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Introduction

Arrays of diamond-shaped cylinders are often employed to design compact heat exchanger. Heat transfer and pressure drop were characterised by Chyu et al. [START_REF] Chyu | Convective heat transfer of cubic fin arrays in a narrow channel[END_REF], Tanda [START_REF] Tanda | Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements[END_REF] or Jeng [START_REF] Jeng | Thermal performance of in-line diamond-shaped pin fins in a rectangular duct[END_REF] for in-line or staggered matrix of square or diamond-shaped cylinders. Chyu et al. [START_REF] Chyu | Convective heat transfer of cubic fin arrays in a narrow channel[END_REF] found experimentally that staggered matrix of square cylinder arrays deliver higher transfer rate than diamond-shaped cylinder arrays followed by circular cylinder arrays. The transfer was studied using a naphthalen sublimation technique. Tanda [START_REF] Tanda | Heat transfer and pressure drop in a rectangular channel with diamond-shaped elements[END_REF] have quantified the transfer and the temperature distribution in a flow through different cylinder arrays using liquid crystal thermography. According to the authors, for a given mass flow rate, a diamond-shaped cylinder array is up to 4.4 more efficient than an empty channel. The heat transfer efficiency was also investigated experimentally by Jeng [START_REF] Jeng | Thermal performance of in-line diamond-shaped pin fins in a rectangular duct[END_REF] for the case of an in-line array of diamond-shaped cylinders using a transient method for measuring the heat transfer coefficient. The authors have concluded that for a given pumping power it is possible to found an optimal distance between cylinders to maximize heat transfer. One can notice that square cylinders matrix geometry was also employed to investigate accurately roughness effect on laminar flow [START_REF] Gamrat | An experimental study and modelling of roughness effects on laminar flow in microchannels[END_REF].

In the literature, it is important to emphasize that diamond-shaped cylinder arrays are usually rotated square-shaped cylinders (i.e. diamond shape with an apex angle of α = 90 • ). The effect of varying the apex angle (or cylinder section aspect ratio) is not systematically performed.

The design of a heat exchanger with such a geometry in a staggered arrangement was used in space industry for electronic cooling applications. The pressure drop coefficient in such geometries were characterised experimentally and numerically by Sparrow & Grannis [START_REF] Sparrow | Pressure drop characteristics of heat exchangers consisting of arrays of diamond-shaped pin fins[END_REF] for an apex angle of 45 and 90 • with a Reynolds number range of 20 < Re < 2700 in order to give correlations to assist sizing of an air/air heat exchanger for a space shuttle. Later, an array of diamond-shaped cylinders was also investigated by Vanapalli et al. [START_REF] Vanapalli | Pressure drop of laminar gas flows in a microchannel containing various pillar matrices[END_REF] for cryocooling of the electronic employed in satellite. For a laminar flow at moderate Reynolds numbers (50 ≤ Re ≤ 500) and an apex angle of α = 37.15 • , Vanapalli et al. [START_REF] Vanapalli | Pressure drop of laminar gas flows in a microchannel containing various pillar matrices[END_REF] found experimentally that a diamond-shaped cylinder matrix generates higher pressure drop than circular, square, elliptical or sinus shape. In microfluidics, the diamondshaped cylinder arrays were also investigated for liquid phase chromatography applications [START_REF] Smet | Influence of the pillar shape on the band broadening and the separation impedance of perfectly ordered 2-d porous chromatographic media[END_REF][START_REF] De Pra | Pillar-structured microchannels for on-chip liquid chromatography: Evaluation of the permeability and separation performance[END_REF].

For a turbulent flow regime, to better understand the control of multiple jets formation device, the jets formation with a specific flapping instability has been studied at the outlet of a liquid flow discharging directly into air past an array of diamond-shaped cylinders [START_REF] Umeda | Numerical and experimental study on thermal fuild flow over twin diamond-shaped cylinders in free stream[END_REF][START_REF] Torii | Flip-flop flow control inside streamwise diverging diamond-shaped cylinder bundles with concavities[END_REF]. For such a flow, funded on numerical simulation and experimental measurements, Hirasawa et al. [START_REF] Hirasawa | Forced convection heat transfer coefficient and pressure drop of diamond-shaped fin-array[END_REF] proposed correlations to describe the pressure drop and the heat transfer in an array of diamond-shaped cylinders with an apex angle of α = 30 • . At last, porous diamond-shaped cylinders had a particular interest for biological filtering processes [START_REF] Rashidi | Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder[END_REF][START_REF] Rashidi | Numerical study of flow around and through a porous diamond cylinder in different apex angles[END_REF][START_REF] Valipour | Numerical modeling of flow around and through a porous cylinder with diamond cross section[END_REF][START_REF] Vijaybabu | LBM simulation of unsteady flow and heat transfer from a diamond-shaped porous cylinder[END_REF]. At moderate Reynolds number,Rashidi et al. [START_REF] Rashidi | Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder[END_REF] and Vijaybabu et al. [START_REF] Vijaybabu | LBM simulation of unsteady flow and heat transfer from a diamond-shaped porous cylinder[END_REF] have characterised heat transfer and Nusselt number for the flow around a solid diamond-shaped cylinder of apex angle α = 90 • . The influence of the apex angle on the flow around a porous diamond-shaped cylinder was studied by Rashidi et al. [START_REF] Rashidi | Numerical study of flow around and through a porous diamond cylinder in different apex angles[END_REF]. As a result, the knowledge of the flow and heat transfer around a single diamond-shaped cylinder may be benefit for various applications.

