIs. In
this section, from these results, we derive LMI condi-
tions making it possible to synthesize the input gains
K(l,i) for l ∈ D, i ∈ S rendering Dt-DSLS (2) MSS. The
results are proven in the Appendix.

Theorem 11 If there exists a set of symmetric matrices
Q(l,i) ∈ Rn×n and of matrices L(l,i) ∈ Rp×n, Sl ∈ Rn×n,
l ∈ D, i ∈ S, such that the following set of LMIs is
verified for all l,m ∈ D and i ∈ S,

Q(l,i) > 0, (8a)−Sm − S′m +
∑

j∈S pijQ(m,j) Ā(l,i)S
′
l + B̄(l,i)L(l,i)

? −Q(l,i)

 < 0,

(8b)

then, LMIs (6) hold with M(l,i) = S−1
l Q(l,i)(S

′
l)
−1 and

input gains K(l,i) = L(l,i)(S
′
l)
−1.

Note that in the previous results, the resulting control
gains K(l,i) depend on both switching variables. Impos-
ing new constraints on LMI variables L(l,i), and Sl in (8)
allows us to obtain control gainsK(l,i) of the formKl,Ki

or K. When the switching sequence
(
sk
)
k∈N is an i.i.d.

stochastic process, one can use the following result:

Proposition 12 If there exists a set of symmetric ma-
trices Ql ∈ Rn×n, W(l,i) ∈ Rn×n, and of matrices

L(l,i) ∈ Rp×n, Sl ∈ Rn×n, l ∈ D, i ∈ S such that the fol-
lowing set of LMIs is verified for all l,m ∈ D and i ∈ S,

Ql > 0, (9a)−Sm − S′m +Qm Ā(l,i)S
′
l + B̄(l,i)L(l,i)

? −W(l,i)

 < 0, (9b)

∑
j∈S

pjW(l,j) −Ql ≤ 0, (9c)

then, LMIs (7) hold with Ml = S−1
l Ql(S

′
l)
−1 and input

gains K(l,i) = L(l,i)(S
′
l)
−1.

Then, the following result shows that, when the switch-
ing sequence

(
sk
)
k∈N is an i.i.d. process, conditions given

by Proposition 12 are not more conservative than those
given by Theorem 11:

Proposition 13 Let pij = pj, for all i, j ∈ S, if the
LMIs (8) are feasible, then the LMIs (9) are feasible.

3.4 Discussion

Table 1 provides a comparison of the different LMIs in
term of computational complexity. When the switching
sequence

(
sk
)
k∈N is an i.i.d. process, a significant com-

plexity reduction is enabled by the use of Corollary 9,
with no additional conservatism with respect to Theo-
rem 6, as established by Proposition 10. For gain syn-
thesis, the LMIs given by Proposition 12 are also slightly
better in computational complexity than those of The-
orem 11. However, one might prefer solving the former
since they are less conservative than the latter, as estab-
lished in Proposition 13.

4 Stabilizability of Dt-DSLS

Next, we consider the problem of stabilization of a Dt-
DSLS by switching. The goal of stabilization is to find
a control law for the switching sequence

(
dk
)
k∈N of the

form (4) or (5), which renders (2) MSS.

Stability analysis Gain synthesis(
sk
)
k∈N M.C. i.i.d. M.C. i.i.d.

Result Th.6 Cor.9 Th.11 Prop.12

n× n M.V. NdNs Nd NdNs NdNs

p× n M.V. 0 0 NdNs NdNs

n× n M.I. (Nd)2Ns (Nd)2 NdNs Nd

2n× 2n M.I. 0 0 (Nd)2Ns (Nd)2Ns

Table 1
Complexity of LMIs established in Section 3: orders of the

numbers of Matrix Variables (M.V.) and Matrix Inequalities
(M.I.).
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4.1 Sufficient stabilizability conditions

In this section, sufficient stabilizability conditions are
provided. Checking the stability conditions amounts to
solving a set of Bilinear Matrix Inequalities (BMIs),
which is in general a challenging task. Let us remind that
a row stochastic matrix Π in RN×N is a matrix where
each row is an element of SN .

