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Abstract

Hydrodynamics and heat transfer around a diamond-shaped cylinder in a stationary flow have

been investigated using direct numerical simulation. Simulations were carried out for a steady

flow with a Reynolds numbers ranging from 1 to 70 and for a Prandtl number corresponding to a

gas (Pr = 0.7). The study focuses on the influence of the diamond apex angle α (33 ≤ α ≤ 120◦)

on the evolution of drag, wake length and Nusselt number. A comparison with the case of a

circular cylinder is performed. It is shown that the drag coefficient of a diamond-shaped cylinder

remains very close to the one of a circular cylinder (±10%) for Re < 10 and that it is reduced

by decreasing the apex angle for Re > 10. In the same time, compared to the circular cylinder

case, the reduction of the apex angle postpones significantly the Reynolds corresponding to the

wake recirculation onset. When the Reynolds reference velocity is, as often, taken as the far field

velocity, the corresponding Nusselt numbers are found to decrease with the apex angle α. However,

it is found that when the reference velocity is based on the maximal vorticity near the equator, the

Nusselt number of diamond-shaped cylinders seems to collapse on a single master curve. This may

indicate that the relevant velocity scale to describe Nusselt variation, and thus the heat transfer, is

dependant on the interfacial vorticity intensity rather than on the far field velocity.
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1. Introduction

Arrays of diamond-shaped cylinders are often employed to design compact heat exchanger.

Heat transfer and pressure drop were characterised by Chyu et al. [1], Tanda [2] or Jeng [3]

for in-line or staggered matrix of square or diamond-shaped cylinders. Chyu et al. [1] found

experimentally that staggered matrix of square cylinder arrays deliver higher transfer rate than

diamond-shaped cylinder arrays followed by circular cylinder arrays. The transfer was studied us-

ing a naphthalen sublimation technique. Tanda [2] have quantified the transfer and the temperature

distribution in a flow through different cylinder arrays using liquid crystal thermography. Accord-

ing to the authors, for a given mass flow rate, a diamond-shaped cylinder array is up to 4.4 more

efficient than an empty channel. The heat transfer efficiency was also investigated experimentally

by Jeng [3] for the case of an in-line array of diamond-shaped cylinders using a transient method

for measuring the heat transfer coefficient. The authors have concluded that for a given pumping

power it is possible to found an optimal distance between cylinders to maximize heat transfer.

One can notice that square cylinders matrix geometry was also employed to investigate accurately

roughness effect on laminar flow [4].

In the literature, it is important to emphasize that diamond-shaped cylinder arrays are usually

rotated square-shaped cylinders (i.e. diamond shape with an apex angle of α = 90◦). The effect of

varying the apex angle (or cylinder section aspect ratio) is not systematically performed.

The design of a heat exchanger with such a geometry in a staggered arrangement was used in

space industry for electronic cooling applications. The pressure drop coefficient in such geometries

were characterised experimentally and numerically by Sparrow & Grannis [5] for an apex angle of

45 and 90◦ with a Reynolds number range of 20 < Re < 2700 in order to give correlations to assist

sizing of an air/air heat exchanger for a space shuttle. Later, an array of diamond-shaped cylinders

was also investigated by Vanapalli et al. [6] for cryocooling of the electronic employed in satellite.

For a laminar flow at moderate Reynolds numbers (50 ≤ Re ≤ 500) and an apex angle of α =
37.15◦, Vanapalli et al. [6] found experimentally that a diamond-shaped cylinder matrix generates

higher pressure drop than circular, square, elliptical or sinus shape. In microfluidics, the diamond-

shaped cylinder arrays were also investigated for liquid phase chromatography applications [7, 8].

For a turbulent flow regime, to better understand the control of multiple jets formation device,

the jets formation with a specific flapping instability has been studied at the outlet of a liquid flow

discharging directly into air past an array of diamond-shaped cylinders [9, 10]. For such a flow,

funded on numerical simulation and experimental measurements, Hirasawa et al. [11] proposed

correlations to describe the pressure drop and the heat transfer in an array of diamond-shaped

cylinders with an apex angle of α = 30◦. At last, porous diamond-shaped cylinders had a particular

interest for biological filtering processes [12, 13, 14, 15]. At moderate Reynolds number,Rashidi

et al. [12] and Vijaybabu et al. [15] have characterised heat transfer and Nusselt number for the

flow around a solid diamond-shaped cylinder of apex angle α = 90◦. The influence of the apex

angle on the flow around a porous diamond-shaped cylinder was studied by Rashidi et al. [13]. As

a result, the knowledge of the flow and heat transfer around a single diamond-shaped cylinder may

be benefit for various applications.

While the literature on single circular or square cylinder geometry is large (see for example

[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28]), very few studies deal with the flow and/or the

mass transfer around a single diamond-shaped cylinder. Yoon et al. [29] performed a numerical

study to understand the key parameters for the description of a laminar flow around an inclined
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single diamond-shaped cylinder having an apex angle of α = 90◦ with different angle of incidence

(Re ≤ 150). In this article, the influence of the incident angle on the flow pattern, the drag

and lift, the angle of separation and the Strouhal number (linked to vortex shading frequency

in the cylinder wake) is analysed. The flow around a single diamond-shaped cylinder confined

in a channel has been studied by Djeddi et al. [30] using direct numerical simulation for low

and moderate Reynolds numbers (Re < 200). In this work, the Strouhal number variation was

characterized against the cylinder aspect ratio and a blockage coefficient. Numerical simulation

of the flow around a square and diamond-shaped cylinder with an apex angle of 90◦ for larger

