
HAL Id: hal-02286164
https://hal.science/hal-02286164

Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reconciling Compiler Optimizations and WCET
Estimation Using Iterative Compilation

Mickaël Dardaillon, Stefanos Skalistis, Isabelle Puaut, Steven Derrien

To cite this version:
Mickaël Dardaillon, Stefanos Skalistis, Isabelle Puaut, Steven Derrien. Reconciling Compiler Opti-
mizations and WCET Estimation Using Iterative Compilation. RTSS 2019 - 40th IEEE Real-Time
Systems Symposium, Dec 2019, Hong Kong, China. pp.1-13. �hal-02286164�

https://hal.science/hal-02286164
https://hal.archives-ouvertes.fr


Reconciling Compiler Optimizations and WCET
Estimation Using Iterative Compilation

Mickaël Dardaillon∗, Stefanos Skalistis†, Isabelle Puaut‡, Steven Derrien§
∗INSA, IETR, UMR 6164, F-35708 RENNES

†‡§Univ Rennes, Inria, CNRS, IRISA, F-35708 RENNES
∗mickael.dardaillon@insa-rennes.fr, †stefanos.skalistis@inria.fr, ‡isabelle.puaut@irisa.fr, §steven.derrien@irisa.fr

Abstract—Static Worst-Case Execution Time (WCET) estima-
tion techniques operate upon the binary code of a program in
order to provide the necessary input for schedulability anal-
ysis techniques. Compilers used to generate this binary code
include tens of optimizations, that can radically change the
flow information of the program. Such information is hard
to be maintained across optimization passes and may render
automatic extraction of important flow information, such as loop
bounds, impossible. Thus, compiler optimizations, especially the
sophisticated optimizations of mainstream compilers, are typi-
cally avoided. In this work, we explore for the first time iterative-
compilation techniques that reconcile compiler optimizations and
static WCET estimation. We propose a novel learning technique
that selects sequences of optimizations that minimize the WCET
estimate of a given program. We experimentally evaluate the
proposed technique using an industrial WCET estimation tool
(AbsInt aiT) over a set of 46 benchmarks from four differ-
ent benchmarks suites, including reference WCET benchmark
applications, image processing kernels and telecommunication
applications. Experimental results show that WCET estimates
are reduced on average by 20.3% using the proposed technique,
as compared to the best compiler optimization level applicable.

Index Terms—Worst-Case Execution Time Estimation, Com-
piler optimizations, Iterative Compilation

I. INTRODUCTION

Safe upper bounds of Worst-Case Execution Times (WCET)
are the key input of schedulability analysis, that ensures that
deadlines of hard real-time tasks are met in all situations,
including the worst case. WCET calculation techniques must
be safe (provide upper bounds of execution times) and as tight
as possible (provide a bound as close as possible to the actual
WCET, which is in general unknown).

Many WCET estimation techniques have been developed
in the past [1], using either static analysis techniques or
measurement-based techniques. Static WCET analysis tech-
niques do not execute the code, and operate on the structure of
the binary code. A hardware-level analysis step first calculates
the worst-case execution time of sequences of instructions
(basic blocks); this step has to be performed on the binary
code, because the timing of instructions within basic blocks
depends on the actual instructions generated by the compiler,
as well as the mapping of instructions to memory addresses.
A calculation phase then computes the WCET estimate of the
entire program from the WCET of its basic blocks [2]. On
the other hand, measurement-based techniques use end-to-end
measurements to estimate WCETs. Contrary to measurement-
based techniques, static WCET estimation techniques, used

in this work, are guaranteed to provide safe upper bounds of
WCETs, provided that they are able to build a safe model of
the target hardware.

Static WCET estimation techniques require that all paths
in programs are of bounded length, meaning the maximum
number of iterations of loops, and the maximum depth of
recursion are both bounded. Flow information (loop bounds,
bounds on recursion or more elaborate flow information such
as mutually exclusive paths) may be obtained using static
analysis, or provided by the user as annotations. In general,
automatic extraction of flow information using static analysis
is to be preferred to annotations, that are error-prone.

Compilers translate high-level languages into binary code,
fit for microprocessors. Modern compilers typically apply tens
of optimizations (loop transformations, dead code elimination,
factorization of redundant code, function inlining, etc.) to
deliver more performance. While optimizations are key in
delivering performance for the average case, optimizations
are not always beneficial for the WCET. In addition, some
optimizations may radically alter the program control flow
and, thus, may break the automatic determination of flow
information (such as loop bounds). The general problem when
optimizing code in compilers, either for average or worst-
case execution time, is that there is no precise processor
performance model in the compiler because of the processor
complexity. Additionally, optimization passes are program-
specific and interdependent, in that they may have additive or
destructive impact dependent on the optimization combination
and the program to optimize. This prevents the use of exact
optimization techniques such as Integer Linear Programming
(ILP) or dynamic programming, and motivates research in the
field of iterative compilation.

In this paper, we propose for the first time a technique
to reconcile compiler optimizations (to have as good as
possible performance, in average case and worst case) and
WCET estimation, using mainstream compilers. Inspired from
iterative compilation, commonly used to optimize average-
case performance [3], [4], we propose a technique for an
automatic selection of optimization passes that both allows
(i) the automatic extraction of precise flow information; (ii)
optimization of WCETs. Since the space of optimizations to
be explored is huge, techniques for selecting sequences of
optimization passes have to find good candidate sequences in
reasonable amount of time. More precisely, our contribution is



an exploration technique for selecting optimization sequences
tailored to a specific program, which improves analyzability
and reduces the program’s WCET estimate, compared to
standard optimization levels (O0 to O3). Experimental results
show that the proposed exploration technique results in lower
WCET estimates than using random or genetic selection of
optimization sequences.

The contributions of this research are the following:

• We propose a technique for automatic selection of opti-
mization passes that allows (i) automatic WCET anal-
ysis, in particular automatic flow fact extraction, and
(ii) WCET estimates minimization compared to standard
optimization levels (O0 to O3). The optimization se-
quences selection stage uses a machine learning technique
that exploits correlations between optimization passes.
In contrast to most research on iterative compilation,
which focuses on average-case performance, our explo-
ration technique optimizes analyzability and worst-case
performance.

• We provide a detailed experimental evaluation of the
proposed technique on code for a LEON3 processor. Ex-
periments are performed using the mainstream compiler
LLVM [5] and the aiT industrial timing analysis tool [6].
Experimental results show that the WCET estimates of
a large selection of benchmarks (46 benchmarks from
the benchmark suites Mälardalen, Polybench, MiBench
and PolyMage) are reduced by an average of 20.3%, as
compared to the best compiler optimization level (O0
to O3) applicable without failure. Thanks to the very
general nature of our approach, this technique can be
implemented in industry realistically.

• As a side result, our research also provides a technique
to select the best unrolling factor parameter for the aiT
industrial static WCET estimation tool. The unrolling
factor is a parameter of aiT that allows to trade the quality
of WCET estimates (higher unrolling factor results in
better WCET estimates) against analysis time (higher
unrolling factor results in higher analysis time).

The rest of this paper is organized as follows. Section II
further motivates this research, by highlighting the difficulty
of selecting optimization sequences that optimize WCET es-
timates. Section III then presents the proposed method for
selecting optimization passes. Section IV evaluates the quality
of our proposal on a large set of benchmarks. Section V
then presents the automatic selection of the aiT’s unrolling
factor parameter. Our research is compared to related work
in Section VI. Concluding remarks and directions for future
research are given in Section VII.

