N

N

An Optimization Modeler as an Efficient Tool for Design
and Operation for City Energy Stakeholders and
Decision Makers
Camille Pajot, Lou Morriet, Sacha Hodencq, Benoit Delinchant, Yves
Maréchal, Frédéric Wurtz, Vincent Reinbold

» To cite this version:

Camille Pajot, Lou Morriet, Sacha Hodencq, Benoit Delinchant, Yves Maréchal, et al.. An Optimiza-
tion Modeler as an Efficient Tool for Design and Operation for City Energy Stakeholders and Decision
Makers. 16th IBPSA International Conference (Building Simulation 2019), Sep 2019, Rome, Italy.
hal-02285954

HAL Id: hal-02285954
https://hal.science/hal-02285954
Submitted on 4 Oct 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02285954
https://hal.archives-ouvertes.fr

OMEGAIlpes: An Optimization Modeler as an Efficient Tool for Design and
Operation for City Energy Stakeholders and Decision Makers

Camille Pajot!, Lou Morriet!, Sacha Hodencq®
Benoit Delinchant!, Yves Marechal', Frederic Wurtz!, Vincent Reinbold?
1Univ. Grenoble Alpes, CNRS, Grenoble INP, G2Elab, 38000 Grenoble, France
2Sorbonne Univ, Univ Paris Saclay, Univ Paris Sud, Grp Elect Engn Paris,
CNRS, Cent Supelec, 91192 Gif Sur Yvette, France

Abstract

Nowadays, urban energy projects are becoming more
complex in order to meet operational, economic and
environmental challenges. This requires using deci-
sion support tools in pre-study phases to easily design
and adapt the energy system model several times in
order to meet stakeholders requirements. This paper
presents OMEGAIlpes, a linear optimization tool de-
signed to easily generate multi-carrier energy system
models. Its purpose is to assist in developing district
energy projects by integrating design and operation
in pre-studies phases. OMEGAIlpes is open-source
and written in Python. A use example is described
to illustrate the modeling and solving of optimization
problems in OMEGAlpes.

Introduction

Context of energy design and operation in
cities

Nowadays, cities consume more than half of the global
primary energy use, most of which is produced from
fossil fuel power plants. Concurrently, climate change
issues require a drastic decrease of COs emissions.
The development of low-carbon and decentralized re-
newable energies as well as the increase in energy re-
covery potential suggests that districts or cities will
be the next place for energy production. However,
these low-carbon energies create new challenges such
as intermittency.

Multi-carrier energy systems and flexibility appear to
be answers to the intermittency issues but increase
the complexity of the energy systems. Intermittency
also requires taking into account the energy system
operation in the pre-design studies. In addition, the
shift from centralized production to district level pro-
duction make new actors like local producers, pro-
sumers or even consumers to join the incumbent ac-
tors in decision-making on energy project.

The previous considerations raise the following ques-
tion: how to design an energy project and manage
energy flows in order to be optimal from ecological, fi-
nancial, and other relevant points of view, while guar-
anteeing constraints such as thermal comfort for oc-

cupants or industrial requirements? One way to help
stakeholders to answer this question is to help them
to formulate, and then solve such complex problems.

State of art and choices for an optimization
modelling tool

In order to integrate the complexity presented be-
fore in district energy system projects, numerous
models and decision support tools have been devel-
oped to answer issues ranging from technological sys-
tem and building system design to policy assessment
(Keirstead et al. (2012)). Mendes et al. (2011) and
Allegrini et al. (2015) focus on decision support tools
dedicated to district energy systems, some of them
will be presented later.

Allegrini et al. (2015) focus on simulation tools and
highlight the difficulty to use classical dynamic sim-
ulation software, as TRNSYS , at district scale. In
fact, simulation tools are based on trial and error res-
olution repeated on various simulations to improve
the solution. The pre-study phase and the scaling
up of simulation models to the neighborhood or city
level is drastically reducing the capacity to compute
it successfully, due to memory and time issues. Op-
timization tools seem thus more dedicated for design
and energy management for district energy projects.