Reynolds number (Re = 250 − 1000) have been presented by Dalton & Zheng [31]. The authors

found that for such Reynolds number range, rounding the corner of square or diamond-shaped

cylinders affected significantly the lift and drag coefficients. The flow and the heat transfer through

and around a porous diamond-shaped cylinder in a laminar flow has been investigated by Rashidi

et al. [12, 13]. In these works, it is shown that the variation of the apex angle and cylinder internal

porosity influenced the drag and the critical Reynolds number corresponding to wake recirculation

onset. A numerical study of heat transfer in a cross flow for streamlined cylinders was performed

by Li et al. [32]. The cylinders shapes were elliptical and lenticular with minor-to-major axis ratios

of 0.3, 0.5 and 0.8. The authors results suggest that for the Reynolds range 500 ≤ Re ≤ 104, the

drag coefficient of tubes could be reduced by 30-40 % with just 15-35 % losses on the averaged

Nusselt number compared with the circular cylinder case.

Concerning experimental data available in the literature, the measurements of the drag coef-

ficients of various single cylinders with different cross sectional shapes published by Delany &

Sorensen [33] can be mentioned. The drag coefficients were obtained for cylinders of elliptic,

rectangular, diamond or triangle shapes for various aspect ratio 0.5, 1, 2 (α = 53, 90, 126◦) and

corners radius (smoothed corners) at large Reynolds numbers (1× 104 ≤ Re ≤ 2× 106).

To authors knowledge, even if there is already different applications employing such a geom-

etry, the literature on the analysis of the flow and heat transfer around a single diamond-shaped

cylinder remains very limited. The objective of the present study is to investigate diamond-shaped

cylinder hydrodynamics and heat transfer for 1 ≤ Re ≤ 70 in a steady flow (no wake oscillation

nor vortex shading). For this purpose, numerical simulations of the laminar flow around a cylinder

are first performed to establish the drag coefficient and the recirculation length for an apex angle

varying in the range α = 33 − 120◦. Then, heat transfer simulations are conducted for Pr = 0.7
to understand the influence of the apex angle on the heat flux and on the Nusselt number. Finally,

the effect of the variation of interfacial vorticity on heat transfer is also investigated.

The paper is organized as follows. Sections 2 and 3 present the governing equations and the

numerical procedure, respectively. Section 4 is devoted to the validation of the numerical procedure

for both the fluid flow and the transfer by comparison with the circular cylinder case that is well

documented in the literature. Section 5 presents and discusses the numerical results in order to

improve the modelling of the steady flow and heat transfer from diamond-shaped cylinders.

2. Governing equations

In this section, the main equations used for this study are presented. The numerical simulation

of the flow and the heat transfer is considered for the case of a cylinder with a constant far field

velocity ’U ’. The cylinder length aspect ratio is considered to be small enough so that the flow is

in two dimensions (i.e. a/H << 1). Due to the Reynolds range, the flow regime is laminar. The
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local velocity vector ’u’ and pressure ’p’ fields are given by solving numerically the Navier-Stokes

equations for an incompressible Newtonian fluid

∇ · u = 0 (1)

ρu · ∇u = −∇p+∇ · τ (2)

where τ = µ
(

∇u +∇Tu
)

is the viscous contribution of the stress tensor, ρ and µ are respec-

tively the fluid density and the dynamic viscosity. Far from the cylinder, the fluid satisfies the

condition u → Uex . Note that the use of the Navier-Stokes equations without temporal terms

is only possible because the flow remains steady and non oscillatory for present geometries and

Reynolds range.

The unsteady advection-diffusion equation is solved for the temperature around the cylinder

∂T

∂t
+∇ · (T u) = DT∇

2T (3)

with T the local temperature in the flow, DT = λ/(ρCp) the heat diffusivity coefficient where

Cp and λ are respectively the heat capacity at constant pressure and the thermal conductivity of

the fluid. The use of the unsteady formulation of the enthalpy conservation equation (Eq. 3) was

initially done to enable the study of heat transfer in transient condition. But this topic was finally

out of the scope of the present work.

The heat transfer is investigated varying the Reynolds number of the flow that is calculated as

Re =
ρU Lref

µ
(4)

where Lref is the cross length of the cylinder perpendicular to the main flow: for a circular

cylinder it corresponds to its diameter Lref = D, for a diamond-shaped cylinder it corresponds to

its width Lref = a. The flow around the cylinder is mainly characterized by the corresponding drag

coefficient and by the length of the recirculation formed in the cylinder wake. The drag coefficient

is calculated, from the calculation of the drag force Fd by integrating the pressure and viscous

stress on the surface of the cylinder

CD =
1

Ap(1/2)ρU2
||Fd|| =

1

Ap(1/2)ρU2

∣

∣

∣

∣

∣

∣

∣

∣

∫

S

(−p · n + τ · n)dS

∣

∣

∣

∣

∣

∣

∣

∣

(5)

with n the normal surface unit vector. Ap corresponds to the projected surface area based on

the product of the cylinder width with its length (D × H or a × H). In present flow conditions,

the global resulting force experienced by the column is only the drag force Fd, along the ex axis,

because the lift force is zero since the inlet velocity is constant and the column’s shape is symetric.

In this work, the heat transfer around the cylinder is characterized using the surface averaged

Nusselt number as

Nu =
J

λ(Tp − T∞)/Lref

=
hLref

λ
with J =

1

S

∫

S

JlocdS (6)
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with J the surface averaged heat flux, Jloc = −λ(∂T/∂n) Jloc = −λ(∂T/∂n) is the local heat

flux at the cylinder surface. S stands for the cylinder surface. Tp and T∞ are respectively the

temperature imposed at the solid/gas interface (i.e. the cylinder wall) and the temperature of the

flow far from the cylinder. h is the corresponding heat transfer coefficient in W m−2K−1.