II. MOTIVATION

Mainstream compilers provide standard code optimization
levels (from O0, no optimization, to O3, highly optimized
code), and also provide ways manually select optimization
sequences, defined as an ordered list of optimization passes
in which repetitions are allowed. This section motivates our

research on WCET-oriented exploration for the best opti-
mization sequence, through observations on examples. The
experimental setup used in this section is the same used for
the experimental evaluation of our work, i.e. use of the aiT
WCET estimation tool for the LEON3 processor (see Section
IV). All observations are made by randomly selecting 1000
optimization sequences of size 10 to 80, on two benchmarks
(des and harris), with the virtual unrolling factor of the aiT
timing analysis tool of 2 and 4 respectively.

Timing analysis may fail on optimized code

Figure 1 shows the number of failures encountered during
the experiments. Failures encompass compiler failures (com-
piler internal errors, for example due to unsupported sequences
of optimizations) and WCET analysis errors (mainly incapa-
bility of the tool to derive flow information, more marginally
memory exhaustion or very long analysis times).

des harris

20 40 60 80 20 40 60 80
0%

10%

20%

30%

Optimization sequence length

Pe
rc

en
ta

ge
 o

f f
ai

lu
re

s

Source of failure: Compiler Analyzer

Fig. 1. Percentage of compiler and analyzer failures for 1000 random
generated sequences of size 10 to 80.

The figure shows a significant number of analysis failures,
outlining that some optimizations, either in isolation or in
conjunction with other optimizations, hinder temporal analysis
of the code. Obviously, the optimization sequences resulting
in failures should not be selected. The presence of analysis
failures is specific to WCET-directed search for compiler
optimizations, as compared to iterative compilation techniques
optimizing average-case performance.

Optimization sequences may result in WCET estimates better
than O3 or worse than O0

As already observed for average-case performance [3],
Figure 2 shows that some optimization sequences result in
WCETs that are lower than when using optimization level
O3. For the des benchmark, 20% of the observations provide
better estimated WCETs than O3; for Harris, 14% of the
observations are better than O1, and levels O2 and O3 make
the WCET analysis fail.

Figure 2 also shows that a significant number of optimiza-
tion sequences result in WCETs estimates that are much larger
(up to a factor of two for harris) than when compiling at O0. In
addition, we observed that a significant amount of sequences
have a negligible impact on the WCET estimate compared to



des harris

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
0%

10%

20%

Normalized estimated WCET

Optimization: O0 O1 O2 O3

Fig. 2. Distribution of WCET estimates on 1000 random generated sequences
normalized to the estimated WCET at O0, excluding failed analyses.

O0 (18% for des, 16% for harris result in WCET estimates
that are within 2% of WCET estimates at O0).

Optimizations are application specific
Figure 3 shows the distribution in the number of activated

optimization passes for the best 100 WCET estimates. The
results demonstrate that the number of optimization passes,
that yields low WCET estimates, varies among benchmarks.
More optimizations have to be activated for des than for
Harris.

des harris

20 40 60 80 20 40 60 80
0%

5%

10%

15%

Optimization sequence length

Fig. 3. Distribution of the best 100 estimated WCET for 1000 random
generated sequences of size 10 to 80.

The actual optimization sequences (i.e. the number of
optimizations passes, their type and their particular ordering),
yielding low WCET estimates are also benchmark dependent,
as illustrated in Table I, that shows the sequence with the best
WCET for des and Harris.

Finally, WCET estimation tools such as aiT use parameters
that enable a trade-off between analysis precision vs analysis
time. The virtual unrolling parameter is one of such parame-
ters. As further detailed in Section V, larger unrolling factors
improve the precision of WCET analysis at the cost of a
longer analysis runtime. The best value for this parameter is
also benchmark-dependent (2 for des and 4 for Harris), and
therefore has to be part of the search.

Compared to iterative compilation techniques for average-
case performance, our work (i) optimizes a different metric
(WCET estimate instead of average-case performance), (ii)
disregards optimization sequences that hinder analysis, (iii)
not only selects the best optimization sequences but also the
best parameters of the timing analysis tool.

TABLE I
BEST OPTIMIZATION SEQUENCE FROM 1000 RANDOM GENERATED

SEQUENCES OF SIZE 1 TO 50

des -loop-rotate -sink -indvars -partial-inliner
-loop-simplify -always-inline -deadargelim
-mem2reg -loop-unroll -partial-inliner -lcssa
-simplifycfg -lowerinvoke -inline -loop-reduce
-loop-simplify -strip-dead-prototypes -loop-unswitch
-loop-deletion -die -reassociate -constmerge
-loop-deletion -lowerinvoke -ipconstprop -globalopt
-mergereturn

harris -always-inline -always-inline -functionattrs
-prune-eh -loop-simplify -dce -strip-dead-debug-info
-codegenprepare -mem2reg -loop-rotate
-partial-inliner -simplifycfg -functionattrs
-adce -prune-eh -globaldce -loop-unswitch
-strip-nondebug -strip-nondebug -simplifycfg
-functionattrs -loweratomic -constmerge
-globaldce -strip-nondebug -globaldce -constprop
-loop-deletion -lcssa -instcombine

III. SELECTION OF OPTIMIZATION SEQUENCES

As highlighted in Section II, selecting the sequence of
optimization passes that improves WCET estimates for a
given program is rather challenging. This stems from intricate
correlations among optimization passes, with unpredictable
impact on the estimated WCET. In addition, sequences can
be arbitrarily long, thus the space of optimization sequences
is vast, that is practically impossible to fully explore.

In order to reduce the explored space and improve WCET
estimates within reasonable time, our approach focuses on
characterizing the impact (positive, neutral or negative) of the
individual passes of a sequence with respect to already evalu-
ated sequences. By construction, the characterization strategy
classifies as neutral and negative the passes that frequently
exhibit that behavior after a significant number of attempts.
The main purpose of the characterization is to avoid passes that
frequently exhibit a neutral or negative impact, as such passes
are not likely to improve the estimated WCET. Conversely,
passes that have been observed to frequently exhibit a positive
impact, or passes that have not been applied often enough to
establish their impact, are considered beneficial.

After having characterized the individual passes of each
evaluated sequence, we apply a weighting scheme to guide the
selection of passes towards those having frequently a positive
impact, and away from passes that have frequently a neutral
impact. The weighting scheme is inspired by association rule
learning of the data mining domain [7]. Association rule
learning identifies frequent causality relations among subsets
within transactions of a database. In a similar manner, our
characterization strategy and weighting scheme identifies fre-
quent causality relations between sets of optimization passes
and impact on the resulting WCET. We opted for a weighting
scheme, instead of an established algorithm from the domain,
as such learning to be successful requires a large dataset.
Acquiring such a large dataset is not only computationally
expensive, which is not in line with our motivation, but



also is not reusable across programs, since the behavior of
optimization passes is program-specific.

The proposed approach, illustrated in Figure 4, follows a
typical iterative compilation workflow. Given a program in
high-level language and a compiler for the target architecture,
the approach starts by compiling the given program with
no optimization (O0) and follows by analyzing it with a
WCET estimation tool. This establishes a baseline WCET for
the program. Subsequently, a new optimization sequence is
generated, by selecting (i) its length randomly and (ii) each
pass of the sequence in a weighted random manner, according
to the proposed weighting scheme (weights are initially equal).
The program is then recompiled and analyzed, resulting in a
new WCET estimate. The newly generated sequence is then
compared to the previously evaluated sequences with the most
common passes, and the impact of its passes is established.
According to this new characterization of passes, the weights
are updated and the process is repeated.

program

compiler

(LLVM)

analyzer

(aiT)

optimization

selection

estimated
WCET

optimization

sequence

le
ar

ni
ng

fe
ed

ba
ck

virtual

unrolling factor

platform

(LEON3)

Fig. 4. Iterative compilation workflow

A. Characterization of optimization passes

Discovering the impact of passes (positive, neutral or
negative) is not straightforward, as there is not enough in-
formation to individually evaluate which passes contribute
positively/negatively to the estimated WCET. For example,
consider two sequences, ABC and ABD that have improved
WCET (compared to O0). Let their WCET estimates have
the following ordering WCETABD < WCETABC (lower is
better). It is hard to decide, whether optimization pass D is
responsible for the improved WCET estimates of ABD or
optimization pass A has a negative impact on ABC.