While the literature on single circular or square cylinder geometry is large (see for example [START_REF] Hilpert | Warmeabgage von geheizten drahten und rohren im luftstrom[END_REF][START_REF] Mcadams | Heat transmission[END_REF][START_REF] Tritton | Experiments on the flow past a circular cylinder at low reynolds numbers[END_REF][START_REF] Collis | Two-dimensional convection from heated wires at low reynolds number[END_REF][START_REF] Dennis | Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100[END_REF][START_REF] Fornberg | A numerical study of steady viscous flow past a circular cylinder[END_REF][START_REF] Sheard | Computations of the drag coefficients for lowreynolds-number flow past rings[END_REF][START_REF] Kalita | A transformation-free hoc scheme for incompressible viscous flows past an impulsively started circular cylinder[END_REF][START_REF] Okajima | Strouhal numbers of rectangular cylinders[END_REF][START_REF] Breuer | Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-boltzmann and finite-volume[END_REF][START_REF] Sharma | Heat and fluid flow across a square cylinder in the two-dimensional laminar flow regime[END_REF][START_REF] Dhiman | Flow and heat transfer across a confined square cylinder in the steady flow regime: Effect of peclet number[END_REF][START_REF] Sahu | Effects of reynolds and prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime[END_REF]), very few studies deal with the flow and/or the mass transfer around a single diamond-shaped cylinder. Yoon et al. [START_REF] Yoon | Flow past a square cylinder with an angle of incidence[END_REF] performed a numerical study to understand the key parameters for the description of a laminar flow around an inclined single diamond-shaped cylinder having an apex angle of α = 90 • with different angle of incidence (Re ≤ 150). In this article, the influence of the incident angle on the flow pattern, the drag and lift, the angle of separation and the Strouhal number (linked to vortex shading frequency in the cylinder wake) is analysed. The flow around a single diamond-shaped cylinder confined in a channel has been studied by Djeddi et al. [START_REF] Djeddi | Numerical simulation of flow around diamond-shaped obstacles at low to moderate reynolds numbers[END_REF] using direct numerical simulation for low and moderate Reynolds numbers (Re < 200). In this work, the Strouhal number variation was characterized against the cylinder aspect ratio and a blockage coefficient. Numerical simulation of the flow around a square and diamond-shaped cylinder with an apex angle of 90 • for larger Reynolds number (Re = 250 -1000) have been presented by Dalton & Zheng [START_REF] Dalton | Numerical solutions of a viscous uniform approachflow past square and diamond cylinders[END_REF]. The authors found that for such Reynolds number range, rounding the corner of square or diamond-shaped cylinders affected significantly the lift and drag coefficients. The flow and the heat transfer through and around a porous diamond-shaped cylinder in a laminar flow has been investigated by Rashidi et al. [START_REF] Rashidi | Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder[END_REF][START_REF] Rashidi | Numerical study of flow around and through a porous diamond cylinder in different apex angles[END_REF]. In these works, it is shown that the variation of the apex angle and cylinder internal porosity influenced the drag and the critical Reynolds number corresponding to wake recirculation onset. A numerical study of heat transfer in a cross flow for streamlined cylinders was performed by Li et al. [START_REF] Li | Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow[END_REF]. The cylinders shapes were elliptical and lenticular with minor-to-major axis ratios of 0.3, 0.5 and 0.8. The authors results suggest that for the Reynolds range 500 ≤ Re ≤ 10 4 , the drag coefficient of tubes could be reduced by 30-40 % with just 15-35 % losses on the averaged Nusselt number compared with the circular cylinder case.

Concerning experimental data available in the literature, the measurements of the drag coefficients of various single cylinders with different cross sectional shapes published by Delany & Sorensen [START_REF] Delany | Low-speed drag of cylinders of various shapes[END_REF] can be mentioned. The drag coefficients were obtained for cylinders of elliptic, rectangular, diamond or triangle shapes for various aspect ratio 0.5, 1, 2 (α = 53, 90, 126 • ) and corners radius (smoothed corners) at large Reynolds numbers (1 × 10 4 ≤ Re ≤ 2 × 10 6 ).

To authors knowledge, even if there is already different applications employing such a geometry, the literature on the analysis of the flow and heat transfer around a single diamond-shaped cylinder remains very limited. The objective of the present study is to investigate diamond-shaped cylinder hydrodynamics and heat transfer for 1 ≤ Re ≤ 70 in a steady flow (no wake oscillation nor vortex shading). For this purpose, numerical simulations of the laminar flow around a cylinder are first performed to establish the drag coefficient and the recirculation length for an apex angle varying in the range α = 33 -120 • . Then, heat transfer simulations are conducted for P r = 0.7 to understand the influence of the apex angle on the heat flux and on the Nusselt number. Finally, the effect of the variation of interfacial vorticity on heat transfer is also investigated.

The paper is organized as follows. Sections 2 and 3 present the governing equations and the numerical procedure, respectively. Section 4 is devoted to the validation of the numerical procedure for both the fluid flow and the transfer by comparison with the circular cylinder case that is well documented in the literature. Section 5 presents and discusses the numerical results in order to improve the modelling of the steady flow and heat transfer from diamond-shaped cylinders.

Governing equations

In this section, the main equations used for this study are presented. The numerical simulation of the flow and the heat transfer is considered for the case of a cylinder with a constant far field velocity 'U '. The cylinder length aspect ratio is considered to be small enough so that the flow is in two dimensions (i.e. a/H << 1). Due to the Reynolds range, the flow regime is laminar. The local velocity vector 'u' and pressure 'p' fields are given by solving numerically the Navier-Stokes equations for an incompressible Newtonian fluid

∇ • u = 0 (1) ρu • ∇u = -∇p + ∇ • τ (2) 
where τ = µ ∇u + ∇ T u is the viscous contribution of the stress tensor, ρ and µ are respectively the fluid density and the dynamic viscosity. Far from the cylinder, the fluid satisfies the condition u → U e x . Note that the use of the Navier-Stokes equations without temporal terms is only possible because the flow remains steady and non oscillatory for present geometries and Reynolds range.