The complexity of the projects and the involvement
of various stakeholders with different objectives and
constraints require the ability to easily generate and
adapt several times the models of the project as mod-
eling tools do. Thus, a modeling tool is considered as
a tool to help in generating energy system models.
It should also help in identifying the whole of possi-
bilities in energy project pre-studies as it is easy to
consider various models. And help decision makers
to understand the challenges linked to their visions of
the energy project modelled as constraints and objec-
tives. TEASER is a widespread example of modeling
tool, but is dedicated to simulation models generation
(Remmen et al. (2018)).

Only few multi-carrier energy project optimization
modeling tools have been highlighted and are com-
pared (Table 1). Over half of them are proprietary
tools or require the use of proprietary tools: HOMER,

REopt, Artelys Crystal Energy Planner, and Ehub
Modeling tool. DER-CAM is also a proprietary tool
although it is free to use. However, proprietary tools
prevent easy contributions from third parties and
thus are unable to quickly adapt the model to the
stakeholders needs. Furthermore, as Lopion et al.
(2018) highlight, using proprietary tools also prevents
the modeling review by third parties. These reasons
lead us to orient ourselves towards open-source tools.

Recently, open-source optimization and modeling
tools like oemof, ficus and thus OMEGAlpes have
also been developed. OMEGAIpes and oemof have
been developed at the same time. Oemof (Open En-
ergy Modeling Framework) (Hilpert et al. (2018)) is
an energy framework aiming at linking data edition
and energy system optimization. Solph is the inter-
nal library of oemof aiming to help in modeling the
energy system model providing basic energy units or
few specific energy components. OMEGA]Ipes aims to
provide a panel of pre-built energy units with prede-
fined operational options, and associated constraints
and objectives. Ficus is also an optimization mod-
eling tool but developed for factory energy systems
(Atabay (2017)). It aims to help in finding the min-
imum cost energy system to satisfy given demand
time-series. Because it is mainly based on Excel for
the model definition, it may be difficult to integrate
more complex energy projects in the tool. Finally,
Ficus and oemof are open-source however they use
the GNU General Public License which limits the use
of the tools considering that each contribution has to
be open-source with the same license.

Contribution

OMEGAIlpes is a multi-carrier open-source genera-
tion model tool based on an intuitive and extensible
object-oriented library. This tool aims to offer the
possibilities to consider various energy study-cases
taking into account stakeholders constraints and ob-
jectives focusing on the optimization. We aim at tak-
ing into account both energy management and design
optimization. OMEGAIlpes is based on the Apache
License software, less restrictive than the GNU Gen-
eral Public License.

Considering the consequential amount of variables in-
volved due to the district scale and the desire to inves-
tigate early stage projects, and also considering the
type of the variables continuous and integer -, we de-
cided to focus on Mixed-Integer Linear Programming
(MILP). As we can see in Table 1, most of the other
tools identified use also MILP formulation.

Paper structure

The paper presents an overview of OMEGAlpes.
The first section describes the main characteristics of
OMEGAIpes and details the structure of the library
from the modeling step to the solving step. Addition-
ally, the second section presents a use case in order to
illustrate the potential of OMEGAlpes as a modeling

tool.

Methods

MILP, object-oiented programming and MDA
approaches and principles

The OMEGAIlpes library aims to help the generation
of MILP optimization models. The most basic form
of an optimization problem consists in adjusting a
set of decision variables (x1,zg,...,2,) to minimize
an objective function (1).

Minimize F = f(z1,za, ..., zy) (1)

However, most of the optimization problems encoun-
tered in engineering applications have to respect
physical laws bounding the values of some decision
variables. In this case, the problems are denoted as
constrained optimization problems and can be math-
ematically expressed as (2):

Minimize
Subject to:

F = f(z) for x € E"
a;(z)=0forie (1,2,...,p) (2)
¢j(x) >0for je(1,2,..,q)

According to the nature of the search space (or choice
set) E and function f, a; and c¢;, the optimization
problem (2) is qualified as linear, integer, quadratic,
etc. As explained before, only MILP formulations
are considered in this paper. In order to be classi-
fied linear, an optimization problem should take the
following form (3):