Theorem 14 If there exist symmetric matrices M(l,i) ∈
Rn×n, with l ∈ D, i ∈ S and a row stochastic matrix
Π = (πlm)l,m∈D such that the following BMIs are verified
for all l ∈ D, i ∈ S:

M(l,i) > 0, (10a)∑
j∈S

pijA
′
(l,j)

( ∑
m∈D

πlmM(m,j)

)
A(l,j) −M(l,i) < 0, (10b)

then, Dt-DSLS (2), where (sk)k∈N is a time homogeneous
Markov chain, is mean square stabilizable using the de-
terministic switching control law given by:

dk = arg min
l∈D

(
x′kM(l,sk−1)xk

)
. (11)

Proof. The proof is easily adapted from (Bolzern et al.
2016) with the slight difference that here Vk(xk) =
x′kM(dk,sk−1)xk instead of Vk(xk) = x′kM(dk,sk)xk. 2

Let us remark that the different choice of Lyapunov func-
tion allows us to propose a switching control law of the
form (4), while with the control law of (Bolzern et al.
2016), the knowledge of sk (instead of sk−1) is needed to
determine dk. Avoiding this requirement will be useful
when considering stabilization of sampled data systems.

By specializing the BMIs of Theorem 14, imposing that
for all l ∈ D, i ∈ S, M(l,i) = Ml, one obtains the follow-

ing conditions when the switching sequence
(
sk
)
k∈N is

an i.i.d. process:

Corollary 15 If there exist symmetric matrices Ml ∈
Rn×n, with l ∈ D and a row stochastic matrix Π =
(πlm)l,m∈D such that the following BMIs are verified for
all l ∈ D:

Ml > 0, (12a)∑
j∈S

pjA
′
(l,j)

( ∑
m∈D

πlmMm

)
A(l,j) −Ml < 0, (12b)

then, Dt-DSLS (2), where (sk)k∈N is an i.i.d. process, is
mean square stabilizable. using the deterministic switch-
ing control law given by:

dk = arg min
l∈D

(
x′kMlxk

)
. (13)

One can check that the number of matrix variables and of
matrix inequalities is much smaller in Corollary 15 than
in Theorem 14: Nd matrices Ml instead of NdNs ma-
trices M(l,i), and 2Nd instead of NdNs matrix inequal-

ities. Moreover, when the switching sequence
(
sk
)
k∈N is

an i.i.d. process and under mild assumptions there is no
loss of generality in solving (12) instead of (10), as shown
by the following result, which is proven in the Appendix.

Proposition 16 Let pij = pj, for all i, j ∈ S, and let
us assume that for all l ∈ D, there exists i ∈ S such that
A(l,i) is invertible. If the BMIs (10) are feasible, then the
BMIs (12) are feasible.

4.2 Alternative switching control laws

In this section, we provide both stochastic and determin-
istic alternative switching control laws to (11) that guar-
antee mean square stability under the same assumptions
as in Theorem 14. The first one is a stochastic control
law of the form (5):

Proposition 17 Under the assumptions of Theorem 14,
the Dt-DSLS (2), where (sk)k∈N is a time homogeneous
Markov chain, is mean square stabilizable using the
stochastic switching control law given by:

P(dk+1 = m|dk = l) = πlm. (14)

Proof. Considering Vk(xk) = x′kM(dk,sk−1)xk, (10a)
implies that condition H1 of Theorem 5 is verified. Let
us denote ∆k = Vk+1(xk+1) − Vk(xk), and Ik = {dk =
l, sk−1 = i, xk = x}. Then, along the trajectory of (2),
with the switching control law given by (14), one has:

E
[
∆k|Ik

]
= E

[
x′(A′(l,sk)M(dk+1,sk)A(l,sk) −M(l,i))x|Ik

]
=
∑
m∈D

πlmE
[
x′(A′(l,sk)M(m,sk)A(l,sk) −M(l,i))x|Ik

]
=
∑
j∈S

pij
∑
m∈D

πlm

(
x′
(
A′(l,j)M(m,j)A(l,j) −M(l,i)

)
x
)
.