3. Numerical procedure

The conservation equations are solved with the finite volume method in 2D with OpenFoam

using a double-precision writing format [34]. Navier-Stokes equations are first solved to obtain

the steady pressure and velocity fields around the cylinder for a given Reynolds number (Eq. 1-

1). Then, using the resulting velocity field, the advection-diffusion equation is solved for Pr =
ν/D = 0.7 to get the temperature field (Eq. 3).

In order to solve the Navier-Stokes equations, an upwind second order scheme and a centred

second order scheme are used for the spatial discretisation of respectively the advective and the

diffusive fluxes. The pressure and velocity fields are linked by the SIMPLE algorithm. The con-

vergence of the flow calculation is achieved when the drag coefficient is stable and the residuals

are lower than 10−7.

In order to solve the enthalpy conservation equation, convective flux are calculated using a

TVD second order scheme with a Sweby limiter, while diffusive fluxes are discretized with a

centred second order scheme as for the momentum equation. The transient term is then discretized

with a second order scheme and the equation is solved with an implicit method. The convergence

of the flow calculation is achieved when the Nusselt number stabilizes.

The diamond shape geometry and the corresponding dimension parameters are presented in

Fig. 1. The calculation domain is presented in Fig. 2. For both circular and diamond-shaped

cylinders, a constant velocity U and a zero normal pressure gradient are imposed at the inlet of

the domain. A constant pressure reference p0 and a zero normal velocity gradient are imposed at

the domain outlet. An adherence condition is imposed at the cylinder wall (u = 0). A symmetry

boundary condition is set on the main axis. For heat transfer simulation a constant temperature

Tp is imposed at the walls. A constant temperature T∞ is set at the inlet, while a zero normal

temperature gradient is chosen as the boundary condition for the outlet. The temperature and the

velocity are initially set to T = T∞ and u = Uex in the whole calculation domain.

An example of the grid employed in this work is shown in Fig. 3. Around the cylinder a body

fitted rectangular mesh is used. In order to limit the boundary effects, the domain size is chosen

to be R∞/R = 60 for the circular cylinder case and LA/a = LB/a = 60 with LD/a ≥ 60 for

the diamond shape case. This limit is known to be high enough for limiting the influence of the

domain border for the simulation of 3D spherical objects for 1 ≤ Re ≤ 300 [35]. This value has

been also employed by Rashidi et al. [13] for 2D simulations of a diamond-shaped cylinder for

2 ≤ Re ≤ 46. For the circular cylinder, the number of cells along the wall is Nθ = 100. Such

value is found to be convenient for 2D simulation of the flow around a circular cylinder [23] or

around a spherical object [36, 37]. For the diamond shape, two construction lines are added and

attached to the front and back apex angle in order to control the cells deformation near the wall.

In the present simulations, since the Reynolds and the Peclet number Pe = Pr × Re remain

low, the dynamic and thermal boundary layers around the object are thick. Thus the smallest size

of the cell at the cylinder surface is not fixed by a boundary layer constraint but by respecting a

cell aspect ratio between 2 and 4 and checking the grid refinement independence. The detail on
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computational domain and grid sizes for diamond-shaped cylinder case is given Table 1. Total cell

numbers are indicated in the last column. In addition, with a Prandtl number of Pr = 0.7, the

thermal boundary layer δT is expected to be weakly larger than the dynamic boundary layer of the

flow around the cylinder δν . As a result, in contrast with the cases where Pr >> 1, the same grid

which is optimized for the flow simulation can be used for the simulation of heat transfer.

The result independence on the grid sizes has been tested for each cases and the data obtained

for α = 33 and 90◦ with respectively Re = 100 and 40 are presented here. Table 2 presents the

values of the drag coefficient and the Nusselt number for four different meshes A, B, C, D. In this

table, the relative difference is also reported. When decreasing the cell size, the results are found

to converge with a relative difference lower than 1.5% compared to grid B. The grid used for the

following simulations is thus chosen as grid B. As shown in Table 2 it is shown that a more refined

mesh (ex: mesh (A)) does not change the resulting convergence.

4. Preliminary validation with the circular cylinder geometry

In this section, some preliminary validations for the resolution of both the Navier-Stokes equa-

tions and the temperature equation are reported for the case of a circular cylinder.

4.1. Vorticity and drag coefficient

In order to get the validation of the resolution of the Navier-Stokes equations, the vorticity at

the circular cylinder surface has been compared to the one reported by Dennis & Chang [20]. In a

2D flow, the vorticity vector is simply has only one component on the ez axis as following

Ω = (∇× u) · ez =
∂uy

∂x
−

∂ux

∂y
(7)

For Re = 5, 7, 10, 20 and 40, the distribution of the vorticity along the cylinder surface is

plotted in Fig. 4 against its angular position θ (for the definition of the angular position see Fig.

1). Since the vorticity corresponds to the fluid particle rotation intensity, when no recirculation

occurs for Re ≤ 7, only positive values are found. In agreement with Dennis & Chang [20], for

Re > 7, the vorticity can be negative for θ > 110◦ because of the formation of a recirculation

behind the circular cylinder that appears around Recrit ≈ 6.24. Fig. 4 clearly shows that present

numerical results are in very good agreement with the work of Dennis & Chang [20]. Then, to

check the validity of the procedure used for the calculation of the drag coefficient, the results are

compared with previous numerical works. The comparison is presented in Table 3. The difference

between the drag coefficients obtained in this work and the drag coefficients found by Dennis &

Chang [20], Fornberg [21] and Kalita & Ray [23] is lower than 2%. In addition, for Re < 10, a

very good agreement is found with the correlation proposed by Sheard et al. [22]

CD = 11.09Re−0.61 (8)

As shown in Tab. 3, where the numerical results obtained by Sheard et al. are also reported, for

Re = 1, the relative difference on the drag with present numerical simulation is only of 4%. As a

result, the limitation of the transverse size of the calculation domain to R∞/R = LA/a = LB/a =
60 seems to be enough to neglect the effect of the lateral boundary on numerical results for Re ≥ 1.