The unsteady advection-diffusion equation is solved for the temperature around the cylinder

∂T ∂t + ∇ • (T u) = D T ∇ 2 T (3) 
with T the local temperature in the flow, D T = λ/(ρC p ) the heat diffusivity coefficient where C p and λ are respectively the heat capacity at constant pressure and the thermal conductivity of the fluid. The use of the unsteady formulation of the enthalpy conservation equation (Eq. 3) was initially done to enable the study of heat transfer in transient condition. But this topic was finally out of the scope of the present work. The heat transfer is investigated varying the Reynolds number of the flow that is calculated as

Re = ρ U L ref µ (4) 
where L ref is the cross length of the cylinder perpendicular to the main flow: for a circular cylinder it corresponds to its diameter L ref = D, for a diamond-shaped cylinder it corresponds to its width L ref = a. The flow around the cylinder is mainly characterized by the corresponding drag coefficient and by the length of the recirculation formed in the cylinder wake. The drag coefficient is calculated, from the calculation of the drag force F d by integrating the pressure and viscous stress on the surface of the cylinder

C D = 1 A p (1/2)ρU 2 ||F d || = 1 A p (1/2)ρU 2 S (-p • n + τ • n)dS (5) 
with n the normal surface unit vector. A p corresponds to the projected surface area based on the product of the cylinder width with its length (D × H or a × H). In present flow conditions, the global resulting force experienced by the column is only the drag force F d , along the e x axis, because the lift force is zero since the inlet velocity is constant and the column's shape is symetric.

In this work, the heat transfer around the cylinder is characterized using the surface averaged Nusselt number as

N u = J λ(T p -T ∞ )/L ref = hL ref λ with J = 1 S S J loc dS (6) 
with J the surface averaged heat flux, J loc = -λ(∂T /∂n) J loc = -λ(∂T /∂n) is the local heat flux at the cylinder surface. S stands for the cylinder surface. T p and T ∞ are respectively the temperature imposed at the solid/gas interface (i.e. the cylinder wall) and the temperature of the flow far from the cylinder. h is the corresponding heat transfer coefficient in W m -2 K -1 .

Numerical procedure

The conservation equations are solved with the finite volume method in 2D with OpenFoam using a double-precision writing format [START_REF] Weller | A tensorial approach to computational continuum mechanics using object-oriented techniques[END_REF]. Navier-Stokes equations are first solved to obtain the steady pressure and velocity fields around the cylinder for a given Reynolds number (Eq. 1-1). Then, using the resulting velocity field, the advection-diffusion equation is solved for P r = ν/D = 0.7 to get the temperature field (Eq. 3).

In order to solve the Navier-Stokes equations, an upwind second order scheme and a centred second order scheme are used for the spatial discretisation of respectively the advective and the diffusive fluxes. The pressure and velocity fields are linked by the SIMPLE algorithm. The convergence of the flow calculation is achieved when the drag coefficient is stable and the residuals are lower than 10 -7 .

In order to solve the enthalpy conservation equation, convective flux are calculated using a TVD second order scheme with a Sweby limiter, while diffusive fluxes are discretized with a centred second order scheme as for the momentum equation. The transient term is then discretized with a second order scheme and the equation is solved with an implicit method. The convergence of the flow calculation is achieved when the Nusselt number stabilizes.

The diamond shape geometry and the corresponding dimension parameters are presented in Fig. 1. The calculation domain is presented in Fig. 2. For both circular and diamond-shaped cylinders, a constant velocity U and a zero normal pressure gradient are imposed at the inlet of the domain. A constant pressure reference p 0 and a zero normal velocity gradient are imposed at the domain outlet. An adherence condition is imposed at the cylinder wall (u = 0). A symmetry boundary condition is set on the main axis. For heat transfer simulation a constant temperature T p is imposed at the walls. A constant temperature T ∞ is set at the inlet, while a zero normal temperature gradient is chosen as the boundary condition for the outlet. The temperature and the velocity are initially set to T = T ∞ and u = U e x in the whole calculation domain.

An example of the grid employed in this work is shown in Fig. 3. Around the cylinder a body fitted rectangular mesh is used. In order to limit the boundary effects, the domain size is chosen to be R ∞ /R = 60 for the circular cylinder case and L A /a = L B /a = 60 with L D /a ≥ 60 for the diamond shape case. This limit is known to be high enough for limiting the influence of the domain border for the simulation of 3D spherical objects for 1 ≤ Re ≤ 300 [START_REF] Magnaudet | Accelerated flows past a rigid sphere or a spherical bubble. part 1: Steady straining flow[END_REF]. This value has been also employed by Rashidi et al. [START_REF] Rashidi | Numerical study of flow around and through a porous diamond cylinder in different apex angles[END_REF] for 2D simulations of a diamond-shaped cylinder for 2 ≤ Re ≤ 46. For the circular cylinder, the number of cells along the wall is N θ = 100. Such value is found to be convenient for 2D simulation of the flow around a circular cylinder [START_REF] Kalita | A transformation-free hoc scheme for incompressible viscous flows past an impulsively started circular cylinder[END_REF] or around a spherical object [START_REF] Dani | Direct Numerical Simulation of Mass Transfer from Spherical Bubbles: the Effect of Interface Contamination at Low Reynolds Numbers[END_REF][START_REF] Huang | Effect of interface contamination on particle-bubble collision[END_REF]. For the diamond shape, two construction lines are added and attached to the front and back apex angle in order to control the cells deformation near the wall.

In the present simulations, since the Reynolds and the Peclet number P e = P r × Re remain low, the dynamic and thermal boundary layers around the object are thick. Thus the smallest size of the cell at the cylinder surface is not fixed by a boundary layer constraint but by respecting a cell aspect ratio between 2 and 4 and checking the grid refinement independence. The detail on computational domain and grid sizes for diamond-shaped cylinder case is given Table 1. Total cell numbers are indicated in the last column. In addition, with a Prandtl number of P r = 0.7, the thermal boundary layer δ T is expected to be weakly larger than the dynamic boundary layer of the flow around the cylinder δ ν . As a result, in contrast with the cases where P r >> 1, the same grid which is optimized for the flow simulation can be used for the simulation of heat transfer.