To establish the impact of a sequence of passes with respect
to another sequence, the proposed characterization is founded
upon the lattice of their sets1 of passes (the partial order in
the lattice is set inclusion, see Figure 5). The characterization
strategy for a given sequence starts by finding the largest
subset that has been already evaluated. The comparison of
their WCET estimates characterizes the given sequence as
positive, neutral or negative. This characterization is applied
to their non-common passes, while the common passes inherit
the characterization from the largest subset. For example
(Figure 5), if sequence AB is evaluated as positive compared

1A sequence of passes is denoted as ABC and the corresponding set of
passes is denoted as {A,B,C}

to A which in turn is neutral compared to the empty sequence,
B is characterized as positive, whereas pass A remains neutral.

{ A, B, C }

{ A, C } { A, D } { B+, C+ }

{ A○ }

{ ∅ }

{ B } { C } { D }

{ A○, B+, C+, D○ }

{ A○, B+ }

WCETAB < WCETA 

WCETA = WCET�

{ B, D } { C, D }

{ A, B, D } { A, C, D }

WCETABCD < WCETAB
WCETABCD = WCETBC

{ B, C, D }

WCETBC < WCET�

Fig. 5. Example of the characterization strategy for four optimization passes.
Bold sets have been evaluated, while grey have not. Optimization pass X is
denoted as X+, X◦,X− when characterized as positive, neutral or negative,
respectively. For each arrow (subset to superset ordering in the lattice), the
corresponding variation of estimated WCET is shown (lower is better).

In case there are more than one largest subset for a given
sequence, then (i) the non-common passes among all the sets
and the given sequence, are characterized according to the
sequence characterization, (ii) the non-common passes among
the sets retain their characterization of their set and (iii)
the common passes retain the most frequent characterization
among the sets, with ties being resolved by the characterization
of the sequence. Continuing our previous example, consider
the sequence ABCD is evaluated as positive compared to
{A,B} and as neutral compared to {B,C}; the sequence is
characterized as neutral, its WCET is equal to WCETBC . Pass
D is characterized as neutral as it is not present in any of
the subsets. Passes A and C retain the characterization of
their corresponding set (as the non-common part among the
largest subsets) and pass B retains its characterization since it
is positive in both sets.

B. Weighting scheme

The objective of the weighting scheme is to avoid passes
that have frequently been observed to be neutral and promote
passes that either have been frequently positive or have not
been tried many times. This is achieved by setting the weight
of each pass to:

Wpass =
N+

pass

max
(
1, N◦

pass

) × 85% + 15% (1)

where, N+
pass is the number of times it has been characterized

as positive among evaluated sequences, and N◦
pass is the

number of times it has been characterized as neutral. In order
to avoid convergence to local optima, we add a fixed 15%,
determined experimentally, to maintain some randomness.
Also note that while our weighting scheme does not include
a term for negative passes, passes with frequently negative
impact are avoided, since the weights are normalized in the
weighted random selection.

C. Cleaning of optimization passes

In order to enhance the detection of neutral passes, we use
an additional cleaning phase. This method is largely used in



iterative compilation [3], [8], and its impact in WCET estima-
tion is outlined in the experimental evaluation in Section IV.
The cleaning phase, after a sequence has been evaluated,
generates a new sequence by removing one pass from the
previous sequence. If the resulting sequence has the same or
higher WCET estimate as the original one, the pass is removed
for all subsequent sequences of the cleaning phase, otherwise it
is kept. The cleaning phase continues to the next optimization
pass, until all optimization passes have been selected.

Note that all the sequences generated and evaluated by the
cleaning phase are also characterized. In this manner, not only
neutral passes are identified, but also the confidence of positive
(or negative) passes is re-enforced. Cleaning gives a precise
characterization of each optimization, at the expense of a large
runtime overhead, given that WCET analysis has to be run
for every optimization in the sequence. For this reason, the
cleaning phase is not applied to all optimization sequences, as
further explained in Section IV.

IV. EXPERIMENTAL EVALUATION

A. Experimental setup

A standard workflow for iterative compilation is used to
explore optimization influence, adapted to WCET estimation,
as illustrated previously in Figure 4. The platform targeted for
the experimentation is a 32-bit RISC LEON3 processor (com-
patible with SPARC V8 instruction set) with separate 16 KB
2-way instruction and data caches. Programs are compiled
using LLVM 4.0 for the SPARC architecture, using Gaisler
BCC 2.0.5 implementation [9]. The LLVM optimizer opt was
compiled separately, and all its 53 optimizations passes are
used in the experiments. Timing analysis is carried out by
AbsInt aiT [6] version 18.04 targeting the LEON3 architecture.
aiT implements value analysis using abstract interpretation, to
determine the range of values in registers, as well as static
analysis of the processor micro-architecture and automatic
detection of loop bounds [10]. The virtual unrolling factor
for each benchmark is chosen as described is Section V. All
experiments were conducted inside a virtual machine running
Ubuntu version 18.04, on a MacBookPro with an Intel i7-
7660U processor and 16 GB of RAM.

By its non standard use of compiler and analysis tool,
iterative compilation tends to find corner cases causing bugs
during evaluation. To circumvent those bugs the workflow
includes timeouts of 60 seconds for LLVM and 120 seconds
for aiT. Failures in compiler were similar to those observed
in iterative compilation for average case, and accounted for
less than 1% of the evaluated sequences. Failures in analysis
tool were mostly due to the timing analysis requiring more
time than the given timeout, or more rarely due to memory
exhaustion from large virtual unrolling factor. Timeout failures
were considered as a failure to obtain an estimated WCET and
treated as such in the rest of the workflow.

Evaluation of the optimization selection is supported by
a large selection of benchmarks from different domains:
Mälardalen benchmark suite, that are reference benchmarks for
WCET estimation [11]; Polybench benchmarks [12] for linear

algebra, physics and statistics; MiBench [13] benchmarks
for its applications in security and telecommunications; and
PolyMage [14] for image processing. As this work focuses
on optimization, we paid special attention to include complex
kernels, which can be challenging for WCET estimation.

All benchmarks were refactored into three parts: initial-
ization, computation and result transmission. This separation
supports the objective to focus on computation optimization,
with analysis carried only on the computation part. Using
the computation output with result transmission is essential,
otherwise the compiler could consider parts of the computation
as dead code and remove them.

As part of this separation, Mälardalen benchmarks bs,
cover, lcdnum and ud were removed as they do not produce
output values. Polybench was the easiest to port, as it was
already structured in this way. MiBench provides a large
selection of benchmarks used in embedded systems, but many
of them access the file system during their execution which
limits analysis possibilities. In order to increase the number of
large applications from different application domains, several
benchmarks were heavily modified to be analyzable. The list
of all benchmarks used is presented in Table II, with their
estimated WCET at O0, using virtual unrolling as defined in
Section V.