This work remains also in agreement with the measurements performed by Tritton [18].
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4.2. Heat transfer

An example of the velocity field and the corresponding temperature field for the heat transfer

around a circular cylinder is presented in Fig. 5a for Re = 1 and Re = 40. As expected, at low

Reynolds numbers, the thermal boundary remains thick and quite homogeneous around the cylin-

der. At higher Reynolds number, due to the enhancement of the advection the thermal boundary

layer is much thinner around the cylinder and especially at the front part. Because of the formation

of the recirculation behind the cylinder, heat is trapped in the wake so that most of the heat transfer

takes place on the front part of the cylinder where the temperature surface normal gradients are

the highest. For the circular cylinder case, Nusselt numbers obtained from numerical simulations

and from some previous experimental works are reported in Table 3. Present results verify the

correlation proposed by Collis & Williams [19] which is valid for Pr = 0.7 and 0.02 < Re < 44

Nu = 0.24 + 0.56Re0.45 (9)

The maximal difference with this correlation is lower than 2.3%. Nusselt values given by

Hilpert [16] are found to be systematically 4 − 9% higher. While the difference with predicted

values found by Mc Adams[17] is larger than 3−8% for Re < 30 and lower than 2% for Re ≥ 30.

The analysis of the variation of the vorticity surface distribution, of the drag coefficient and of the

Nusselt number for different Reynolds number for the circular cylinder geometry has enabled us to

validate the numerical simulation procedure of the flow and of the heat transfer around a cylinder.

5. Results and discussion

This section presents and discuss the results obtained for the flow and the heat transfer for the

case of a diamond-shaped cylinder with an apex angle in the range 33 ≤ α ≤ 120◦ for a Reynolds

number range of 1 ≤ Re ≤ 70.

5.1. Wake length, vorticity and drag coefficient

Some examples of velocity fields and streamlines for the case of the flow around a diamond-

shaped cylinder are given in Fig. 5b-e for α = 33− 60− 90− 120◦ for Re = 1 and Re = 40. As

reported in the top part of those figures, when the Reynolds increases, as for the circular shape, a

recirculation can appear in the wake of the pillar. An estimation of the critical Reynolds number

Recrit corresponding to the onset of the recirculation is given in Table 4. It can be noticed that the

critical Reynolds number for a diamond shape with α = 90◦ (inclined square, Recrit = 7.4 ) is very

close to the one of the circular cylinder case (Recrit = 6.24). Then if the apex angle decreases, for

α < 90◦, the recirculation onset can be significantly postponed. For example, one needs to reach

Recrit = 55 to begin to get a recirculation for α = 30◦. On the contrary if the apex angle increases,

for α > 90◦, the recirculation appears at lower Reynolds numbers than with a circular cylinder (i.e.

Recrit(α > 90◦) < Recrit(circular cylinder)).

The recirculation wake length has been plotted in Fig. 6 as a function of the Reynolds number

(symbols). It is defined in this work as the distance between the back extremity of the diamond

shape till the position where the sign of the velocity component along the x-axis is changed (see

Fig. 1). As shown in Fig. 6, similarly to the circular cylinder case, the variation of the dimen-

sionless wake length for a diamond-shaped cylinder evolves linearly with the Reynolds number

following relation here after, for Re > Recrit
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L

(a/2)
= ARe+ B (10)

with the constants A and B given in Table 4. The values obtained for a circular cylinder

from numerical simulations are also reported in Table 4. For a circular cylinder, as reported in

Fig. 6, the maximal difference between Eq. 10 and numerical simulations of Kalita & Ray [23]

is about 5 − 6%. Fig. 6 enables to show that for a given Reynolds number the dimensionless

wake length increases with the apex angle. Thus, one can conclude that the decrease of the apex

angle can prevent the formation of a recirculation behind diamond-shaped cylinder and decrease

its relative length (L/(a/2)). This behaviour is found to be in agreement with previous results of

Rashidi et al. [13] for the case of a porous diamond-shaped cylinder. In addition, it is interesting

to note that the delay of the onset of the recirculation formation has also the effect to postpone

the critical Reynolds number corresponding to the onset of the unsteady oscillatory flow. For a

circular cylinder it is well known that the flow becomes unsteady for a Reynolds number between

40 and 50. For deformed cylinder where the length is longer in the streamwise direction than in

the transverse direction, it have been already shown that the deformation postpone significantly

the onset of the oscillatory flow. For example for a deformed elliptic cylinder with an aspect ratio

of b/a = 2 corresponding here to an apex angle of α ≈ 50◦ with the diamond-shaped geometry,

the critical Reynolds number for the onset of the unsteady flow is near to 75 [38, 39]. Even

if the stability analysis of a flow around a diamond-shaped cylinder is out of the scope of the

present work, some preliminary numerical tests with transient simulations have confirmed that the

oscillatory flow regime onset Reynlods number is larger than the Reynolds range investigated in

this work. The corresponding data are reported in the last column of Table 4.