The result independence on the grid sizes has been tested for each cases and the data obtained for α = 33 and 90 • with respectively Re = 100 and 40 are presented here. Table 2 presents the values of the drag coefficient and the Nusselt number for four different meshes A, B, C, D. In this table, the relative difference is also reported. When decreasing the cell size, the results are found to converge with a relative difference lower than 1.5% compared to grid B. The grid used for the following simulations is thus chosen as grid B. As shown in Table 2 it is shown that a more refined mesh (ex: mesh (A)) does not change the resulting convergence.

Preliminary validation with the circular cylinder geometry

In this section, some preliminary validations for the resolution of both the Navier-Stokes equations and the temperature equation are reported for the case of a circular cylinder.

Vorticity and drag coefficient

In order to get the validation of the resolution of the Navier-Stokes equations, the vorticity at the circular cylinder surface has been compared to the one reported by Dennis & Chang [START_REF] Dennis | Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100[END_REF]. In a 2D flow, the vorticity vector is simply has only one component on the e z axis as following

Ω = (∇ × u) • e z = ∂u y ∂x - ∂u x ∂y (7) 
For Re = 5, 7, 10, 20 and 40, the distribution of the vorticity along the cylinder surface is plotted in Fig. 4 against its angular position θ (for the definition of the angular position see Fig. 1). Since the vorticity corresponds to the fluid particle rotation intensity, when no recirculation occurs for Re ≤ 7, only positive values are found. In agreement with Dennis & Chang [START_REF] Dennis | Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100[END_REF], for Re > 7, the vorticity can be negative for θ > 110 • because of the formation of a recirculation behind the circular cylinder that appears around Re crit ≈ 6.24. Fig. 4 clearly shows that present numerical results are in very good agreement with the work of Dennis & Chang [START_REF] Dennis | Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100[END_REF]. Then, to check the validity of the procedure used for the calculation of the drag coefficient, the results are compared with previous numerical works. The comparison is presented in Table 3. The difference between the drag coefficients obtained in this work and the drag coefficients found by Dennis & Chang [START_REF] Dennis | Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100[END_REF], Fornberg [START_REF] Fornberg | A numerical study of steady viscous flow past a circular cylinder[END_REF] and Kalita & Ray [START_REF] Kalita | A transformation-free hoc scheme for incompressible viscous flows past an impulsively started circular cylinder[END_REF] is lower than 2%. In addition, for Re < 10, a very good agreement is found with the correlation proposed by Sheard et al. [START_REF] Sheard | Computations of the drag coefficients for lowreynolds-number flow past rings[END_REF] C D = 11.09 Re -0.61 [START_REF] De Pra | Pillar-structured microchannels for on-chip liquid chromatography: Evaluation of the permeability and separation performance[END_REF] As shown in Tab. 3, where the numerical results obtained by Sheard et al. are also reported, for Re = 1, the relative difference on the drag with present numerical simulation is only of 4%. As a result, the limitation of the transverse size of the calculation domain to R ∞ /R = L A /a = L B /a = 60 seems to be enough to neglect the effect of the lateral boundary on numerical results for Re ≥ 1. This work remains also in agreement with the measurements performed by Tritton [START_REF] Tritton | Experiments on the flow past a circular cylinder at low reynolds numbers[END_REF].

Heat transfer

An example of the velocity field and the corresponding temperature field for the heat transfer around a circular cylinder is presented in Fig. 5a for Re = 1 and Re = 40. As expected, at low Reynolds numbers, the thermal boundary remains thick and quite homogeneous around the cylinder. At higher Reynolds number, due to the enhancement of the advection the thermal boundary layer is much thinner around the cylinder and especially at the front part. Because of the formation of the recirculation behind the cylinder, heat is trapped in the wake so that most of the heat transfer takes place on the front part of the cylinder where the temperature surface normal gradients are the highest. For the circular cylinder case, Nusselt numbers obtained from numerical simulations and from some previous experimental works are reported in Table 3. Present results verify the correlation proposed by Collis & Williams [START_REF] Collis | Two-dimensional convection from heated wires at low reynolds number[END_REF] which is valid for P r = 0.7 and 0.02 < Re < 44

N u = 0.24 + 0.56 Re 0.45 (9) 
The maximal difference with this correlation is lower than 2.3%. Nusselt values given by Hilpert [START_REF] Hilpert | Warmeabgage von geheizten drahten und rohren im luftstrom[END_REF] are found to be systematically 4 -9% higher. While the difference with predicted values found by Mc Adams [START_REF] Mcadams | Heat transmission[END_REF] is larger than 3 -8% for Re < 30 and lower than 2% for Re ≥ 30. The analysis of the variation of the vorticity surface distribution, of the drag coefficient and of the Nusselt number for different Reynolds number for the circular cylinder geometry has enabled us to validate the numerical simulation procedure of the flow and of the heat transfer around a cylinder.

Results and discussion

This section presents and discuss the results obtained for the flow and the heat transfer for the case of a diamond-shaped cylinder with an apex angle in the range 33 ≤ α ≤ 120 • for a Reynolds number range of 1 ≤ Re ≤ 70.

Wake length, vorticity and drag coefficient

Some examples of velocity fields and streamlines for the case of the flow around a diamondshaped cylinder are given in Fig. 5b-e for α = 33 -60 -90 -120 • for Re = 1 and Re = 40. As reported in the top part of those figures, when the Reynolds increases, as for the circular shape, a recirculation can appear in the wake of the pillar. An estimation of the critical Reynolds number Re crit corresponding to the onset of the recirculation is given in Table 4. It can be noticed that the critical Reynolds number for a diamond shape with α = 90 • (inclined square, Re crit = 7.4 ) is very close to the one of the circular cylinder case (Re crit = 6.24). Then if the apex angle decreases, for α < 90 • , the recirculation onset can be significantly postponed. For example, one needs to reach Re crit = 55 to begin to get a recirculation for α = 30 • . On the contrary if the apex angle increases, for α > 90 • , the recirculation appears at lower Reynolds numbers than with a circular cylinder (i.e. Re crit (α > 90 • ) < Re crit (circular cylinder)).