Four methods were used for the selection of optimization
sequences, with two reference methods: random and ge-
netic, and the two newly introduced methods association and
cleaning (shortcut for association combined with cleaning).
All methods use 1000 different optimization sequences for
evaluation (duplicates are removed).

a) Random: This method uses sequences of random size
from 1 to 50, and each optimization pass is then randomly
selected.

b) Genetic: This method follows the main structure of
genetic algorithms [15]. It uses generations of 200 individuals,
each individual being an optimization sequence, and each gene
encoding an optimization. The first generation is created using
the random method previously presented. At each generation,
half of the population is kept based on the estimated WCET
of its individuals. The population is then doubled using
crossover, whereby two random individuals are selected and
duplicated, their duplicates are split at a random position and
their genes are exchanged after the split point. Mutation is
applied randomly to 15% of the individuals as a change to a
single optimization pass at a randomly selected position in the
sequence. Estimation is ran for as many generations as needed
until 1000 different individuals are evaluated.

c) Association: This method is based on the association
rule learning presented in Section III. It starts with 200
sequences generated using the random method. Optimizations
are characterized with the proposed strategy, and weights are
derived for each optimization as defined in Section III-B. The
next 800 sequences are generated using a weighted random
generator to select the optimizations. The model and the
weights are updated after each analysis.



TABLE II
BENCHMARKS USED IN THE EXPERIMENTAL EVALUATION

Collection Benchmark Estimated WCET at O0
(cycles)

Mälardalen

cnt 48885
crc 287296
des 1143962
duff 5081
expint 244327
fdct 25826
fir 85578129
jfdctint 21235
ludcmp 25305
matmult 737810
ns 60809
nsichneu 166248
qurt 33168
sqrt 8611
statemate 29660

Polybench

2mm 1262084
3mm 1988631
adi 6290978
atax 300561
bicg 252896
covariance 1307156
doitgen 1216712
durbin 187702
fdtd-2d 4469129
floyd-warshall 82188104
gemm 1475502
gemver 528009
gesummv 151566
heat-3d 3266377
jacobi-1d 91361
jacobi-2d 4982515
lu 2422376
mvt 304227
nussinov 53768579
seidel-2d 7208288
symm 949889
syr2k 1162729
syrk 956099
trisolv 88809
trmm 547295

MiBench

CRC32 7005747235
FFT 20046629
adpcm decoder 1002950581
rijndael 866798

PolyMage harris 892512876
pyramid blend 30415746437

d) Cleaning: This method is an extension of the associa-
tion method. Each time a new best result is found, the sequence
is cleaned as defined in Section III-C to characterize each of
its optimization passes precisely. This cleaning is applied to
each new best result after the first 200 sequences only.

B. Experimental results

1) Global analysis of results: Table III presents the geo-
metric mean of the best estimated WCET per benchmark for
each method. All results are normalized to the best estimated
WCET using the four standard optimization levels (O0 to O3).

Geometric mean is used due to the large variation between the
normalized estimated WCET to give a representative number.
From these results the random method is the worst with a
16.8% improvement, and genetic third with an 17.6% im-
provement. Association is second with a 19.4% improvement,
and cleaning brings an additional 1% to reach 20.3% of
improvement over the best standard optimization level.

TABLE III
GEOMETRIC MEAN OF THE BEST ESTIMATED WCET PER BENCHMARK,

NORMALIZED TO THE BEST STANDARD OPTIMIZATION (O0 TO O3)

Method Normalized estimated WCET
Random 0.832
Genetic 0.824
Association 0.806
Cleaning 0.797

Although there are differences in improvement for the
different methods, the results motivate the use of iterative
compilation in the domain of real-time systems.

The best estimated WCET per method, normalized to
the best standard optimization level is detailed in Figure 6
for all benchmarks. The benchmarks present very different
characteristics, with significant variations in estimated WCET
as already presented in Table II, but also in sensitivity to
optimizations. The worst acquired result from all four methods
is an absence of improvement for benchmark 3mm, and less
than 1% improvement for jacobi-1d, jfdctint and rijndael. The
best improvement in estimated WCET comes to doitgen with
a 74% improvement.

2) Analysis per method: In order to compare the four meth-
ods we ranked the best estimated WCET for each benchmark
between the methods. Ties in estimated WCET were solved
by giving all the methods in the tie the same ranking. The
results of this ranking are presented in Figure 7.

The random method is clearly dominated by all the other
methods, but still finds 17% of the best results. Genetic is
leading with more than 43% of the best results. Association
and cleaning methods are in between with 30% and 39%
of the best results respectively. Both methods share a very
similar algorithm, which means they explore a similar space,
thus splitting the results between them. This is confirmed
by observing the cumulative best and second best results,
where cleaning gets the best results with 78%, followed by
association with 70% and genetic with 67%.

Comparing the ranking with the geometric mean results
on Table III, we observe that genetic is leading in terms of
best results, but dominated on average by the association and
cleaning methods. This highlights a difference between these
methods, with genetic being more hit or miss, whereas others
are more consistent.

Figure 8 presents the percentage of failures for each method
during compilation and analysis. It highlights the particulari-
ties of each algorithm related to failures.

In the case of genetic, every failure will be filtered out
at the next generation, resulting in fewer failures overall. In



0.0

0.2

0.4

0.6

0.8

1.0

cn
t

crc de
s

du
ff

ex
pin

t
fdc

t fir

jfd
cti

nt

lud
cm

p

matm
ult ns

ns
ich

ne
u

qu
rt

sq
rt

sta
tem

ate
ha

rris

py
ram

id_
ble

nd

rijn
da

el

ad
pc

m_d
ec

od
er

CRC32 FFT
2m

m
3m

m ad
i
ata

x
bic

g

co
va

ria
nc

e

do
itg

en
du

rbi
n

fdt
d−

2d

flo
yd

−w
ars

ha
ll

ge
mm

ge
mve

r

ge
su

mmv

he
at−

3d

jac
ob

i−1
d

jac
ob

i−2
d lu mvt

nu
ss

ino
v

se
ide

l−2
d
sy

mm
sy

r2k sy
rk
tris

olv
trm

m

N
or

m
al

iz
ed

 e
st

im
at

ed
 W

C
E

T

Method: Random Genetic Association Cleaning

Fig. 6. Best estimated WCET per method normalized to the best standard optimization (O0 to O3)

0%

20%

40%

60%

80%

100%

Random Genetic Association Cleaning

Rank: First Second Third Fourth

Fig. 7. Ranking of the best estimated WCET for each benchmark between
all methods

0%

2%

4%

Random Genetic Association Cleaning

Source of failure: Compiler Analyzer

Fig. 8. Percentage of failure across all benchmarks for each method

the case of association and cleaning, the chosen weighting
does not use the negative characterization information, which
means we get nearly as many failures as a random exploration.
One thing to note is that a single addition or removal of an
optimization pass can turn the best sequence into a failure,
which is unique to WCET estimation. This observation was
established during cleaning of the best sequences, where the
removal of optimizations led to one compiler and two analyzer
failures, starting from the best result. As such, failure is not a
good indicator for finding the best results.

0

3000

6000

9000

Random Genetic Association Cleaning

R
un

tim
e 

(s
ec

on
ds

)

Source: Analysis Overhead

Fig. 9. Geometric mean of runtime for 1000 analyses per method.

Evaluation of runtime per method requires particular care
given the inherent variability of running on top of an operating
system, inside a virtual machine. We use two measurements
for runtime, with timestamps at the beginning and the end of
a method to measure total runtime, and the runtime reported
by aiT per analysis for analysis runtime. Both measurements
are reported in seconds. To obtain reliable results we removed
benchmarks with a total runtime of less than 2000 seconds,
meaning less than 2 seconds per analysis. Figure 9 presents
the geometric mean of the runtime across benchmarks for each



method. Geometric mean was chosen to compute a meaningful
runtime given the large variability across benchmarks (from
360 seconds for sqrt, which is excluded, to 34082 seconds for
fdtd-2d).