Minimize f(z) — Tz
Subject to: Ax =b (3)
x>0

Where ¢ € R™!, A € RP*” and b € RP*!. However,
many energy systems problems include binary and
discrete in addition to continuous variables. While
many variables (e.g., power, energy, costs, etc.) are
continuous, integer variables are needed for the for-
mulation of typical constraints. For instance, mini-
mum continuous run time of generators can be im-
plemented using binary variables. More generally,
each time that the state of a system (on/off, high-
/low, charge/discharge) has to be constrained, binary
variables are needed and thus a MILP formulation is
then required. However, the standard form of a MILP
problem is more complex as the variables could be ei-
ther continuous (z € R™) or integer (y € Z™) and
can be expressed as (4):

flx) —cTz —hTy
Az +Gy <b

x>0 for z in R
y >0 for y in Z™

Minimize
Subject to:

(4)

With this formulation, it becomes obvious that the
optimization solvers can only interpret specific for-
matting of the optimization models, composed of

Table 1: Available multi-carriers energy project optimization modelling tools

Tool Description Programming| License Commercial
or free
Artelys Crystal | Fully configurable software based on a MILP proprietary | Commercial
Energy Planner | full library model of energy units and
(Artelys (2016)) operating process
DER-CAM Decision support tool that primarily MILP proprietary Free
(Berkeley Lab serves the purpose of finding optimal
(2018)) distributed energy resource (DER)
investments in the context of either
buildings or multi-energy microgrids
Ehub Modeling Set of Matlab scripts for creating, MILP open- Free, but
tool (Bollinger | executing and visualizing the results of source requires
and Dorer an energy hub model for a given case Matlab
(2017)) study and a set of technologies.
ficus (Atabay Mixed integer optimization model for MILP GNU Free, but
(2017)) local energy systems GLP3 based on
Excel
HOMER Optimize microgrid design in all - proprietary | Commercial
(HOMER sectors, from village owner and island
(2018)) utilities to grid-connected campuses
and military bases
oemof (Hilpert Modular open source framework to MILP and GNU Free
et al. (2018)) model energy supply systems others GPL3
OMEGAIpes Energy systems modelling tool for MILP Apache 2.0 Free
linear optimization (LP, MILP)
REopt Optimize the size and operating MILP proprietary | Commercial
(Simpkins et al. strategy of microgrids, storage, and (exept
(2014)) energy /water systems REopt lite)

equalities and inequalities. The four main formats
and modeling languages used for linear programming
are MPS, LP, AMPL and GAMS (Benson (2011)).

e MPS (Mathematical Programming System) is
the oldest input format for linear problems. It
is widely used by both commercial and academic
solvers, but can be difficult for a user to read.

e LP (Linear Programming) format is easier for
users to understand by describing the problem
with readable algebraic expressions. However, it
could be harder for solver to interpret this for-
mat.

e AMPL (A Mathematical Programming Lan-
guage) was developed at Bell Laboratories and
became the standard modeling language for op-
timization problems. Many solvers (such as
CPLEX, Gurobi, Xpress or CBC) are supported
by AMPL.

o GAMS (General Algebraic Modeling System)
was the first algebraic modelling language
for mathematical programming and supports
the most famous optmization solvers (CPLEX,
Gurobi, Xpress or CBC).

As explained before, one of the aims of OMEGAIpes
consists in avoiding the creation of an optimization

model for each study case, by using the concept of
Model-Driven Architecture (MDA). Launched by the

Object Management Group in 2001, this approach
is used in software developments to switch between
a very-high level of abstraction to specific models
(Kleppe et al. (2003)). The high-abstraction level is
more related to a human understanding and could
sometimes be represented with diagrams, while the
specific models are closer to a description for a par-
ticular software. Here, the very-high level of abstrac-
tion corresponds to the formulation of the study case
of the problem on energy systems. For instance, it
could be a building that consumes heat power from
the heating network, while aiming to minimize its
COz emissions. In order to be solved, this optimiza-
tion problem has to be translated into a specific lan-
guage to be understood by an optimization solver.
For open-source purposes, OMEGAlpes was written
in Python, an open-source and widely-used high-level
programming language. Moreover, Python supports
object-oriented programming, a crucial feature for
the construction of multiple abstraction layers. The
OMEGAIlpes library relies on this concept by creat-
ing complex classes from elementary objects. More
detailed explanations about the construction can be
found in the next section.