In order to understand the formation of the recirculation and to compare with the circular

cylinder case, for Re = 1, 10, 40 and α = 33, 60, 90, 120◦, the vorticity profiles have been

plot in Fig. 7 as a function of the angular position θ. Globally, for all the cases one can observe

that the vorticity distribution over a diamond shape is less homogeneous than on a circular shape

and present up to three local maxima at the two apex angles (θ = 0 and θ = 180◦) and near

the equator angle. This last result induces that the separation angle (where the tangential velocity

change of sign along the cylinder surface) is almost always close to θ ≈ 90◦ for diamond shape

while it depends on the Reynolds number for circular shape. For Re = 1, Fig. 7a shows that, as

for the circular shape, the vorticity on diamond shape remains positive because no recirculation

occurs. In Fig. 7b and c, because of the formation of the recirculation the vorticity of the diamond

shape is negative at the back ( for θ > 90◦) at Re = 10 for α = 90 − 120◦ and at Re = 40 for

α = 60− 90− 120◦ .

In Fig.8, the evolution of the maximal vorticity intensity obtained for the peak near the equator

(θ ≈ 90◦) is plotted as a function of Re. As shown in this figure, it is interesting to notice that the

variation of this value is found to increase with the Reynolds number and can be described by the

following power law

Ωmax = ARen (11)

with 0.8 < A < 3 and 0.4 < n < 0.5 as reported in Table 5.

The drag coefficient of a diamond-shaped cylinder is now compared to previous works. The

drag coefficient of a diamond-shaped cylinder with α = 90◦ (square cylinder inclined at 45◦) is first

plotted as a function of the Reynolds number in Fig. 9. In this figure, the results obtained by Yoon
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et al. [29] are also reported (the sum of the pressure and viscous contribution presented in Fig. 19

in the article). As reported in this figure, numerical results are in good agreement with the data

reported by Yoon et al. [29]. In this figure, the results obtained for the circular cylinder case is also

plotted. This comparison shows us that the drag coefficient of a 90◦ apex angle diamond shaped

cylinder is in fact very close to the one of a circular cylinder meaning that those two geometries

experience a similar drag force intensity.

Secondly, the drag coefficient of all the diamond-shaped cylinders considered and of the cir-

cular cylinder are plotted in Fig. 10 for 1 ≤ Re ≤ 10 (a) and 10 ≤ Re ≤ 70 (b). Globally, for

Reynolds number lower than 10, one can observe that the drag coefficients obtained for a large

range of apex angle (33 ≤ α ≤ 120) remain close to the one expected for a circular cylinder.

As shown in Fig. 10a the drag differs from less than 10% from the circular cylinder drag law for

Re < 10. Therefore, for that Reynolds number range, the use of a reference length corresponding

to the projected area of the cylinder perpendicularly to the main flow direction (Lref = a) enables

almost to apply a quasi similitude with the circular cylinder case.

A detailed analysis of present results shows that at low Reynolds number (Re = O(1)) the

decrease of the apex angle still generates an increase of the drag coefficient. For a given cylinder

width ’a’, this behaviour is due to the enhancement of the friction since when the apex angle

decreases the length ’b’ and thus the total surface of the cylinder are larger, increasing the total

wall friction.

Then, for Reynolds numbers larger than 10 and α = 120◦ (Fig. 10b) the drag is found to be

higher than the circular cylinder drag law. While for Reynolds numbers larger than 20 and α < 90,

the drag is systematically lower than the circular cylinder drag law and can be reduced of more

than 10%. Since for moderate Reynolds number, it is known that the drag is very sensitive to the

development of the recirculation in the cylinder wake, this behaviour may results from the early

(resp. late) onset of the recirculation behind diamond-shaped cylinder for α > 90 (resp. α < 90 ),

as reported by Fig. 6 or Table 4.

The present results can be described by the following correlation

CD =
A

Re
(1 + BRen) (12)

with A, B and n given in Table 6. The format of this relation is chosen as the product of the

drag behaviour at low Reynolds numbers (in a Stokes flow CD ∝ 1/Re) and a correction (in the

parenthesis) that takes into account the effect of the recirculation development on the drag. Eq.

12 is able to reproduce numerical results with less than 2.5% of difference. The validity of such

a relation and constant values are restricted to the present investigated Reynolds range. For lower

Reynolds number (Re << 1) the constant ’A’ may need to be adjusted.

5.2. Heat transfer

Some examples of the temperature field for the case of the steady flow around a diamond-

shaped cylinder are presented in the bottom part of Fig. 5b-e for α = 33, 60, 90, 120◦ and Re = 1,

40. As for the circular cylinder case, for Re = 1, the thermal boundary layer is thick and almost

symmetric and weakly smaller at the front part than at the rear part of the cylinder because of

advection effect. Then at a higher Reynolds number as Re = 40, this thickness difference between

the front and rear boundary layer increases and recirculation can affect heat transport in the cylinder

wake.
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The corresponding local heat flux distributions over the cylinder surface are presented in Fig.

11 as a function of the angular position for Re = 1, 10, 40. As shown in this figure the surface

distribution of the heat flux around a diamond-shaped cylinder is much less homogeneous than for

a circular cylinder. In contrast with the circular cylinder case, the diamond-shaped cylinder case

exhibits three local heat flux maxima at the front and the back apex angle (θ = 0, 180◦) and at the

equator angle (θ ≈ 90◦). Such a heat flux distribution with more than one local maxima has been

also reported in the literature by Dhiman et al. [27], Sahu et al. [28], Dhinakaran & Ponmozhi

[40] and Morenko et al. [41] for the case of heat transfer around a solid or porous square cylinder.