The total runtime is divided into analysis runtime, as
reported by aiT, and overhead runtime, as the total minus
analysis runtime. We observe that runtime for all methods
is dominated by the WCET analysis runtime. The overhead
runtime is similar for all methods. Genetic total runtime is
smaller than the others, which is correlated to the number of
failures presented previously. This can be explained by the
longer runtime resulting from failures caused by timeouts.

Figure 10 presents the distribution of lengths for the best
sequence of each benchmark across all four methods, before
and after cleaning the sequence. Specifically, each sequence
and associated benchmark was evaluated using cleaning to
remove all neutral and negative optimizations.

0%

5%

10%

15%

20%

0 10 20 30 40 50
Optimization sequence length

Method: Original Clean

Fig. 10. Length of best optimization sequence per benchmark across methods
originally and after cleaning.

Comparing the length of the best sequence before and after
cleaning, we can observe that a significant amount of opti-
mization passes – in the best sequences – are not effectively
useful. Based on this observation one might want to use short
sequences to find the best results. We explored this direction,
but yielded results 10% worse than random. We expect that
this is due to the fact that using a large sequence increases the
chances to have an optimization with a positive influence on
the estimated WCET.

3) Sensitivity to benchmark: As illustrated in the previous
section, iterative compilation brings significant improvements
to estimated WCETs. One would be tempted to derive general
(benchmark agnostic) rules to improve WCET estimates, with-
out going through the lengthy process of iterative compilation.
In this section we investigate this opportunity in terms of
sequence, optimization and finally learnt model.

Figure 11 presents the best estimated WCET for each
benchmark using the best optimization sequences from other
benchmarks, as they were acquired in the previous section.
To evaluate the specialization of sequences to a given bench-
mark we use a leave-one-out cross validation, whereby each
sequence is used to estimate the WCET for all benchmarks
except the one it was found with. Using cross-validation allows

us to check if the sequence brings improvement specifically to
this benchmark, or if it can considered general across multiple
benchmarks.

0.0

0.5

1.0

1.5

cn
t

cr
c

de
s

du
ff

ex
pi

nt
fd

ct fir
jfd

ct
in

t
lu

dc
m

p
m

at
m

ul
t

ns
ns

ic
hn

eu qu
rt

sq
rt

st
at

em
at

e
ha

rr
is

py
ra

m
id

_b
le

nd
rij

nd
ae

l
ad

pc
m

_d
ec

od
er

C
R

C
32

FF
T

2m
m

3m
m ad

i
at

ax
bi

cg
co

va
ria

nc
e

do
itg

en
du

rb
in

fd
td

−2
d

flo
yd

−w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
he

at
−3

d
ja

co
bi

−1
d

ja
co

bi
−2

d lu
m

vt
nu

ss
in

ov
se

id
el

−2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m

N
or

m
al

iz
ed

 e
st

im
at

ed
 W

C
E

T

Fig. 11. Best estimated WCET per benchmark using the best optimization
sequence from all benchmarks except the benchmark evaluated, normalized
to the best estimated WCET for the benchmark

The geometric mean of the best estimated WCET for the
cross validation is 0.823, 4% worse than the geometric mean
of the best estimated WCET across all methods of 0.786. In
terms of ranking, cross-validation gets 20% of the best results.
This is only slightly better than random, which confirms our
hypothesis that sequences are tailored to specific benchmarks.

Figure 12 is based on the best sequence for each benchmark
across all methods, and presents the percentage of sequences
containing a given optimization pass, after cleaning was ap-
plied to remove neutral and negative optimizations.

0%

25%

50%

75%

−b
b−

ve
ct

or
iz

e
−c

on
st

m
er

ge
−d

ie
−g

lo
ba

ld
ce

−l
cs

sa
−l

oo
p−

si
m

pl
ify

−l
ow

er
at

om
ic

−l
ow

er
in

vo
ke

−m
em

cp
yo

pt
−m

er
ge

re
tu

rn
−p

ru
ne

−e
h

−s
tri

p−
de

ad
−d

eb
ug

−i
nf

o
−s

tri
p−

de
ad

−p
ro

to
ty

pe
s

−s
tri

p−
de

bu
g−

de
cl

ar
e

−t
ai

lc
al

le
lim

−a
lw

ay
s−

in
lin

e
−c

on
st

pr
op

−d
ce

−d
ea

da
rg

el
im

−f
un

ct
io

na
ttr

s
−m

er
ge

fu
nc

−s
cc

p
−s

in
k

−g
lo

ba
lo

pt
−l

oo
p−

de
le

tio
n

−l
ow

er
sw

itc
h

−s
tri

p
−s

tri
p−

no
nd

eb
ug

−a
dc

e
−a

rg
pr

om
ot

io
n

−b
re

ak
−c

rit
−e

dg
es

−d
se

−l
oo

p−
un

sw
itc

h
−r

ea
ss

oc
ia

te
−l

oo
p−

ex
tra

ct
−s

in
gl

e
−r

eg
2m

em
−j

um
p−

th
re

ad
in

g
−p

ar
tia

l−
in

lin
er

−m
em

2r
eg

−i
ps

cc
p

−l
oo

p−
re

du
ce

−i
pc

on
st

pr
op

−c
od

eg
en

pr
ep

ar
e

−i
nd

va
rs

−l
ic

m
−l

oo
p−

ex
tra

ct
−l

oo
p−

un
ro

ll
−i

nl
in

e
−g

vn
−i

ns
tc

om
bi

ne
−s

im
pl

ify
cf

g
−s

ro
a

−l
oo

p−
ro

ta
te

S
eq

ue
nc

es
 c

on
ta

in
in

g 
op

tim
iz

at
io

n

Fig. 12. Percentage of best sequences overall containing an optimization after
cleaning.

We observe that best results are brought by only a subset of
optimizations, with -loop-rotate, -sroa and -simplifycfg being
present in more than 50% of the best sequences. On the
contrary, we see that many optimizations are never present
in best results, which hints at their neutral or negative effect
on WCET estimates.



Figure 13 presents the percentage of neutral characteriza-
tions for each optimization. The presented characterizations
are based on the 1000 sequences per benchmark, obtained
using the cleaning method, and averaged across benchmarks
using an arithmetic mean. The arithmetic mean was used
due to the characterization similar nature and range. The
optimizations are presented in the same order as in Figure 12,
where the percentage of their presence in best sequences
was illustrated. This ordering is used to relate the neutral
characterization with the final best result.

0%

10%

20%

30%

−b
b−

ve
ct

or
iz

e
−c

on
st

m
er

ge
−d

ie
−g

lo
ba

ld
ce

−l
cs

sa
−l

oo
p−

si
m

pl
ify

−l
ow

er
at

om
ic

−l
ow

er
in

vo
ke

−m
em

cp
yo

pt
−m

er
ge

re
tu

rn
−p

ru
ne

−e
h

−s
tri

p−
de

ad
−d

eb
ug

−i
nf

o
−s

tri
p−

de
ad

−p
ro

to
ty

pe
s

−s
tri

p−
de

bu
g−

de
cl

ar
e

−t
ai

lc
al

le
lim

−a
lw

ay
s−

in
lin

e
−c

on
st

pr
op

−d
ce

−d
ea

da
rg

el
im

−f
un

ct
io

na
ttr

s
−m

er
ge

fu
nc

−s
cc

p
−s

in
k

−g
lo

ba
lo

pt
−l

oo
p−

de
le

tio
n

−l
ow

er
sw

itc
h

−s
tri

p
−s

tri
p−

no
nd

eb
ug

−a
dc

e
−a

rg
pr

om
ot

io
n

−b
re

ak
−c

rit
−e

dg
es

−d
se

−l
oo

p−
un

sw
itc

h
−r

ea
ss

oc
ia

te
−l

oo
p−

ex
tra

ct
−s

in
gl

e
−r

eg
2m

em
−j

um
p−

th
re

ad
in

g
−p

ar
tia

l−
in

lin
er

−m
em

2r
eg

−i
ps

cc
p

−l
oo

p−
re

du
ce

−i
pc

on
st

pr
op

−c
od

eg
en

pr
ep

ar
e

−i
nd

va
rs

−l
ic

m
−l

oo
p−

ex
tra

ct
−l

oo
p−

un
ro

ll
−i

nl
in

e
−g

vn
−i

ns
tc

om
bi

ne
−s

im
pl

ify
cf

g
−s

ro
a

−l
oo

p−
ro

ta
te

N
eu

tra
l c

ha
ra

ct
er

iz
at

io
ns

Fig. 13. Percentage of neutral characterizations per optimization across all
benchmarks based on cleaning results.