Package structure of OMEGAlIpes

OMEGAIlpes is based on low-abstraction elements in
order to create high-abstraction classes. For instance,

LEGEND

T e <~ o [Glass | o) R

LpProblem I—

StateAuthority | =| RegulatorActor

LocalAuthority

/\

| > OperatorActor
A

EnergyUnit
energy_units Ai

HourlyDy ic(i

EnergyNode

energy_nodes

ConsumptionUnitf<€ = = = = = = = |} = = = = = = = = = =F= = =

[storal_;eUnit|

I-[ConversionUnit
1

[variableProductionUnit| | FixedProductionUnit|

I HeatPump I | ThermoclineStorage

i | IFixedConsumptionUnitI |

tionUnit| [shifta

ductionUnit|

production_units

a low abstraction element Unit creates a high ab-
straction element HeatPump. The available classes
are represented on Figure 1 and belong to one of the
three main sub-packages: general (e.g. optimization
and time related elements), energy (e.g. production,
consumption, storage and conversion) and actor (e.g.
regulator and operator actors).

To translate the models related to energy and ac-
tors concepts into an optimization model, we used the
python package PuLLP, which will be detailed later in
this paper (Mitchell et al. (2011)).

The general sub-package represents the first ab-
straction layer, by providing all the classes
needed for the optimization problem. Indeed,
the OptimisationProblem class inherits from the
LpProblem class provided by PuLP to project the
Python model into optimization models. The el-
ements module contains the optimization elements
needed to formulate a constrained optimization prob-
lems:

e Quantity defines a decision variable or a param-
eter

e 0Objective defines an objective (the objective of
the optimization problem will be the sum of all
objectives)

e Constraint defines a constraint

— DynamicConstraint defines a constraint
with a time-dependency

* HourlyDynamicConstraint defines a
constraint that repeats each time for
an hour range (for instance from 7am
to 9am)

Figure 1: OMEGAlpes class diagram

— ExternalConstraint defines a constraint
which does not reflect a physical equation
(for instance, a power plants that does not
operate during the night).

In the general.optimisation.units module, a Unit is
defined to represent the elementary object of an op-
timization problem. A Unit is a set of the three
optimization elements mentioned above (Quantity,
Objective and Constraint). An other elementary
class is included in the general package: TimeUnit.
This class is needed to define the dynamic of the study
case (i.e. the time step, the duration, ...). Moreover,
the time module contains several methods based on
the time series data analysis package: Pandas', in
order to help the user to link the index of the de-
cision variables (low-abstraction) to dates and hours
(high-abstraction).

The energy package gathers all the models used in
OMEGAIpes to describe an energy system. The Fig-
ure 2 shows an example of an energy system that links
various configured energy units: ProductionUnit,
ConsumptionUnit and StorageUnit through an en-
ergy node, with constraints and an objective. In this
example, the objective is to minimize the capacity of
a storage unit while providing energy to a fixed con-
sumption unit, thanks to a variable production unit
with maximum (pmax) and minimum (pmin) power
boundaries. The storage unit also has maximal charg-
ing and discharging power (pc_max and pd_max). En-
ergy nodes allow to link energy units of the same en-
ergy type while ensuring the power balance.

Ipandas.pydata.org

pandas.pydata.org

time
name
pc_max, pd_max

Minimize storage capacity
» Production planning

m Storage

0 < pc[t] < pc_max

time 05 pd[t] < pd_max

name time
pmin plt] = pc[t] - pd[t] name
pmax plt]lvt

p [t] < pmax plt]
Production | g {) Consumption

— Powerflow () EnergyNode
ZPimlt] = Epoult]

V tin time.l
Figure 2: Principle diagram of an energy system op-
timization problem modelled with OMEG Alpes

I EnergyUnit I * Constant

* Variable — Instantiation

The various parameters and objectives of the main
energy unit classes are detailed in the Figure 3.

?