Therefore, by BMI (10b), there exists γ > 0 such that

E
[
∆k + γ|xk|2|Ik

]
= E

[
∆k|Ik

]
+ γ|x|2 ≤ 0

which implies that E
[
∆k + γ|xk|2

]
≤ 0. Hence, con-

dition H2 in Theorem 5 holds. It follows that the Dt-
DSLS (2) using the stochastic switching control law (14)
is MSS. 2

The second alternative control law is deterministic of the
form (4). Under the assumptions of Theorem 14, there

5



exists γ > 0 such that for all l ∈ D and i ∈ S∑
j∈S

pijA
′
(l,j)

( ∑
m∈D

πlmM(m,j)

)
A(l,j) −M(l,i) ≤ −γI.

(15)

Proposition 18 Under the assumptions of Theorem 14,
the Dt-DSLS (2), where (sk)k∈N is a time homogeneous
Markov chain, is mean square stabilizable using the de-
terministic switching control law given by:

dk = max
{
l ∈ D|x′kQ(l,sk−1)xk ≤ min

r∈D
x′kM(r,sk−1)xk

}
(16)

where for l ∈ D, i ∈ S,

Q(l,i) =
∑
j∈S

pijA
′
(l,j)

( ∑
m∈D

πlmM(m,j)

)
A(l,j) + γI.

Proof. We first show that the control law is well-
defined. For k ∈ N, let rk = arg minr∈D{x′kM(r,sk−1)xk}.
By (15), x′kQ(rk,sk−1)xk ≤ minr∈D x

′
kM(r,sk−1)xk.

Hence, the set{
l ∈ D|x′kQ(l,sk−1)xk ≤ min

r∈D
x′kM(r,sk−1)xk

}
6= ∅.

and the control law (16) is well-defined. Then, let
Vk(xk) = minr∈D{x′kM(r,sk−1)xk}. Note that (10a) im-
plies that H1 of Theorem 5 is verified. Moreover, by de-
noting ∆k = Vk+1(xk+1) − Vk(xk), and Ik = {xk =
x, sk−1 = i}, we have

E
[
Vk+1(xk+1)|Ik

]
= E

[
min
r∈D
{x′k+1M(r,sk)xk+1}|Ik

]
≤ E

[∑
r∈D

πdk,r(x
′
k+1M(r,sk)xk+1)|Ik

]
≤ E

[
x′A′(dk,sk)

(∑
r∈D

πdk,rM(r,sk)

)
A(dk,sk)x|Ik

]
≤ E

[∑
j∈S

pij
(
x′A′(dk,j)

(∑
r∈D

πdk,rM(r,j)

)
A(dk,j)x

)
|Ik
]

≤ E
[
x′Q(dk,i)x− γ|x|

2|Ik
]

≤ E
[

min
r∈D

x′M(r,i)x− γ|x|2|Ik
]

where the last inequality comes from (16). Then, since

E
[

min
r∈D

x′M(r,i)x− γ|x|2|Ik
]

= E
[
Vk(xk)− γ|xk|2|Ik

]
it follows that E

[
∆k+γ|xk|2|Ik

]
≤ 0, which implies that

E
[
∆k + γ|xk|2

]
≤ 0. Hence, condition H2 in Theorem 5

holds. It follows that the Dt-DSLS (2) using the deter-
ministic switching control law (16) is MSS. 2

4.3 Discussion

It is noticeable that all control laws, while they have very
distinctive interpretation and do not rely on the same
amount of information, stabilize Dt-DSLS (2) under the
same assumptions, which is that there is a solution to
the set of BMIs (10). The fact that identical BMI condi-
tions can lead to different stability results, with radically
different meaning, has been considered in (Geromel &
Colaneri 2006) in the context of discrete-time switched
systems, while the analogy between Lyapunov Metzler
stabilization and Lyapunov Metzler analysis is discussed
in (Bolzern & Colaneri 2015) in the context of positive
switched systems. Depending on the information struc-
ture and the stabilizability objective it might be prefer-
able to make a stronger distinction between different
switching strategy, see for instance (Geromel et al. 2016,
Bolzern & Colaneri 2015).