We observe a small inverse correlation between the neutral
characterization and its presence in the final result. This con-
firms that optimizations with neutral characterizations are on
average not providing benefit to the best result. One exception
is optimization -loop-reduce which has the highest neutral
characterization, but is still present in 25% of best sequences.
It may be caused by the fact that the optimization by itself
is providing no gain (i.e. neutral), but combined with another
optimization provides significant improvement.

V. SELECTION OF THE AIT’S VIRTUAL UNROLLING
FACTOR

The aiT timing analysis tool uses a parameter named virtual
unrolling factor to trade-off WCET estimation accuracy with
analysis complexity (Section V-A). The automatic selection of
this parameter in our proposal is presented in Section V-B.

A. Virtual unrolling in aiT and its impact on WCET estimates

Analysis of routines in aiT is achieved per context, e.g.
a calling context for a routine with specific parameter values.
Those contexts are used to restrict the possible values for each
register. Contexts are used for all analyses (value analysis, loop
bound analysis, cache analysis, etc).

The virtual unrolling factor option defines the number of
contexts used to analyze loops. This concept is similar to loop
peeling in compilers, which extracts the first N iterations of a
loop. Unrolling is virtual, that is no code transformations are
performed, and unrolling is only used in the timing analysis. In
aiT, higher virtual unrolling translates into more loop contexts,

with a different context computed for each of the first N
iterations of the loop. Virtual unrolling is essential for loop
bound analysis: a low virtual unrolling factor may result in
a failure in finding the loop bound of some loop and, thus,
in failure of the whole timing analysis. A high unrolling
factor in contrast improves the precision of value analysis and
consequently the quality of estimated WCETs.

The downside of a more accurate analysis is a longer
analysis time due to the additional contexts. This extra time
does not necessarily increase linearly with the virtual unrolling
factor. In the case of kernels with two nested loops, virtually
unrolling the outer loop creates multiple contexts, for each
of which the inner loop is also virtually unrolled. Image
processing kernels use triple nested loops, which could create
a cubic complexity for virtual unrolling. This is an acute
problem in iterative compilation in which WCET estimation
has to be done for a large number of optimization sequences
for each application.

harris lu matmult

adpcm_decoder doitgen gemm

10 20 30 10 20 30 10 20 30

0

1

2

3

4

5

0

1

2

0

1

2

3

4

0

10

20

30

40

0

500

1000

1500

2000

0

500

1000

1500

2000

Virtual unrolling factor

E
st

im
at

ed
 W

C
E

T 
(M

ill
io

ns
 o

f c
yc

le
s)

Optimization: O0 O1 O2 O3 Random

Fig. 14. WCET estimation of standard optimizations and 100 random
generated sequences for virtual unrolling factor from 2 to 32.

To investigate this influence we ran WCET estimations
for code compiled with standard optimizations levels (O0
to O3) for different unrolling factors. Results for six of the
selected benchmarks are plotted in Figure 14 for the estimated
WCET, and Figure 15 for the runtime of the analysis. Analysis
failures are represented with an estimated WCET equal to -1.
We observe that increasing the unrolling factor improves the
estimated WCET for some benchmarks (e.g. gemm, lu), but
may also provide no noticeable improvement on larger virtual
unrolling factors (e.g. harris, matmult). In terms of runtime,
increasing the virtual unrolling factor increases the analysis
runtime, whether there is improvement in the estimated WCET
(e.g. gemm, lu) or not (e.g. adpcm decoder, harris). In some
cases the virtual unrolling may completely unroll the loop
(e.g. doitgen, matmult), after which there is neither gain in
estimated WCET nor additional runtime.



harris lu matmult

adpcm_decoder doitgen gemm

10 20 30 10 20 30 10 20 30

0

10

20

30

40

0

10

20

30

40

Virtual unrolling factor

R
un

tim
e 

(s
ec

on
ds

)

Optimization: O0 O1 O2 O3 Random

Fig. 15. WCET estimation runtime of standard optimizations and 100 random
generated sequences for virtual unrolling factor from 2 to 32.

B. Selection of virtual unrolling factor

Our objective is to maximize the quality of the estimated
WCET, by selecting an unrolling factor tailored to each
specific program, with a small overhead for its selection. We
define this quality in two ways:

• Tightness: the estimated WCET is as close as possible to
the actual WCET.

• Fidelity: the ordering of estimated WCETs for any pair
of optimization sequences matches the one of their actual
WCETs. For example, if WCETABC < WCETBCD

for estimated WCETs at virtual unrolling factor 2 and
WCETABC > WCETBCD for actual WCETs, virtual
unrolling factor 2 has a low fidelity.

Validating both criteria would require a WCET oracle which
is, in practice, impossible to acquire. For this purpose, we use
the estimated WCET with the largest virtual unrolling factor
as an indicator of the actual WCET.

Referring back to Figure 14, we have separated the results
for the standard optimizations and 100 random sequences
repeated for each virtual unrolling factor. For tightness, we
observe that the standard optimizations and random sequences
follow the same trend for each benchmark. An improvement
in estimated WCET is visible on the standard optimization
levels, which means standard optimization levels are a good
indicator for a potential gain to be obtained by increasing the
virtual unrolling.

In order to evaluate the fidelity of the estimated WCET we
compute the rank correlation at each virtual unrolling factor
using Kendall’s τ correlation coefficient [16]. Rank correlation
is a way to evaluate the fidelity of a ranking compared to
a reference ranking. It is used in design space exploration
to evaluate the fidelity of a model compared to the actual
system. In this work we use it to evaluate the quality of the
ordering at a given unrolling factor compared to our reference,
a virtual unrolling of 32. Results of this analysis are presented

harris lu matmult

adpcm_decoder doitgen gemm

10 20 30 10 20 30 10 20 30

0.94

0.96

0.98

1.00

0.94

0.96

0.98

1.00

Virtual unrolling factor

R
an

k 
co

rr
el

at
io

n

Fig. 16. Correlation of the ranking of estimated WCET for 100 random
generated sequences at each virtual unrolling, with virtual unrolling 32 as
reference.

in Figure 16, a coefficient of 1 being a perfect ranking. We
observe that we reach good rankings when the estimated
WCET reaches a plateau in Figure 14. This means that an
absence of variation in the estimated WCET is an indicator
that a given unrolling factor provides a high fidelity.

Algorithm 1 Selection of best virtual unrolling factor for a
given benchmark.

for optim = O0 to O3 do
prevWCET ← 1
for unroll = 2 to 32 do
estWCET ← aitT (benchmark, optim, unroll)
if estWCET < θ × prevWCET then
bestUnroll← max(bestUnroll, unroll)

end if
prevWCET ← estWCET

end for
end for
return bestUnroll

Based on the previous observations, we propose in Algo-
rithm 1 the selection of the unrolling factor for a program. For
efficiency considerations, we rely on standard optimizations
as an indicator to select the unrolling factor. In addition, we
limit the unrolling factor to the largest one that improves
the estimated WCET, i.e. when reaching a plateau. Finally,
we limit the unrolling factors explored to {2, 4, 8, 16, 32}.
The threshold θ to consider an improvement is set to 0.9,
meaning a 10% improvement. To further speed up exploration,
an additional condition is added to only consider WCET
estimations with a runtime smaller or equal than 30 seconds.
This limits the virtual unrolling for benchmarks adi, fdtd-
2d, FFT, floyd-warshall, heat-3d, jacobi-2d, nussinov, harris,
pyramid blend and seidel-2d. The selected virtual unrolling
factor for each benchmark is presented in Table IV.