ConversionUnit

IVariabIeOonsumptionUnitl |Fixedconsumptionunit|

ConsumptionUnit
+consumption_cost

+minimize consumption(): obj l< 4-|q{tprod_units
+maximize consumption(): obj +cons_units L
+minimize consumption cost(): obj
consumption_units conversion_units
EnergyUnit

+time

+name
+flow_direction
P

+p_min

+p_max

+e_min

+e_max
+energy_type
+owner

energy_units l}
! !
ProductionUnit

StorageUnit
+capacity +co2_out
+pc_min +starting cost
+pc_max +operating_cost
+pd_min +min_time_on
+pd_max +min_time of
+e 0 +max_ramp_up
e T +max_ramp_down 3
+soc_min +minimize starting cost(): obj
+soc_max +minimize operating_cost(): obj
+eff_c +minimize costs(): obj
+eff_d +minimize production(): obj
+self_disch +minimize time of use(): obj
+self disch_t +minimize co2 emissions(): obj
+ef_is_e0 +maximize production(): obj
+cycles A
+minimize _capacity(): obj ||[[variableProductionunit] [FixedProductionunit]
A
[Thermocli ge [sq ductionUnit] [Shil fonUnit
storage_units production_units

units

Figure 8: Energy units class diagram with parameters
and objectives

In OMEGAlIpes, inputs and outputs of energy units
are defined as poles: the generic pole is FlowPole, a
pole with a directed flow, and EPole defines an en-
ergy pole with a power flow and an energy type. In
order to help modelers to take into account stakehold-
ers objectives and constraints in the design process,
we developed an actor modeling layer . This actor
layer enables a bigger panel of modeling possibilities.
However, an energy project model can be generated
without integrating the actor modeling. We identi-

fied two main actor categories and divided them into
the following packages:

e The operator_actors package focuses on stake-
holders who operates energy units and have a
scope of responsibility on these energy units.
Consumer, Producer and Prosumer are opera-
tor actors and are defined as classes. Using the
oriented object modeling, the Prosumer class in-
herits from the Consumer and the Producer ones.
Modeling an operator actor enables to add the
actors constraints and objectives to all or part of
the energy units in the area of responsibility.

e The regulator_actors package focuses on stake-
holders who do not operate energy units but in-
fluences final decisions via network (economical,
values) and resource regulation.

In Figure 4, the previous example is described from
an actors point of view. The two main actors are rep-
resented with their own scope of responsibility: one
for the production unit, the other for the storage and
consumption unit. The objectives, which may be con-
tradictory, are associated to each actor. Additionally,
the producer imposes a CO2 limit constraint on its
production unit.

kActor

m Storage
Minimize
storage capacity

Minimize
consumption costs
Production | ¢) u Consumption

Figure 4: Diagram of an energy system optimization
problem that considers actors constraints and objec-
tives

|:| Scope of
responsibility

Maximize production i

production.co2_out[t] < co2_max

Optimization model generation and resolution

Once created with the packages detailed above, the
study case has to be translated into an optimiza-
tion model. As already explained, several formats
are commonly used to model an optimization prob-
lem (MPS, LP, AMPL and GAMS). In order to write
this optimization model from the Python description
of the study case, we use the PuLLP package. Mitchell
et al. (2011) defined PuLP as a ”linear programming
toolkit for Python”, focused on supporting linear and
mixed-integer models. Similarly to PuLLP, the Pyomo
framework can also be used to describe optimization
problems in Python. Where Pyomo benefits from the
ability to express non-linear models, PuLP has the
advantage of keeping the formulation simple, while
guaranteeing the interoperability with many solvers
as well as Pyomo does. Indeed, two standard for-
mats are available in PuLLP for the model genera-
tion: LP and MPS. Thus, once generated, the op-
timization model can be solved by a large range of

solvers. The LP and MPS formats allow the interfac-
ing with popular commercial solvers such as CPLEX
or Gurobi. For a fully open-source utilization of the
OMEGAIpes library, a CBC solver is included in the
PuLP library (COIN-OR Foundation (2018)), allow-
ing OMEGAIpes to handle all the steps from the
study case description to the optimization problem
resolution.