The control law given by (11) tries to make the Lya-
punov function decrease as fast as possible, while (16)
applies the largest mode for which the Lyapunov func-
tion is expected to decrease. Control law (16) appears
to be useful when the modes are ordered by some pri-
ority relation, which states that larger modes are pre-
ferred to smaller ones. An example of application of this
strategy will be shown in the next section. Note that
(11) and (16) require the knowledge of the current state
xk and of the previous value of the stochastic switching
variable sk−1. Remarkably, when the switching sequence
(sk)k∈N is an i.i.d. stochastic process, and the matrices
M(l,i) = Ml, l ∈ D, i ∈ S (as in Corollary 15), the con-
trol laws (11) and (16) do not depend on the value of
the stochastic switching variable anymore. We also pro-
posed a stochastic stabilizing control law given by (14).
The main advantage of this strategy is that its imple-
mentation does not require the knowledge of the state or
of the stochastic switching variable. In practice, the con-
vergence to the origin is slower using (14) than (11) and
the average value of dk is smaller than with (16). How-
ever, in case of sensor failure it can be useful to switch
from control laws (11) or (16) to (14) to keep providing
stability guarantees.

5 Application to sampled-data systems

In this section, we show how the framework presented
in the paper can be used in the context of sampled-data
control systems.

5.1 Modeling

Let us consider the following sampled-data system:{
ẋ(t) = Ax(t) + Bu(t), t ∈ R+

u(t) = uk, t ∈ [tak, t
a
k+1), k ∈ N

(17)
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where x(t) ∈ Rn, u(t) ∈ Rp and (tak)k∈N is the se-
quence of actuation instants. The sequence of input val-
ues (uk)k∈N will be specified later. Let (tsk)k∈N be the
sequence of sampling instants such that ts0 = 0 and
tsk ≤ tak ≤ tsk+1, and let xk = x(tsk) for k ∈ N. Then, the
sampled dynamics of (17) is given by:

xk+1 =eA(tsk+1−t
s
k)xk +

∫ tsk+1

ts
k

eA(tsk+1−τ)Bu(τ)dτ

=eA(tsk+1−t
s
k)xk +

∫ tak

ts
k

eA(tsk+1−τ)dτBuk−1

+

∫ tsk+1

ta
k

eA(tsk+1−τ)dτBuk

=Ω(τk)xk + Ω(τk − δk)Γ(δk)uk−1 + Γ(τk − δk)uk

where Ω(ρ) = eAρ, Γ(ρ) =
∫ ρ

0
eAτdτB, and τk = tsk+1 −

tsk, δk = tak − tsk.

We assume that the sequence of input values is computed
on a digital platform with limited resources and using
atomic time slots of period T :

• skT is the time needed to compute the value of uk
where (sk)k∈N is a time homogeneous Markov chain.

• dkT is the target inter-sampling times where (dk)k∈N
is a sequence determined by a scheduler.

5.1.1 Non-preemptive scheduling (NPS)

In this scenario, we wait for computations to terminate
(after sk time slots) before sampling again, even if this
means that the next sampling instant is delayed (when
dk < sk). In that case, the timing of events is given by

δk = skT, τk = max(dk, sk)T

and the sequence of input values is given by uk = K1xk+
K2uk−1,with by convention u−1 = 0. Then, the sampled
dynamics of (17) is described by the Dt-DSLS:

Xk+1 = A(dk,sk)Xk (18)

where Xk = [ xk
uk−1 ] , A(dk,sk) = Ā(dk,sk) + B̄(dk,sk)K

with K =
[
K1 K2

]
and

Ā(dk,sk) =
[

Ω(τk) Ω(τk−δk)Γ(δk)
0 0

]
, B̄(dk,sk) =

[
Γ(τk−δk)

Ip

]
.