Globally, in Fig. 11, for a given Reynolds number a decrease of the apex angle supplies lower local

heat flux. For Re = 1, a modification of α changes both the heat flux at the front and at rear part of

the cylinder. While for larger Reynolds number it can be noticed that the local heat flux is mainly

changed at the front part of the cylinder (0 ≤ θ ≤ 90◦). Therefore, for large Reynolds number, the

apex angle affected primarily the heat flux at the front of the cylinder.

The Nusselt numbers for diamond-shaped and circular cylinders are plotted as a function of

the Reynolds number in Fig. 12. First, for the particular case of the diamond shape with α = 90◦

(inclined square cylinder), similarly to the drag coefficient, the Nusselt number is found to be close

to the circular cylinder one. Moreover as reported in Fig. 12 and Tab. 7, present results are found to

be in good agreement with Nusselt values obtained previously by Rashidi et al.[12] or Vijaybabu et

al. [15] for data with a low porosity (Da = 10−6) corresponding to a solid cylinder with α = 90◦.

Secondly, for a given Reynolds number, in agreement with local heat flux variations, one can

observe that a decrease of the apex angle induces a reduction of the Nusselt number. Such be-

haviour has been also reported by Li et al. [32] for the case of heat transfer from an elliptical or

lenticular cylinder at high Reynolds number. As shown in the temperature fields presented pre-

viously in Fig. 5, for a given Reynolds number, this behaviour is due to an increase of the mean

thickness of the thermal boundary layer δT when the apex angle decreases. This is clearly shown

at the equator location for Re = 1. Indeed, at a first order the Nusselt number corresponds to

the ratio between the cylinder width and the mean thickness of the thermal boundary layer so that

Nu ≈ a/δT ∝ Re1/2. So if the thermal boundary layer is changed due to cylinder shape mod-

ifications, the interfacial normal temperature gradient and thus heat flux and Nusselt number are

affected. Globally, the evolution of the Nusselt number is found to be well represented by the

following relation, for Pr = 0.7

Nu = A+ BRe1/2 (13)

where the constants A and B are given in Table 8. The format of this relation is chosen knowing

that at large Reynolds number (potential flow) the Nusselt number obeys Nu ∝ Re1/2. Equation

13 enables to describe numerical results with an accuracy of 5% for Re = 1 and lower than 2%

for Re > 1. It is interesting to note that contrary to the case of heat transfer around 3D objects the

value of the constant A do not correspond to the analytical solution of the pure diffusion problem.

Indeed, in 2D, one can show easily that there is not a universal analytical solution for the Nusselt

number (see Bird et al. [42] p. 440 chap. 14).

To better understand the discrepancies observed on Nusselt number when varying the apex

angle, a first attempted was to change the reference length used to calculate Re and Nu since,

contrary to a circular cylinder, a diamond shape includes two length parameters (a and b). But

just modifying the reference length would simply shift the Nu(Re) curves since both would be

10



corrected by the same length ratio (Eq. 4 and 6). Therefore, the use of an other flow reference

velocity in the calculation of the Reynolds number have been investigated. In a recent work,

Colombet et al. [43] have shown that to describe transfers inside or around a spherical bubble the

relevant velocity scale should be the maximal velocity at the gas/liquid interface (slip condition).

In addition, for a spherical bubble, Legendre [44] has demonstrated that the maximal velocity at

a bubble surface is directly linked to the maximal interfacial vorticity as Umax = ΩmaxR/2. As a

result, by choosing Umax as the reference velocity for Reynolds calculation, Colombet et al. [43]

have in a sense calculated the reference velocity from the maximal vorticity magnitude at a bubble

surface. Consequently, applying a similar approach, the following effective Reynolds number have

been proposed

Re′ =
U ′

U
Re =

U ′a

ν
(14)

where the velocity scale U ′ = Ωmax(a/2) is estimated from the maximal vorticity magnitude

near the diamond shape equator (Fig. 8). The evolution of the Nusselt number as a function of

the Reynolds number Re′ is plotted in Fig. 13. The Nusselt number for a circular cylinder is

also reported. As shown in this figure, for the diamond shape, the Nusselt number values seem to

collapse on the master curve given by

Nu = 0.56Re′
0.28

(15)

This relation is able to predict present results with a maximal difference of 8% for Re = 1 and

less than 3% for Re > 1. In the same time, it can be noticed that this relation does not match the

Nusselt evolution of a circular cylinder. As a result, using the vorticity magnitude at the cylinder

wall can allow to apply a similitude only between diamond-shaped cylinder of different aspect

ratios (or apex angle). Some additional tests have been performed using the maximal vorticity

at the front apex angle and the average vorticity on the cylinder surface. But the best results are

obtained when the reference velocity is calculated from the maximum vorticity near the equator.

Such behaviour tends to suggest that the vorticity intensity plays a key role in the transport of heat

at the cylinder surface.

6. Conclusions

The flow and heat transfer around a single diamond-shaped cylinder have been studied for a

laminar incompressible flow at moderate Reynolds number (1 ≤ Re ≤ 70) and a Prandtl number

of Pr = 0.7 on a large range of apex angle 33 ≤ α ≤ 120◦. For Re ≤ 10, the drag coefficient of

a diamond shape is found to remain close to the one of a circular cylinder. For Re > 10, the drag

is systematically lower (resp. higher) with α < 90◦ (resp. α > 90◦) than the circular cylinder one.

In agreement with the previous work of Rashidi et al. [13], it is also observed that the decrease of

the apex angle increases drastically the critical Reynolds number corresponding to the onset of the

wake recirculation. As for a circular cylinder, the growth of the recirculation remains proportional

to the Reynolds number.