Open source and collaborative develop-
ment

OMEGAIpes has been developed with the ambition
of creating a community of users and developers, and
efforts were made to facilitate the involvement and
contributions of this community. First, OMEGAIpes
development was driven with an open-source philos-
ophy. Thus, OMEGAIlpes is coded with Python,
based on the open-source license Apache Software
License 2.0 (Apache Software Foundation (2004)),
and can be freely downloaded through The Python
Package Index (PyPI). Then, a detailed documen-
tation? and energy study cases® allow the users to
easily pick up OMEGAIpes. Finally, a versioning
process of OMEGAIpes development based on a Git-
Lab project* enables to track the contributions and
to facilitate collaborative development. This ensures
OMEGAIpes ambition to create a community and en-
rich the model library, but also to perpetuate the
study cases presented in scientific papers.

Example application

The aim of this subsection is to show how to use
OMEGAIpes on a study case. For this purpose,
we use demand-side management to maximize self-
consumption of photovoltaic (PV) generation. We do
so by shifting the energy consumption of a clothes
washing machine and a dryer, and by storing heat
into a water tank (see Figure 5). However, the focus
here is not on the example in itself but how to easily
study a complex problem thanks to OMEGAlpes.

Imports from the u @
Domast:c

—
electrical grid asH
~ s '"g hot water
B machine

Exports to the
electrical grid

Water heat — Electrical
consumption

Water heater — Heat Water heat
production storage

Figure 5: Representation of the study case

2https://omegalpes.readthedocs.io

Shttps://gricad-gitlab.univ-grenoble-
alpes.fr/omegalpes/omegalpes-examples

4 https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes

Our goal is to move from the representation of the
example drawn in Figure 5 to its formulation with
OMEGAlpes, step by step (available online®).

A typical study case can begin with two code lines
creating an OptimisationModel and the time char-
acteristics.

model = OptimisationModel (name="example")

The time characteristics are gathered in the class
TimeUnit, that may include:

e the start (start)/ the end (end)
e the time step in hours (dt)
e the number of time steps (periods)

time = TimeUnit(periods=24%12, dt=1/12)

In this example, the study is realized on a 5-minutes
time step (1/12 hours) during a day (the number of
periods equals 24 hours*12 time steps, i.e 288 peri-
ods).

Then, the energy package can be used in order to de-
scribe the study case. In this example, there is two
types of load:

1. The electrical loads whose starting time is
not defined but whose consumption pro-
file is known, such as the clothes dryer.
This type of unit is available with the class
ShiftableConsumtpionUnit, where the
power_values corresponds to its consump-
tion profile, that can be shifted.
ShiftableConsumptionUnit(time,

"dryer", power_values=dryer_load,
energy_type="Electrical")

2. Non-shiftable heating load whose consumption
profile cannot be changed, such as the domestic
hot water. The corresponding model can be
found under the class FixedConsumptionUnit
and can be instantiated by the entire consump-
tion profile on the time period (p).
FixedConsumptionUnit(time, "dhw", p=
dhw_load, energy_type="Heat")

When the production profile is known, OMEGAIpes
provides a FixedProductionUnit class. In ad-
dition to the fixed electric production from the
PV panels, the house is connected to the elec-
trical grid. The power exported to the electri-
cal grid is modeled as consumption, while the im-
ported power is represented as production. As
the power profiles of these units are not fixed by
advance, the classes VariableProductionUnit and
VariableConsumptionUnit are used.

Besides the electrical appliances’ consumption,
electricity is used by a water heater to meet
the domestic hot water demand. The ob-
ject ElectricalToHeatConversionUnit (time,
"water_heater", elec_to_heat_ratio=0.9) repre-
sents the water heater’s electrical consumption and

Shttps://tinyurl.com/OMEG Alpes-Basic-Example

https://omegalpes.readthedocs.io
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes-examples
https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes/omegalpes-examples
 https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes
 https://tinyurl.com/OMEGAlpes-Basic-Example

the heat production. The parameter elec_to_heat
ratio (90%) is the efficiency of the water heater.

Finally, the heated water can be partly stored into a
water tank.

StorageUnit(time, "water_tank", capacity=
6000, ef_is_e0=True, self_disch=0.05,
socmin=0.2, energy_type ="Heat")

In this case, the capacity of the thermal storage is
6000 kWh. The initial state of charge (SoC) has
to be equal to the SoC at the end of the period
(ef_is_e0=True). Moreover, the SoC is not allowed
to go below 20% and the storage has a self-discharge
of 5% per hour.