5.1.2 Preemptive scheduling (PS)

In this scenario, if the computation did not finish by the
next scheduled sampling instant (when dk < sk), the

computation is interrupted, the input is kept at its pre-
vious value and sampling occurs at the targeted instant.
In that case, the timing of events is given by

δk = min(sk, dk)T, τk = dkT

and the sequence of input values is given by

uk =

{
K1xk +K2uk−1 if sk ≤ dk;

uk−1 if sk > dk

with by convention u−1 = 0. Then, the sampled dynam-
ics of (17) is described by the Dt-DSLS:

Xk+1 = A(dk,sk)Xk (19)

where Xk = [ xk
uk−1 ] , A(dk,sk) = Ā(dk,sk) + B̄(dk,sk)K

with K =
[
K1 K2

]
and

Ā(dk,sk) =


[

Ω(τk) Ω(τk−δk)Γ(δk)
0 0

]
if sk ≤ dk;[

Ω(τk) Γ(τk)
0 Ip

]
if sk > dk.

B̄(dk,sk) =


[

Γ(τk−δk)
Ip

]
if sk ≤ dk;

[ 0
0 ] if sk > dk.

In the following, we will use the results of the previous
sections to analyze the dynamics of these systems.

5.2 Exogenous scheduling policy

We consider a first problem where the scheduler is an ex-
ogenous process, about which no statistical knowledge is
available. Then, the scheduler is considered as a deter-
ministic disturbance and stability analysis of Dt-DSLS
(18) and (19) can be carried out using the results devel-
oped in Section 3.

As an illustration, we consider an example taken
from (Tabuada 2007) given by A =

[
0 1
−2 3

]
, B = [ 0

1 ].
We consider an atomic time slot T = 0.02. The se-
quence of computation time (sk)k∈N is supposed to be an
i.i.d. stochastic process with values in S = {1, . . . , 15}
and distribution shown in Figure 1. The target inter-
sampling times (dk)k∈N are given by an exogenous sched-
uler with dk ∈ D where D = {dmin, . . . , dmax} is a set of
consecutive integers.

Using Proposition 12 one can synthesize stabilizing con-
trol gains K. The results are shown on Figures 2. One
can conclude that non-preemptive schedulers are prefer-
able from the point of view of stability. However, the
timing behavior of preemptive schedules is much more
predictable (the sequence of sampling instants (tsk)k∈N
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is deterministic) and it is therefore much easier to deal
with schedulability issues. In both cases, Figure 2 can
be used to define specifications for designing scheduling
protocols, which will guarantee stability of the sampled
data system.

5.3 Self-triggered scheduling policy

We now assume that the scheduler is an endogenous pro-
cess, which, based on available information, sets target
inter-sampling times as large as possible (to use the com-
putational resource parsimoniously) while providing sta-
bility guarantees. This control problem, can be tackled
using the results developed in Section 4. More precisely,
at sampling instant tsk, the information available to the
scheduler consists in the value of the current sample xk
with an estimation of the current load of the compu-
tational resource, given by the latest computation time
sk−1. The scheduler uses this information to set a tar-
get inter-sampling time dk. This is an example of self-
triggered scheduling (Wang & Lemmon 2009), where the
next sampling instant is scheduled dynamically based on
information available at the current sample.