The recirculation wake length has been plotted in Fig. 6 as a function of the Reynolds number (symbols). It is defined in this work as the distance between the back extremity of the diamond shape till the position where the sign of the velocity component along the x-axis is changed (see Fig. 1). As shown in Fig. 6, similarly to the circular cylinder case, the variation of the dimensionless wake length for a diamond-shaped cylinder evolves linearly with the Reynolds number following relation here after, for Re > Re crit

L (a/2) = A Re + B (10) 
with the constants A and B given in Table 4. The values obtained for a circular cylinder from numerical simulations are also reported in Table 4. For a circular cylinder, as reported in Fig. 6, the maximal difference between Eq. 10 and numerical simulations of Kalita & Ray [START_REF] Kalita | A transformation-free hoc scheme for incompressible viscous flows past an impulsively started circular cylinder[END_REF] is about 5 -6%. Fig. 6 enables to show that for a given Reynolds number the dimensionless wake length increases with the apex angle. Thus, one can conclude that the decrease of the apex angle can prevent the formation of a recirculation behind diamond-shaped cylinder and decrease its relative length (L/(a/2)). This behaviour is found to be in agreement with previous results of Rashidi et al. [START_REF] Rashidi | Numerical study of flow around and through a porous diamond cylinder in different apex angles[END_REF] for the case of a porous diamond-shaped cylinder. In addition, it is interesting to note that the delay of the onset of the recirculation formation has also the effect to postpone the critical Reynolds number corresponding to the onset of the unsteady oscillatory flow. For a circular cylinder it is well known that the flow becomes unsteady for a Reynolds number between 40 and 50. For deformed cylinder where the length is longer in the streamwise direction than in the transverse direction, it have been already shown that the deformation postpone significantly the onset of the oscillatory flow. For example for a deformed elliptic cylinder with an aspect ratio of b/a = 2 corresponding here to an apex angle of α ≈ 50 • with the diamond-shaped geometry, the critical Reynolds number for the onset of the unsteady flow is near to 75 [START_REF] Leontini | Stability analysis of the elliptic cylinder wake[END_REF][START_REF] Jackson | A finite-element study of the onset of vortex shedding in flow past variously shaped bodies[END_REF]. Even if the stability analysis of a flow around a diamond-shaped cylinder is out of the scope of the present work, some preliminary numerical tests with transient simulations have confirmed that the oscillatory flow regime onset Reynlods number is larger than the Reynolds range investigated in this work. The corresponding data are reported in the last column of Table 4.

In order to understand the formation of the recirculation and to compare with the circular cylinder case, for Re = 1, 10, 40 and α = 33, 60, 90, 120 • , the vorticity profiles have been plot in Fig. 7 as a function of the angular position θ. Globally, for all the cases one can observe that the vorticity distribution over a diamond shape is less homogeneous than on a circular shape and present up to three local maxima at the two apex angles (θ = 0 and θ = 180 • ) and near the equator angle. This last result induces that the separation angle (where the tangential velocity change of sign along the cylinder surface) is almost always close to θ ≈ 90 • for diamond shape while it depends on the Reynolds number for circular shape. For Re = 1, Fig. 7a shows that, as for the circular shape, the vorticity on diamond shape remains positive because no recirculation occurs. In Fig. 7b andc, because of the formation of the recirculation the vorticity of the diamond shape is negative at the back ( for θ > 90 • ) at Re = 10 for α = 90 -120 • and at Re = 40 for α = 60 -90 -120 • .

In Fig. 8, the evolution of the maximal vorticity intensity obtained for the peak near the equator (θ ≈ 90 • ) is plotted as a function of Re. As shown in this figure, it is interesting to notice that the variation of this value is found to increase with the Reynolds number and can be described by the following power law

Ω max = A Re n (11) 
with 0.8 < A < 3 and 0.4 < n < 0.5 as reported in Table 5.

The drag coefficient of a diamond-shaped cylinder is now compared to previous works. The drag coefficient of a diamond-shaped cylinder with α = 90 • (square cylinder inclined at 45 • ) is first plotted as a function of the Reynolds number in Fig. 9. In this figure, the results obtained by Yoon et al. [START_REF] Yoon | Flow past a square cylinder with an angle of incidence[END_REF] are also reported (the sum of the pressure and viscous contribution presented in Fig. 19 in the article). As reported in this figure, numerical results are in good agreement with the data reported by Yoon et al. [START_REF] Yoon | Flow past a square cylinder with an angle of incidence[END_REF]. In this figure, the results obtained for the circular cylinder case is also plotted. This comparison shows us that the drag coefficient of a 90 • apex angle diamond shaped cylinder is in fact very close to the one of a circular cylinder meaning that those two geometries experience a similar drag force intensity.

Secondly, the drag coefficient of all the diamond-shaped cylinders considered and of the circular cylinder are plotted in Fig. 10 for 1 ≤ Re ≤ 10 (a) and 10 ≤ Re ≤ 70 (b). Globally, for Reynolds number lower than 10, one can observe that the drag coefficients obtained for a large range of apex angle (33 ≤ α ≤ 120) remain close to the one expected for a circular cylinder. As shown in Fig. 10a the drag differs from less than 10% from the circular cylinder drag law for Re < 10. Therefore, for that Reynolds number range, the use of a reference length corresponding to the projected area of the cylinder perpendicularly to the main flow direction (L ref = a) enables almost to apply a quasi similitude with the circular cylinder case.