Concerning heat transfer, in agreement with previous works on heat transfer from a square

cylinder, the distribution of the local heat flux is also found to present more than one local maxi-

mum and a strong variation near the equator angle. The corresponding Nusselt number versus the

conventional Reynolds number is found to decrease if the apex angle is reduced. For the whole
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Reynolds range the Nusselt number but also the drag coefficient of a diamond shape with α = 90◦

are almost matching the one of a circular cylinder. New correlations are proposed to describe the

drag coefficient, the recirculation length and the Nusselt number variation.

In a last part, it is shown that a similitude between diamond-shaped cylinder of different apex

angle (90 ≤ θ ≤ 120◦) is possible if the reference velocity for the calculation of the flow Reynolds

number is based on the maximal vorticity near the equator angle of the cylinder. In this way, the

Nusselt numbers collapse on a master curve that depends only on this ’effective’ Reynolds number.

The previous work of Colombet et al. [43] and this work may indicate that the relevant velocity

scale to describe convection near the interface where transfer occurs is not the far field velocity

but rather the velocity scale induced by the vorticity. This result opens new insight in the study

and the description of heat or mass transfers from 2D or 3D objects. As a perspective, it would

be interesting to analyse Nusselt number variations against this Reynolds number formulation for

other geometries and different Prandtl numbers.
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Nomenclature

Roman symbols

a diamond-shaped cylinder width m

b diamond-shaped cylinder length, m

Cp heat capacity at constant pressure, J kg−1 K−1

CD drag coefficient

DT heat thermal diffusivity (DT = λ/(ρCp)), m2 s−1

h heat transfer coefficient, W m−2 K−1

H cylinder length, m

J surface averaged heat flux, W m−2

JLoc local average heat flux, W m−2

Lref reference length (D or a), m

Nu Nusselt number based on the cylinder width (D or a)

p local pressure, Pa

Pr Prandtl number, Pr = ν/DT

Re Reynolds number based on the cylinder width (D or a) and far field velocity U

Re′ Reynolds number based on the cylinder width (D or a) and velocity scale U ′

Recrit Reynolds number corresponding to the onset on the recirculation formation

Re′crit Estimation of the Reynolds number corresponding to an unsteady oscillatory flow

T local temperature, K

Tp temperature imposed at wall, K

T∞ inlet (or far field) temperature, K

t time, s

u local velocity, m s−1

U inlet (or far field) velocity, m s−1

U ′ reference velocity based on the maximal vorticity magnitude (U ′ = Ωmaxa/2), m s−1

Greek symbols

α apex angle of the diamond-shaped cylinder, ◦

δT mean thickness of the thermal boundary layer around the cylinder, m

λ thermal conductivity of phase k, W m−1 K−1

µ dynamic viscosity, Pa s

ν kinematic viscosity (ν = µ/ρ), m2 s−1

ω vorticity, s−1

Ωmax maximal vorticity magnitude near the equator angle, s−1

ρ density, kg m−3

θ angular position, ◦

Mathematical symbol

|| − || vector magnitude
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α [◦] grid Nb.LA/sf Nb.LB/sf Nb.LC/sf Nb.LD/sf LD/a Total Nb
33 A 260/20 240/20 120/1 260/20 80 163 800
33 B 200/20 150/20 80/1 150/20 80 76 000
33 C 100/20 75/20 40/1 75/20 80 19 000
33 D 65/20 50/20 20/1 50/20 80 7 800
50 B 200/20 150/10 60/1 150/13 60 72 000
60 B 200/20 150/10 60/1 150/12.5 80 72 000
90 A 250/20 150/20 70/1 240/20 100 115 000
90 B 200/20 120/20 50/1 200/20 100 74 000
90 C 100/20 60/20 24/1 100/20 100 18 400
90 D 50/20 30/20 12/1 50/20 100 4 600
120 B 200/20 150/10 40/1 150/20 100 68 000

Table 1: Computational domain and grid dimensions for the case of the diamond-shaped cylinder, grid B is the mesh

used for the main simulations (segments A B C D, LA/a = LB/a = 60, sf= scale factor between the largest and

smallest cell length).
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α [◦] Re grid CD ER [%] Nu ER [%]

33 100 A 0.9459 0.31 3.1994 0.01

33 100 B 0.9488 - 3.1990 -

33 100 C 0.9595 1.13 3.2024 0.11

33 100 D 0.9878 4.11 3.2109 0.37

90 40 A 1.5686 0.92 3.2355 0.02

90 40 B 1.5833 - 3.2361 -

90 40 C 1.6290 2.89 3.2547 0.57

90 40 D 1.7092 7.96 3.3223 2.66

Table 2: Tests of grid refinement independence on drag coefficient and Nusselt number; ER is the relative difference

between the obtained value with the mesh used for simulations (mesh B).
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Re Ca
D Cb

D Cc
D Cd

D Ce
D Nuf Nug Nuh Nue

1 - - 11.775 - 11.240 0.891 0.750 0.800 0.816

2 - - 7.259 - 7.041 - - - -

3 - - - - 5.476 - - - -

4 - - - - 4.624 - - - -

5 4.116 - - - 4.157 1.525 1.313 1.395 1.418

6 - - - - 3.689 - - - -

7 3.421 - - - 3.459 - - - -

8 - - - - 3.170 - - - -

9 - - - - 2.985 - - - -

10 2.846 - 2.854 - 2.833 1.992 1.744 1.818 1.855

15 - - - - 2.329 2.328 2.078 2.134 2.181

20 2.045 2.001 2.072 2.019 2.043 2.602 2.362 2.396 2.446

25 - - - - 1.854 2.835 2.613 2.624 2.683

30 - - - - 1.716 3.041 2.841 2.828 2.892

35 - - - - 1.610 3.227 3.051 3.013 3.082

40 1.522 1.498 1.545 1.514 1.526 3.397 3.248 3.185 3.256

Table 3: Drag coefficient and Nusselt number for a cylinder: previous works of (a) Dennis & Chang [20], (b) Fornberg