As an illustration, we consider the batch reactor taken
from (Donkers et al. 2011) given by:

A =

[ 1.380 −0.2077 6.715 −5.676
−0.5814 −4.290 0 0.675

1.067 4.273 −6.654 5.893
0.048 4.273 1.343 −2.104

]
, B =

[
0 0

5.7679 0
1.136 −3.146
1.136 0

]
with a time slot T = 0.02. The control gains are
K1 =

[
0.13 0.02 0.07 −0.18
1.12 0.28 0.48 −0.06

]
, K2 = [ 0 0

0 0 ]. The scheduler
can choose target inter-sampling times from the set
D = {1, . . . , 35}. The sequence of computation times
(sk)k∈N is a time homogenous Markov chain, with s0 = 3
and sk ∈ S = {3, 10, 17}, and transition matrix Pm =[

0.75 0.25 0
0.1 0.7 0.2
0 0.9 0.1

]
.

We first consider a non-preemptive scheduler. One can
first notice that by choosing dk = 10 for all k ∈ N, Dt-
DSLS (18) is MSS. This means that BMIs (10) have solu-
tions with the matrix Π given by πlm = 1 if m = 10 and
πlm = 0 if m 6= 10. Note that once the matrix Π is fixed
(10) reduces to a set of LMIs, which are easily solved.
We then use the control law given by (16), which tries to
maximize the value of the next sampling instant while
guaranteeing stability. Simulation results are shown on

Fig. 1. Distribution of the i.i.d. stochastic process (sk)k∈N.
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Fig. 2. Gain synthesis: each square represents a value of dmin

and dmax; the square is white if LMIs (9) are feasible for (18)
and (19) with D = {dmin, . . . , dmax}; gray if LMIs (9) are
feasible for (18) but infeasible for (19) and black if LMIs (9)
are infeasible for both (18) and (19).

Figure 5 (Left) for initial state x(0) = [1, 1, 1, 1]′ and
d0 = 3. We then consider a preemptive scheduler. With
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Fig. 3. Distribution of the 10% response time for self-trig-
gered, non-preemptive (NP) scheduling and preemptive (P)
scheduling. Results obtained on 104 simulated trajectories
with uniformly distributed initial conditions.
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gered, non-preemptive (NP) scheduling and preemptive (P)
scheduling. Results obtained on 104 thousand simulated tra-
jectories with uniformly distributed initial conditions.
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Fig. 5. Simulations for self-triggered scheduling, Left) NPS, Right PS: a) (plain) Norm of the state |x(t)|, (dashed) Norm of the
input |u(t)|; b) Events: abscissa correspond to sampling instants tsk, ordinate correspond to computation times δk = tak − tsk;
circles indicate that computation terminates before the next scheduled sampling, (NPS) squares indicate that the next sampling
is delayed until computation terminates, (PS) squares indicate that the next sampling occurs before computation terminates.

the same constant strategy dk = 10, Dt-DSLS (19) is
MSS. Then, BMIs (10) have solutions with the same ma-
trix Π. Simulation results using the control law given
by (16) are shown on Figure 5 (Right) for initial state
x(0) = [1, 1, 1, 1]′ and d0 = 3. Note that for both NPS
and PS in Figure 5, the average inter-sampling time is
0.4 while the stabilizing periodic time (corresponding
to ∀k ∈ N, dk = 10) is 0.2. Thus using self-triggering
scheduling in this case reduces sampling by 50%.

We simulated 104 trajectories with self-triggered
scheduling for both NPS and PS with uniformly dis-
tributed initial states x(0), and sequences (sk) gener-
ated by the Markov chain Pm. Figure 3 shows the dis-
tribution of the 10% response time, that is the time af-
ter which |x(t)| remains smaller than 0.1 × |x(0)|. The
10% response time is a good indicator of the convergence
speed. One can see that trajectories using PS generally
converge faster than trajectories using NPS. In fact, the
average response time is 13.5 in the former case and 17.2
in the latter case. Figure 4 shows the distribution of the
CPU utilization, that is the portion of the time where
the computational resource is used. PS use slightly more
CPU than NPS. The average CPU utilization is 0.47 for
the former and 0.44 for the latter. As a comparison, the
periodic strategy dk = 10 gives a faster average response
time of 4.9 (PS) and 5.1 (NPS) but the CPU is much
more utilized 0.82 (PS) and 0.83 (NPS). We can see
that self-triggered schedules succeed in achieving what
they have been designed for, namely increasing the inter-
sampling times and thus reducing the CPU utilization
while preserving stability.