A detailed analysis of present results shows that at low Reynolds number (Re = O(1)) the decrease of the apex angle still generates an increase of the drag coefficient. For a given cylinder width 'a', this behaviour is due to the enhancement of the friction since when the apex angle decreases the length 'b' and thus the total surface of the cylinder are larger, increasing the total wall friction.

Then, for Reynolds numbers larger than 10 and α = 120 • (Fig. 10b) the drag is found to be higher than the circular cylinder drag law. While for Reynolds numbers larger than 20 and α < 90, the drag is systematically lower than the circular cylinder drag law and can be reduced of more than 10%. Since for moderate Reynolds number, it is known that the drag is very sensitive to the development of the recirculation in the cylinder wake, this behaviour may results from the early (resp. late) onset of the recirculation behind diamond-shaped cylinder for α > 90 (resp. α < 90 ), as reported by Fig. 6 or Table 4.

The present results can be described by the following correlation

C D = A Re (1 + B Re n ) ( 12 
)
with A, B and n given in Table 6. The format of this relation is chosen as the product of the drag behaviour at low Reynolds numbers (in a Stokes flow C D ∝ 1/Re) and a correction (in the parenthesis) that takes into account the effect of the recirculation development on the drag. Eq. 12 is able to reproduce numerical results with less than 2.5% of difference. The validity of such a relation and constant values are restricted to the present investigated Reynolds range. For lower Reynolds number (Re << 1) the constant 'A' may need to be adjusted.

Heat transfer

Some examples of the temperature field for the case of the steady flow around a diamondshaped cylinder are presented in the bottom part of Fig. 5b-e for α = 33, 60, 90, 120 • and Re = 1, 40. As for the circular cylinder case, for Re = 1, the thermal boundary layer is thick and almost symmetric and weakly smaller at the front part than at the rear part of the cylinder because of advection effect. Then at a higher Reynolds number as Re = 40, this thickness difference between the front and rear boundary layer increases and recirculation can affect heat transport in the cylinder wake.

The corresponding local heat flux distributions over the cylinder surface are presented in Fig. 11 as a function of the angular position for Re = 1, 10, 40. As shown in this figure the surface distribution of the heat flux around a diamond-shaped cylinder is much less homogeneous than for a circular cylinder. In contrast with the circular cylinder case, the diamond-shaped cylinder case exhibits three local heat flux maxima at the front and the back apex angle (θ = 0, 180 • ) and at the equator angle (θ ≈ 90 • ). Such a heat flux distribution with more than one local maxima has been also reported in the literature by Dhiman et al. [START_REF] Dhiman | Flow and heat transfer across a confined square cylinder in the steady flow regime: Effect of peclet number[END_REF], Sahu et al. [START_REF] Sahu | Effects of reynolds and prandtl numbers on heat transfer from a square cylinder in the unsteady flow regime[END_REF], Dhinakaran & Ponmozhi [START_REF] Dhinakaran | Heat transfer from a permeable square cylinder to a flowing fluid[END_REF] and Morenko et al. [START_REF] Morenko | Cross-flow and heat transfer of porous permeable cylinder[END_REF] for the case of heat transfer around a solid or porous square cylinder. Globally, in Fig. 11, for a given Reynolds number a decrease of the apex angle supplies lower local heat flux. For Re = 1, a modification of α changes both the heat flux at the front and at rear part of the cylinder. While for larger Reynolds number it can be noticed that the local heat flux is mainly changed at the front part of the cylinder (0 ≤ θ ≤ 90 • ). Therefore, for large Reynolds number, the apex angle affected primarily the heat flux at the front of the cylinder.

The Nusselt numbers for diamond-shaped and circular cylinders are plotted as a function of the Reynolds number in Fig. 12. First, for the particular case of the diamond shape with α = 90 • (inclined square cylinder), similarly to the drag coefficient, the Nusselt number is found to be close to the circular cylinder one. Moreover as reported in Fig. 12 and Tab. 7, present results are found to be in good agreement with Nusselt values obtained previously by Rashidi et al. [START_REF] Rashidi | Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder[END_REF] or Vijaybabu et al. [START_REF] Vijaybabu | LBM simulation of unsteady flow and heat transfer from a diamond-shaped porous cylinder[END_REF] for data with a low porosity (Da = 10 -6 ) corresponding to a solid cylinder with α = 90 • .

Secondly, for a given Reynolds number, in agreement with local heat flux variations, one can observe that a decrease of the apex angle induces a reduction of the Nusselt number. Such behaviour has been also reported by Li et al. [START_REF] Li | Numerical simulation of flow field and heat transfer of streamlined cylinders in cross flow[END_REF] for the case of heat transfer from an elliptical or lenticular cylinder at high Reynolds number. As shown in the temperature fields presented previously in Fig. 5, for a given Reynolds number, this behaviour is due to an increase of the mean thickness of the thermal boundary layer δ T when the apex angle decreases. This is clearly shown at the equator location for Re = 1. Indeed, at a first order the Nusselt number corresponds to the ratio between the cylinder width and the mean thickness of the thermal boundary layer so that N u ≈ a/δ T ∝ Re 1/2 . So if the thermal boundary layer is changed due to cylinder shape modifications, the interfacial normal temperature gradient and thus heat flux and Nusselt number are affected. Globally, the evolution of the Nusselt number is found to be well represented by the following relation, for P r = 0.7

N u = A + B Re 1/2 (13) 
where the constants A and B are given in Table 8. The format of this relation is chosen knowing that at large Reynolds number (potential flow) the Nusselt number obeys N u ∝ Re 1/2 . Equation 13 enables to describe numerical results with an accuracy of 5% for Re = 1 and lower than 2% for Re > 1. It is interesting to note that contrary to the case of heat transfer around 3D objects the value of the constant A do not correspond to the analytical solution of the pure diffusion problem. Indeed, in 2D, one can show easily that there is not a universal analytical solution for the Nusselt number (see Bird et al. [42] p. 440 chap. 14).