We add an external constraint to model the fact that
the dryer cannot be launched before the end of the
washing machine cycle. This constraint is consid-
ered to be an ExternalConstraint because it rep-
resents an operational, rather than a physical con-
straint. Moreover, this constraint is time-dependent
and is created as a DynamicConstraint. For these
reasons, the ExtDynConstraint, inheriting from both
classes is used as follows:

cst = ExtDynConstraint (name= "wait_to_dry",
exp-t ="dryer_start_up[t] < 1pSum(
clothes_washer_switch_off[k] for k in
range(0, t))", parent=clothes_dryer)

Then, the constraint is added to the clothes dryer
through the following command:

setattr(dryer, "wait_to_dry", cst)

To specify the objective, we apply a func-
tion available for the class ProductionUnit:
minimize production to the imports from the
electrical grid:

imports.minimize_production()

The method sets the objective corresponding to the
minimization of the electrical imports from the grid,
i.e. the maximization of the self-consumption. Fi-
nally, the energy nodes are created using the following
code:

EnergyNode(time, "heat node", energy_type=
"Heat")

The units have to be connected to the corresponding
node:

heat _node.connect_units(dhw, water_tank,
water_heater.heat_production unit).

Now that the energy model is set, it can be added to
the empty optimization model by adding the nodes:
model.add nodes(elec_node, heat_node).

Finally, the optimization is launched by the com-
mand: model.solve_and update().

With 6922 variables (2890 continuous and 4032 bi-
nary) and 79172 non-zeros, this optimization problem
is generated within 1,2 seconds on an Intel bicore i5
2.4 GHz CPU. Two MILP solvers are compared in

term of performances. For the free CBC solver avail-
able in the PuLP package, the optimal solution was
found in 43,6 seconds, while the commercial Gurobi
solver provided an optimal result in 2,5s.

Regarding the results of the study case, the reference
case with no thermal storage and electrical appliances
not starting before 6pm, only 3% of the electrical con-
sumption is self-consumption while the optimization
reaches 53% of self-consumption with a demand-side
management strategy. Self-consumption can be sig-
nificantly improved with optimal planning, so that a
quick and easy formulation of the optimization prob-
lem can be game changing for prosumers.

More generally, the generation of optimization models
through the combination of pre-defined units can help
many actors to study optimal energy planning. While
we have focused on a simple example, OMEGAlpes
was also used for optimization problems with hun-
dreds of thousands of variables, solved by Gurobi in
several minutes.

Conclusion and Perspectives

Conclusion

In many urban contexts, cities and districts face nu-
merous challenges in terms of energy projects. Be-
sides technical and financial issues, considering the
environmental and social aspects is required more
and more, which renders energy systems very complex
problems. The optimization tool OMEGAlpes (Opti-
mization Models Generation As Linear Programming
for Energy Systems) was created to help the stake-
holders to address these new challenges.

As indicated by its name, OMEGAIlpes generates lin-
ear optimization models for energy systems. Indeed,
this tool can be described as a MILP modeling tool,
with a focus on multi-carriers energy projects at the
district level. Written in Python, OMEGAlpes re-
lies on the object-oriented concept to gather energy
and actors models for a quick design of various en-
ergy study cases. A low-abstraction layer is based
the the PuLP package in order to translate the study
cases into MILP models with two available formats
(MPS and LP). Then, the model is sent to vari-
ous solvers (CBC, CPLEX, Gurobi, etc.) for its
resolution. Available at https://gricad-gitlab.univ-
grenoble-alpes.fr/omegalpes, this Python library is
fully open-source with a permissive license for a non-
restrictive contribution.

An example of utilization for PV self-consumption
with electric load shifting and water tank man-
agement according to domestic hot water needs is
available online at https://tinyurl.com/OMEGAlpes-
Basic-Example.

Besides the energy package used on this study case,
actors models are also integrated in OMEGAlpes to
explicit the actors’ objectives and constraints. How-
ever, OMEGAIpes have been designed for pre-studies

 https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes
 https://gricad-gitlab.univ-grenoble-alpes.fr/omegalpes
 https://tinyurl.com/OMEGAlpes-Basic-Example
 https://tinyurl.com/OMEGAlpes-Basic-Example

and does not integrate very-detailed models such as
those required for real-time management.