VI. RELATED WORK

Information on the flow of control of applications im-
proves the tightness of WCET estimates. Beyond loop bounds,



TABLE IV
SELECTED VIRTUAL UNROLL FOR EVERY BENCHMARK.

2 cnt, des, fdct, fir, jfdctint, nsichneu, qurt, sqrt, state-
mate, floyd-warshall, pyramid blend, adpcm decoder,
CRC32, adi

4 harris, duff
8 crc, ludcmp, ns, heat-3d
16 doitgen, nussinov, FFT, fdtd-2d, jacobi-2d, seidel-2d
32 expint, matmult, covariance, gemm, gemver, gesummv,

symm, syr2k, syrk, trmm, 2mm, 3mm, atax, bicg, mvt,
durbin, lu, trisolv, rijndael, jacobi-1d

which are mandatory for WCET calculation, examples of
flow information include infeasible paths, or other properties
constraining the relative execution counts of program points.
Flow information can be obtained via two basic methods: static
analysis [17]–[20] or annotations added by the application
developer [21].

Compiler optimizations are often not used when designing
hard real-time systems. One reason is the increased diffi-
culty of automatic flow fact extraction using static analysis
techniques on highly optimized code as compared to non-
optimized code. Another difficulty, arising when flow in-
formation is given through developer-provided annotations
is to safely transform them along with code optimizations.
Finally, the certification of optimizing compilers is known to
be difficult because of the inherent complexity of optimizing
compilers [22].

However, using optimizing compilers is key for improved
performance, both in the average case [23] or in the worst
case [24], [25]. Several attempts have been made in the past to
reconcile compiler optimizations and WCET estimation (that
require safe and precise estimation of flow information).

A first research direction is to design WCET-aware compiler
optimizations, that are known to improve WCET estimates,
and have a well-known impact on flow information. Examples
of WCET-directed compiler optimizations aim at optimizing
the worst-case behavior of the memory hierarchy [26], [27]
branch predictors [28], or perform WCET-aware loop trans-
formations [29]. In contrast to these approaches, we take
benefit of the full set of compiler optimization from main-
stream compilers, designed for average-case performance, and
automatically select the ones that minimize WCET estimates.
In addition, in contrast to most related work that perform
optimizations along the worst-case execution path (WCEP)
our technique is a black-box technique that does not use
the WCEP, and therefore does not have to handle WCEP
variations.

When using source-level flow annotations for WCET esti-
mation, these annotations have to be transformed together with
code transformations [24], [30]–[32]. From an engineering per-
spective, tracing flow information in a compiler, albeit open-
source, is a time-consuming task and the flow fact traceability
code has to be maintained and be consistent alongside the code
of the optimizations.

A last class of approaches, is to rely on mainstream com-
pilers and automatically select optimizations that minimize
the WCET. Many research, surveyed in [4], has been de-
voted to the automatic selection of the best set of compiler
optimizations and the best ordering of applied optimization
passes to optimize average-case performance. Compared to
this rich set of techniques (see for example [33], [34]) the
metric we wish to optimize is worst-case performance, and not
average-case performance. To our best knowledge, only two
recent studies have focused automatic selection of compiler
optimization for WCET optimization. The study presented in
[35], uses feedback-directed compilation to optimize WCET
estimates, by feeding the compiler with WCET-oriented profile
data. In contrast to [35], our work does not require any support
from the compiler. The work presented in [25] automatically
selects compiler optimizations and their ordering to minimize
WCETs, using random or genetic techniques. As compared
to [25] that suggests a fine-grain approach (per loop, using
outlining) our work selects the same optimization sequence for
all files, to reduce the search space, and the technique used for
optimization selection outperforms both random and genetic
search algorithms. In addition, compared to these two works,
our research also automatically selects the best parameters
for WCET estimation (the virtual unrolling parameter of the
aiT timing analysis tool, that allows to find tradeoffs between
analysis precision and analysis run time).

VII. CONCLUSION

In this work, we have outlined the challenges raised when
using mainstream compilers to improve the estimated WCETs
of programs. In particular, the experimental evaluation, over 46
varied benchmarks using an industrial static WCET estimation
tool, shows that optimizations are application-specific, have
uncertain impact on estimated WCETs and often render timing
analysis impossible. To address these challenges and obtain
improved WCET estimates within reasonable time, we pro-
posed a novel learning approach that characterizes the impact
of individual optimization passes in order to construct an
optimization sequence that minimizes the estimated WCET.
Results show that WCET estimates are reduced on average by
20.3% using the proposed technique, as compared to the best
compiler optimization level applicable.

As future work, we consider sequence construction upon
blocks of passes to take advantage of optimization passes
interaction, and a more efficient identification of neutral passes
than the time-consuming cleaning. An open question we would
like to answer is whether the effect of optimizations on
the estimated WCET could be predicted based on features
observed in the application source/binary code. This would
enable reusability of the learnt models for other applications
and, thus, speed-up the exploration. Such directions are inline
with compiler optimization heuristics [36] and constitute a
significant challenge.



ACKNOWLEDGMENT

This work was funded by European Union’s Horizon 2020
research and innovation program under grant agreement No
688131, project Argo. The authors would like to warmly thank
Kelig Lesourd for his work on the experimental evaluation,
and the anonymous reviewers for their helpful comments on
earlier drafts of this paper.

REFERENCES

[1] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
I. Puaut, P. Puschner, J. Staschulat, and P. Stenström, “The worst-case
execution-time problem - overview of methods and survey of tools,”
ACM Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 36:1–36:53, May
2008.

[2] Y. S. Li and S. Malik, “Performance analysis of embedded software
using implicit path enumeration,” IEEE Trans. on CAD of Integrated
Circuits and Systems, vol. 16, no. 12, pp. 1477–1487, 1997. [Online].
Available: https://doi.org/10.1109/43.664229

[3] Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin,
O. Temam, and C. Wu, “Deconstructing iterative optimization,”
TACO, vol. 9, no. 3, pp. 21:1–21:30, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2355585.2355594

[4] A. H. Ashouri, W. Killian, J. Cavazos, G. Palermo, and C. Silvano, “A
survey on compiler autotuning using machine learning,” ACM Comput.
Surv., vol. 51, no. 5, pp. 96:1–96:42, 2019. [Online]. Available:
https://doi.org/10.1145/3197978

[5] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis and transformation,” in IEEE/ACM International Sym-
posium on Code Generation and Optimization (CGO), San Jose, CA,
USA, Mar 2004, pp. 75–88.

[6] “aiT:the industry standard for static timing analysis.” [Online].
Available: http://www.absint.com/ait

[7] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules
between sets of items in large databases,” in Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, ser.
SIGMOD ’93, vol. 22, no. 2. ACM, 1993, pp. 207–216.