To better understand the discrepancies observed on Nusselt number when varying the apex angle, a first attempted was to change the reference length used to calculate Re and Nu since, contrary to a circular cylinder, a diamond shape includes two length parameters (a and b). But just modifying the reference length would simply shift the Nu(Re) curves since both would be corrected by the same length ratio (Eq. 4 and 6). Therefore, the use of an other flow reference velocity in the calculation of the Reynolds number have been investigated. In a recent work, Colombet et al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] have shown that to describe transfers inside or around a spherical bubble the relevant velocity scale should be the maximal velocity at the gas/liquid interface (slip condition). In addition, for a spherical bubble, Legendre [START_REF] Legendre | On the relation between the drag and the vorticity produced on a clean bubble[END_REF] has demonstrated that the maximal velocity at a bubble surface is directly linked to the maximal interfacial vorticity as U max = Ω max R/2. As a result, by choosing U max as the reference velocity for Reynolds calculation, Colombet et al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] have in a sense calculated the reference velocity from the maximal vorticity magnitude at a bubble surface. Consequently, applying a similar approach, the following effective Reynolds number have been proposed

Re ′ = U ′ U Re = U ′ a ν (14) 
where the velocity scale U ′ = Ω max (a/2) is estimated from the maximal vorticity magnitude near the diamond shape equator (Fig. 8). The evolution of the Nusselt number as a function of the Reynolds number Re ′ is plotted in Fig. 13. The Nusselt number for a circular cylinder is also reported. As shown in this figure, for the diamond shape, the Nusselt number values seem to collapse on the master curve given by

N u = 0.56 Re ′ 0.28 (15) 
This relation is able to predict present results with a maximal difference of 8% for Re = 1 and less than 3% for Re > 1. In the same time, it can be noticed that this relation does not match the Nusselt evolution of a circular cylinder. As a result, using the vorticity magnitude at the cylinder wall can allow to apply a similitude only between diamond-shaped cylinder of different aspect ratios (or apex angle). Some additional tests have been performed using the maximal vorticity at the front apex angle and the average vorticity on the cylinder surface. But the best results are obtained when the reference velocity is calculated from the maximum vorticity near the equator. Such behaviour tends to suggest that the vorticity intensity plays a key role in the transport of heat at the cylinder surface.

Conclusions

The flow and heat transfer around a single diamond-shaped cylinder have been studied for a laminar incompressible flow at moderate Reynolds number (1 ≤ Re ≤ 70) and a Prandtl number of P r = 0.7 on a large range of apex angle 33 ≤ α ≤ 120 • . For Re ≤ 10, the drag coefficient of a diamond shape is found to remain close to the one of a circular cylinder. For Re > 10, the drag is systematically lower (resp. higher) with α < 90 • (resp. α > 90 • ) than the circular cylinder one. In agreement with the previous work of Rashidi et al. [START_REF] Rashidi | Numerical study of flow around and through a porous diamond cylinder in different apex angles[END_REF], it is also observed that the decrease of the apex angle increases drastically the critical Reynolds number corresponding to the onset of the wake recirculation. As for a circular cylinder, the growth of the recirculation remains proportional to the Reynolds number.

Concerning heat transfer, in agreement with previous works on heat transfer from a square cylinder, the distribution of the local heat flux is also found to present more than one local maximum and a strong variation near the equator angle. The corresponding Nusselt number versus the conventional Reynolds number is found to decrease if the apex angle is reduced. For the whole Reynolds range the Nusselt number but also the drag coefficient of a diamond shape with α = 90 • are almost matching the one of a circular cylinder. New correlations are proposed to describe the drag coefficient, the recirculation length and the Nusselt number variation.

In a last part, it is shown that a similitude between diamond-shaped cylinder of different apex angle (90 ≤ θ ≤ 120 • ) is possible if the reference velocity for the calculation of the flow Reynolds number is based on the maximal vorticity near the equator angle of the cylinder. In this way, the Nusselt numbers collapse on a master curve that depends only on this 'effective' Reynolds number. The previous work of Colombet et al. [START_REF] Colombet | Mass or heat transfer inside a spherical gas bubble at low to moderate reynolds number[END_REF] and this work may indicate that the relevant velocity scale to describe convection near the interface where transfer occurs is not the far field velocity but rather the velocity scale induced by the vorticity. This result opens new insight in the study and the description of heat or mass transfers from 2D or 3D objects. As a perspective, it would be interesting to analyse Nusselt number variations against this Reynolds number formulation for other geometries and different Prandtl numbers. Re Ω max (a/2)/U 

Nomenclature

  Roman symbols adiamond-shaped cylinder width m b diamond-shaped cylinder length, m C p heat capacity at constant pressure, J kg-1 K -1 C D drag coefficient D T heat thermal diffusivity (D T = λ/(ρC p )), m 2 s -1 h heat transfer coefficient, W m -2 K -1 H cylinder length,m J surface averaged heat flux, W m -2 J Loc local average heat flux, W m -2 L ref reference length (D or a), m N u Nusselt number based on the cylinder width (D or a) p local pressure, Pa P r Prandtl number, P r = ν/D T Re Reynolds number based on the cylinder width (D or a) and far field velocity U Re ′ Reynolds number based on the cylinder width (D or a) and velocity scale U ′ Re crit Reynolds number corresponding to the onset on the recirculation formation Re ′ crit Estimation of the Reynolds number corresponding to an unsteady oscillatory flow T local temperature, K T p temperature imposed at wall, K T ∞ inlet (or far field) temperature, K t time, s u local velocity, m s -1 U inlet (or far field) velocity, m s -1 U ′ reference velocity based on the maximal vorticity magnitude (U ′ = Ω max a/2), m s -1 Greek symbols α apex angle of the diamond-shaped cylinder, • δ T mean thickness of the thermal boundary layer around the cylinder, m λ thermal conductivity of phase k, W m -1 K -1 µ dynamic viscosity, Pa s ν kinematic viscosity (ν = µ/ρ), m 2 s -1 ω vorticity, s -1 Ω max maximal vorticity magnitude near the equator angle, s -1 ρ density, kg m -3 θ angular position, • Mathematical symbol || -|| vector magnitude α [ • ] grid N b.L A /sf N b.L B /sf N b.L C /sf N b.L D /sf L D /a Total N

Figure 1 :Figure 2 :

 12 Figure 1: Diamond-shaped cylinder geometry: 'a' cylinder section width, 'b' cylinder section length, α apex angle value, θ angular position, 'L' wake length definition (α = 2×arctan(a/b)).