Perspectives

One perspective of our work is thus to link
OMEGAIlpes with simulation tools, based on more
detailed models. This would enable one to use
OMEGAIpes for model predictive control.

Alternatively, thermal building models have been in-
tegrated to OMEGAIlpes in order to enable the mod-
eling of heat building consumption curves based on
an RC model.

Aiming to facilitate the use of the library, a Graphical
User Interface may be developed based on the package
presented before.

Finally, as presented before, OMEGAIpes aims to be
developed by a community of developers and so inte-
grate new contributions.

Acknowledgment

This work has been partially supported by the CDP
Eco-SESA receiving fund from the French National
Research Agency in the framework of the ” Investisse-
ments davenir program (ANR-15-IDEX-02).

References

Allegrini, J., K. Orehounig, G. Mavromatidis,
F. Ruesch, V. Dorer, and R. Evins (2015). A re-
view of modelling approaches and tools for the sim-
ulation of district-scale energy systems. Renewable
and Sustainable Energy Reviews 52, 1391 — 1404.

Apache Software Foundation (2004). Apache License,
Version 2.0.

Artelys (2016). Artelys crystal energy planner.

Atabay, D. (2017). An open-source model for optimal
design and operation of industrial energy systems.
FEnergy 121, 803 — 821.

Benson, H. Y. (2011, January). Interior-Point Lin-
ear Programming Solvers. In Wiley Encyclopedia

of Operations Research and Management Science.
Hoboken, NJ, USA: John Wiley & Sons, Inc.

Berkeley Lab (2018). Distributed Energy Resources -
Customer Adoption Model (DER-CAM) | Building
Microgrid.

Bollinger, L. A. and V. Dorer (2017). The ehub mod-
eling tool: A flexible software package for district
energy system optimization. Energy Procedia 122,
541 — 546. CISBAT 2017 International Confer-
enceFuture Buildings & Districts Energy Efficiency
from Nano to Urban Scale.

COIN-OR Foundation (2018). COIN-OR: Computa-
tional Infrastructure for Operations Research.

Hilpert, S., C. Kaldemeyer, U. Krien, S. Gnther,
C. Wingenbach, and G. Plessmann (2018). The
open energy modelling framework (oemof) - a new
approach to facilitate open science in energy sys-
tem modelling. Fnergy Strategy Reviews 22, 16 —
25.

HOMER (2018). HOMER - Hybrid Renewable and
Distributed Generation System Design Software.

Keirstead, J., M. Jennings, and A. Sivakumar (2012).
A review of urban energy system models: Ap-
proaches, challenges and opportunities. Renew-
able and Sustainable Energy Reviews 16(6), 3847
— 3866.

Kleppe, A. G., J. Warmer, J. B. Warmer, and
W. Bast (2003). MDA Ezplained: The Model
Driven Architecture Practice and Promise.
Addison-Wesley Professional.

Lopion, P., P. Markewitz, M. Robinius, and
D. Stolten (2018). A review of current challenges
and trends in energy systems modeling. Renewable
and Sustainable Energy Reviews 96, 156 — 166.

Mendes, G., C. Ioakimidis, and P. Ferro (2011). On
the planning and analysis of integrated commu-
nity energy systems: A review and survey of avail-

able tools. Renewable and Sustainable Energy Re-
views 15(9), 4836 — 4854.

Mitchell, S., M. OSullivan, and I. Dunning (2011).
PulLP: A Linear Programming Toolkit for Python.

pp. 12.

Remmen, P., M. Lauster, M. Mans, M. Fuchs, T. Os-
terhage, and D. Mller (2018, January). TEASER:
an open tool for urban energy modelling of building

stocks. Journal of Building Performance Simula-
tion 11(1), 84-98.

Simpkins, T., D. Cutler, K. Anderson, D. Olis, E. El-
gqvist, M. Callahan, and A. Walker (2014). REopt:
A Platform for Energy System Integration and Op-
timization. (45875), VO02T03A006.