6 Conclusion

In this work, we have presented several sufficient con-
ditions for stability and stabilizability of discrete-time
dual switching linear systems. These conditions are com-
putationally oriented and take the form of linear or
bilinear matrix inequalities. Some of the results allow

to design stabilizing control gains or stabilizing switch-
ing rules. Simpler conditions with no additional conser-
vatism can be obtained when the stochastic switching
variable is i.i.d. While in this paper only stability prop-
erties were considered, it should be possible to investi-
gate, using similar Lyapunov based approaches, other
classes of problems such has H∞ or H2 analysis or syn-
thesis (Bolzern et al. 2016). Finally, we have shown how
the proposed framework allows us to model and an-
alyze non-trivial scheduling problems in sampled-data
systems, showing the relevance of dual switching linear
systems for this type of applications.
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Appendix

Sketch of Proof of Theorem 11

Note that (8b) implies that for all l ∈ D, Sl is invertible.
Thus, for all l ∈ D, i ∈ S, M(l,i) = S−1

l Q(l,i)(S
′
l)
−1 > 0.

Multiplying (8b) on the left by
[
S−1
m 0

0 S−1
l

]
and on the

right by
[
S−1
m 0

0 S−1
l

]′
, using K(l,i) = L(l,i)(S

′
l)
−1, M(l,i) =

S−1
l Q(l,i)(S

′
l)
−1 with Ā(l,i) + B̄(l,i)K(l,i) = A(l,i), and

denoting Gl = S−1
l , we obtain for all l,m ∈ D, i ∈ S, −Gm −G′m +

∑
j∈S pijM(m,j) GmA(l,i)

? −M(l,i)

 < 0.

Multiplying on the left by [A′(l,i), I], and on the right by

[A′(l,i), I]′, LMIs (6) are obtained. 2

Sketch of Proof of Proposition 12

The proof is similar to the proof of Theorem 11.

Sketch of Proof of Proposition 13

Let us assume that the LMIs (8) are feasible. Let us
denote Rm =

∑
j∈S pjQ(m,j) > 0. By definition of Rl

one has:
∑

j∈S pjQ(l,j) − Rl = 0 ≤ 0. Then, renaming the
variable appropriately (Q(l,i) and Rl becomes W(l,i) and
Ql respectively) leads to LMIs (9). 2

Sketch of Proof of Proposition 16

Let us assume the BMIs (10) are feasible, for some
M(l,i) > 0, l ∈ D, i ∈ S, and a row stochastic
matrix Π = (πlm)l,m∈D. Then, let us define for all

l ∈ D, Ql =
∑
j∈S pjA

′
(l,j)

(∑
m∈D πlmM(m,j)

)
A(l,j).

Since there exists j ∈ S such that A(l,j) is invert-
ible, then Ql > 0. Moreover (10b) gives for all l ∈
D, i ∈ S, Ql − M(l,i) < 0. Then, for all r ∈ D,

i ∈ S,
∑
l∈D πrl

(
Ql − M(l,i)

)
< 0. Since there ex-

ists i ∈ S, such that A(r,i) is invertible, we have ∀r ∈

D,
∑

i∈S piA
′
(r,i)

(∑
l∈D πrl

(
Ql − M(l,i)

))
A(r,i) < 0. Let us

remark that
∑

i∈S piA
′
(r,i)

(∑
l∈D πrl

(
Ql − M(l,i)

))
A(r,i) =∑

i∈S piA
′
(r,i)

(∑
l∈D πrlQl

)
A(r,i)−Qr. It follows that BMIs

(12) are feasible for matrices Ql, with l ∈ D, and Π. 2
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