Figure 3 :Figure 4 :

 34 Figure 3: Zoom around the cylinder mesh for the (a) circular cylinder and the diamond-shaped cylinder with the mesh B for (b) α = 33 • , (c) α = 60 • and (d) α = 90 • .

Figure 5 :

 5 Figure 5: Velocity field with streamlines (top part) and temperature field (bottom part) for the steady state flow and heat transfer around a cylinder for (a) a circular cylinder and a diamond-shaped cylinder with (b) α = 90 • , (c) α = 60 • , (d) α = 33 • and (e) α = 120 • .

Figure 6 :Figure 7 :

 67 Figure 6: Dimensionless wake length as a function of the Reynolds number Re: diamond-shaped cylinder with α= • 30 • , • 33 • , • 35 • , • 40 • , • 50 • , • 60 • , • 90 • , + 120 • ; --Eq. 10; circular cylinder from this work and according to Dennis & Chang[START_REF] Dennis | Numerical solutions for steady flow past a circular cylinder at reynolds numbers up to 100[END_REF].

Figure 8 :Figure 9 :

 89 Figure 8: Maximal vorticity magnitude near the equator angle as a function of the Reynolds number : diamond-shaped cylinder with α= • 33 • , • 40 • , • 50 • , • 60 • , • 90 • , + 120 • ;circular cylinder (for this case the maximal vorticity is not systemically at the equator, see Fig.4); --Eq. 11.
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 10111213 Figure 10: Drag coefficient as a function of the Reynolds number for (a) 1 ≤ Re ≤ 10 and (b) 10 ≤ Re ≤ 70: diamond-shaped cylinder with α = • 33 • , • 40 • , • 50 • , • 60 • , • 90 • , + 120 • ; lines : Eq. 12; -circular cylinder and -.-±10% of circular cylinder drag coefficient.

Table 1 :

 1 Computational domain and grid dimensions for the case of the diamond-shaped cylinder, grid B is the mesh used for the main simulations (segments A B C D, L A /a = L B /a = 60, sf= scale factor between the largest and smallest cell length).

	b

Table 2 :

 2 Tests of grid refinement independence on drag coefficient and Nusselt number; ER is the relative difference between the obtained value with the mesh used for simulations (mesh B).

	α	Re crit	A	B	Re ′ crit
	30	55.0 0.0541 -2.9815	-
	33	46.6 0.0604 -2.8187 130(120)
	35	41.8 0.0665 -2.7808	-
	40	33.2 0.0788 -2.6168	-
	50	23.0 0.1031 -2.3711	75(60)
	60	17.4 0.1154 -2.0051	-
	90	7.4	0.1824 -1.3598	50(40)
	120	3-4	0.2353 -0.7598	-
	circular cylinder 6.24 0.1324 -0.8265	45(40)

Table 4 :

 4 Estimation of the critical Reynolds number Re crit corresponding to the onset of the recirculation behind the cylinder and constants used in Eq. 10 for the prediction of this recirculation wake length, Re ′ crit Reynolds number corresponding to an unsteady oscillatory flow: the first value corresponds to the observation of oscillations on the lift coefficient and the value in parenthesis for which the flow is found to remain steady.

	α	A	n
	33	0.829 0.453
	40	1.080 0.435
	50	1.483 0.427
	60	1.941 0.416
	90	2.919 0.403
	120	2.971 0.431
	circular cylinder 0.950 0.490

Table 5 :

 5 Constants of Eq. 11 for the estimation of maximal vorticity intensity.

	α	A	B	n
	30 6.6800 0.9482 0.5702
	33 6.7648 0.8763 0.5827
	35 6.7010 0.8721 0.5872
	40 6.5646 0.8443 0.6002
	50 6.9266 0.6907 0.6397
	60 7.1043 0.6089 0.6717
	90 6.9857 0.5651 0.7201
	120 6.8338 0.5886 0.7392

Table 6 :

 6 Constants of Eq. 12 for the estimation of the drag coefficient.

	Re (a)	(b)	(c)
	5 1.459 1.49038 (2.1%) 1.49696 (2.6%)
	10 1.888 1.85577 (1.7%) 1.91962 (1.7%)
	20 2.460 2.47115 (0.4%) 2.49371 (1.4%)
	30 2.880 2.91346 (1.1%) 2.92318 (1.5%)
	40 3.236 3.25962 (0.7%) 3.28956 (1.7%)

Table 7 :

 7 Nusselt numbers comparison for the case α = 90 • : (a) this work, (b) Rashidi et al.[START_REF] Rashidi | Numerical simulation of forced convective heat transfer past a square diamond-shaped porous cylinder[END_REF] (relative difference), (c) Vijaybabu et al.[START_REF] Vijaybabu | LBM simulation of unsteady flow and heat transfer from a diamond-shaped porous cylinder[END_REF] (relative difference).

	α	A	B
	33 0.179	0.309
	40 0.209	0.340
	50 0.264	0.371
	60 0.319	0.397
	90 0.456	0.445
	120 0.5638 0.4626

Table 8 :

 8 Constants for Nusselt number estimation from Eq. 13.
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