[8] L. G. A. Martins, R. Nobre, J. M. P. Cardoso, A. C. B. Delbem,
and E. Marques, “Clustering-Based Selection for the Exploration
of Compiler Optimization Sequences,” ACM Trans. Archit. Code
Optim., vol. 13, no. 1, pp. 8:1–8:28, Mar. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2883614

[9] “Gaisler bare-c cross-compiler system.” [Online]. Available:
https://www.gaisler.com/index.php/downloads/compilers

[10] C. Cullmann and F. Martin, “Data-Flow Based Detection of Loop
Bounds,” in 7th International Workshop on Worst-Case Execution
Time Analysis (WCET’07), ser. OpenAccess Series in Informatics
(OASIcs), C. Rochange, Ed., vol. 6. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2007. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2007/1193

[11] J. Gustafsson, A. Betts, A. Ermedahl, and B. Lisper, “The
Mälardalen WCET Benchmarks: Past, Present And Future,” in
10th International Workshop on Worst-Case Execution Time
Analysis (WCET 2010), ser. OpenAccess Series in Informatics
(OASIcs), vol. 15. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2010, pp. 136–146. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2010/2833

[12] L.-N. Pouchet and T. Yuki, “PolyBench/C.” [Online]. Available:
http://web.cse.ohio-state.edu/ pouchet.2/software/polybench/

[13] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge,
and R. B. Brown, “MiBench: A free, commercially representative
embedded benchmark suite,” in Proceedings of the Fourth Annual IEEE
International Workshop on Workload Characterization. WWC-4 (Cat.
No.01EX538), Dec. 2001, pp. 3–14.

[14] R. T. Mullapudi, V. Vasista, and U. Bondhugula, “PolyMage: Automatic
Optimization for Image Processing Pipelines,” in Proceedings of the
Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’15.
New York, NY, USA: ACM, 2015, pp. 429–443. [Online]. Available:
http://doi.acm.org/10.1145/2694344.2694364

[15] G. V. Conroy, “Handbook of genetic algorithms by lawrence davis (ed.),
chapman & hall, london, 1991, pp 385,” Knowledge Eng. Review, vol. 6,
no. 4, pp. 363–365, 1991.

[16] H. Javaid, A. Ignjatovic, and S. Parameswaran, “Fidelity metrics for
estimation models,” in 2010 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov. 2010, pp. 1–8.

[17] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper, “Automatic
derivation of loop bounds and infeasible paths for WCET analysis using
abstract execution,” in Proceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS 2006), 5-8 December 2006, Rio de Janeiro, Brazil,
2006, pp. 57–66.

[18] M. D. Michiel, A. Bonenfant, H. Cassé, and P. Sainrat, “Static loop
bound analysis of C programs based on flow analysis and abstract
interpretation,” in The Fourteenth IEEE Internationl Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA
2008, Kaohisung, Taiwan, 25-27 August 2008, Proceedings, 2008, pp.
161–166.

[19] S. Blazy, A. O. Maroneze, and D. Pichardie, “Formal verification of loop
bound estimation for WCET analysis,” in Verified Software: Theories,
Tools, Experiments - 5th International Conference, VSTTE 2013, Menlo
Park, CA, USA, May 17-19, 2013, Revised Selected Papers, 2013, pp.
281–303.

[20] J. Knoop, L. Kovács, and J. Zwirchmayr, “Replacing conjectures by
positive knowledge: Inferring proven precise worst-case execution time
bounds using symbolic execution,” J. Symb. Comput., vol. 80, pp. 101–
124, 2017.

[21] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wenzel,
“WCET Analysis: The Annotation Language Challenge,” in 7th
International Workshop on Worst-Case Execution Time Analysis
(WCET’07), ser. OpenAccess Series in Informatics (OASIcs),
C. Rochange, Ed., vol. 6. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2007. [Online]. Available:
http://drops.dagstuhl.de/opus/volltexte/2007/1197

[22] X. Leroy, “Formal certification of a compiler back-end, or: programming
a compiler with a proof assistant,” in 33rd ACM symposium on Principles
of Programming Languages. ACM Press, 2006, pp. 42–54.

[23] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August,
“Compiler optimization-space exploration,” in 1st IEEE / ACM Interna-
tional Symposium on Code Generation and Optimization (CGO 2003),
23-26 March 2003, San Francisco, CA, USA, 2003, pp. 204–215.

[24] H. Li, I. Puaut, and E. Rohou, “Traceability of flow information: Rec-
onciling compiler optimizations and wcet estimation,” in Proceedings of
the 22Nd International Conference on Real-Time Networks and Systems,
ser. RTNS ’14. New York, NY, USA: ACM, 2014, pp. 97:97–97:106.

[25] I. Puaut, M. Dardaillon, C. Cullmann, G. Gebhard, and S. Derrien, “Fine-
grain iterative compilation for wcet estimation,” in 18th International
Workshop on Worst-Case Execution Time Analysis (WCET’18), 2018.

[26] P. Lokuciejewski, H. Falk, and P. Marwedel, “Wcet-driven cache-based
procedure positioning optimizations,” in 20th Euromicro Conference
on Real-Time Systems, ECRTS 2008, 2-4 July 2008, Prague, Czech
Republic, Proceedings, 2008, pp. 321–330.

[27] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen, “WCET centric
data allocation to scratchpad memory,” in Proceedings of the 26th
IEEE Real-Time Systems Symposium (RTSS 2005), 6-8 December 2005,
Miami, FL, USA, 2005, pp. 223–232.

[28] F. Bodin and I. Puaut, “A wcet-oriented static branch prediction scheme
for real time systems,” in 17th Euromicro Conference on Real-Time
Systems (ECRTS 2005), 6-8 July 2005, Palma de Mallorca, Spain,
Proceedings, 2005, pp. 33–40.

[29] P. Lokuciejewski and P. Marwedel, “Combining worst-case timing
models, loop unrolling, and static loop analysis for wcet minimization,”
in The 21st Euromicro Conference on Real-Time Systems (ECRTS),
Dublin / Ireland, jul 2009, pp. 35–44.

[30] J. Engblom, A. Ermedahl, and P. Altenbernd, “Facilitating worst-case
execution times analysis for optimized code,” in 10th Euromicro Con-
ference on Real-Time Systems (ECRTS 1998), 17-19 June 1998, berlin,
Germany, Proceedings, 1998, pp. 146–153.

[31] R. Kirner, P. P. Puschner, and A. Prantl, “Transforming flow
information during code optimization for timing analysis,” Real-Time
Systems, vol. 45, no. 1-2, pp. 72–105, 2010. [Online]. Available:
https://doi.org/10.1007/s11241-010-9091-8

[32] P. Lokuciejewski, S. Plazar, H. Falk, P. Marwedel, and L. Thiele,
“Approximating pareto optimal compiler optimization sequences -
a trade-off between wcet, ACET and code size,” Softw., Pract.



Exper., vol. 41, no. 12, pp. 1437–1458, 2011. [Online]. Available:
https://doi.org/10.1002/spe.1079

[33] K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D. Subramanian,
L. Torczon, and T. Waterman, “ACME: adaptive compilation made effi-
cient,” in Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference
on Languages, Compilers, and Tools for Embedded Systems (LCTES’05),
Chicago, Illinois, USA, June 15-17, 2005, 2005, pp. 69–77.

[34] F. V. Agakov, E. V. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P.
O’Boyle, J. Thomson, M. Toussaint, and C. K. I. Williams, “Using
machine learning to focus iterative optimization,” in IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), 2006,
pp. 295–305.

[35] M. Becker and S. Chakraborty, “Optimizing worst-case execution times
using mainstream compilers,” in Proceedings of the 21st International
Workshop on Software and Compilers for Embedded Systems, SCOPES
2018, Sankt Goar, Germany, May 28-30, 2018, 2018, pp. 10–13.

[36] S. Kulkarni, J. Cavazos, C. Wimmer, and D. Simon, “Automatic con-
struction of inlining heuristics using machine learning,” in Proceedings
of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), Feb. 2013, pp. 1–12.