[21], (c) Sheard et al. 2005 [22] (Digitized data of Fig. 6 in the article), (d) Kalita & Ray [23], (e) this work, (f) Hilpert

1933 [16], (g) Mcadams 1954 [17], (h) Collis & Williams 1969 [19].
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α Recrit A B Re′crit
30 55.0 0.0541 -2.9815 -

33 46.6 0.0604 -2.8187 130(120)

35 41.8 0.0665 -2.7808 -

40 33.2 0.0788 -2.6168 -

50 23.0 0.1031 -2.3711 75(60)

60 17.4 0.1154 -2.0051 -

90 7.4 0.1824 -1.3598 50(40)

120 3-4 0.2353 -0.7598 -

circular cylinder 6.24 0.1324 -0.8265 45(40)

Table 4: Estimation of the critical Reynolds number Recrit corresponding to the onset of the recirculation behind the

cylinder and constants used in Eq. 10 for the prediction of this recirculation wake length, Re′
crit

Reynolds number

corresponding to an unsteady oscillatory flow: the first value corresponds to the observation of oscillations on the lift

coefficient and the value in parenthesis for which the flow is found to remain steady.

α A n
33 0.829 0.453

40 1.080 0.435

50 1.483 0.427

60 1.941 0.416

90 2.919 0.403

120 2.971 0.431

circular cylinder 0.950 0.490

Table 5: Constants of Eq. 11 for the estimation of maximal vorticity intensity.
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α A B n
30 6.6800 0.9482 0.5702

33 6.7648 0.8763 0.5827

35 6.7010 0.8721 0.5872

40 6.5646 0.8443 0.6002

50 6.9266 0.6907 0.6397

60 7.1043 0.6089 0.6717

90 6.9857 0.5651 0.7201

120 6.8338 0.5886 0.7392

Table 6: Constants of Eq. 12 for the estimation of the drag coefficient.

Re (a) (b) (c)
5 1.459 1.49038 (2.1%) 1.49696 (2.6%)

10 1.888 1.85577 (1.7%) 1.91962 (1.7%)

20 2.460 2.47115 (0.4%) 2.49371 (1.4%)

30 2.880 2.91346 (1.1%) 2.92318 (1.5%)

40 3.236 3.25962 (0.7%) 3.28956 (1.7%)

Table 7: Nusselt numbers comparison for the case α = 90◦: (a) this work, (b) Rashidi et al.[12] (relative difference),

(c) Vijaybabu et al. [15] (relative difference).

α A B
33 0.179 0.309

40 0.209 0.340

50 0.264 0.371

60 0.319 0.397

90 0.456 0.445

120 0.5638 0.4626

Table 8: Constants for Nusselt number estimation from Eq. 13.
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θ Lapex angle
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Figure 1: Diamond-shaped cylinder geometry: ’a’ cylinder section width, ’b’ cylinder section length, α apex angle

value, θ angular position, ’L’ wake length definition (α = 2×arctan(a/b)).
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Figure 2: (a) Computational domain (a) for a cylinder and (b) for a diamond-shaped cylinder.
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(a)

(b)

(c)

(d)

Figure 3: Zoom around the cylinder mesh for the (a) circular cylinder and the diamond-shaped cylinder with the mesh

B for (b) α = 33◦, (c) α = 60◦ and (d) α = 90◦.
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Figure 4: Vorticity along a circular cylinder surface as a function of the angular position with from top to the bottom

Re = 5 − 7 − 10 − 20 − 40; lines : numerical simulation of Dennis & Chang [20], symbols : this work (θ = 0 and

θ = 180◦ correspond respectively to the stagnation points at the front and back of the cylinder).
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(a)

Re = 1 Re = 40

(b)

(c)

(d)

(e)

(T − T∞)/(Tp − T∞) or u/U

Figure 5: Velocity field with streamlines (top part) and temperature field (bottom part) for the steady state flow and

heat transfer around a cylinder for (a) a circular cylinder and a diamond-shaped cylinder with (b) α = 90◦, (c) α = 60◦,

(d) α = 33◦ and (e) α = 120◦.
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Figure 6: Dimensionless wake length as a function of the Reynolds number Re: diamond-shaped cylinder with α =
◦ 30◦, ◦ 33◦, ◦ 35◦, ◦ 40◦, ◦ 50◦, ◦ 60◦, ◦ 90◦, + 120◦; −− Eq. 10; circular cylinder from � this work and according

to � Dennis & Chang [20].
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Figure 7: Vorticity at the cylinder surface as a function of the angular position θ for (a) Re = 1, (b) Re = 10, (c)

Re = 40 : diamond-shaped cylinder with α = ◦ 33◦, ◦ 60◦, ◦ 90◦, + 120◦ and – circular cylinder.
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Figure 8: Maximal vorticity magnitude near the equator angle as a function of the Reynolds number : diamond-shaped

cylinder with α = ◦ 33◦, ◦ 40◦, ◦ 50◦, ◦ 60◦, ◦ 90◦, + 120◦; � circular cylinder (for this case the maximal vorticity

is not systemically at the equator, see Fig. 4); −− Eq. 11.
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Figure 9: Drag coefficient as a function of the Reynolds number for a diamond-shaped cylinder with α = 90◦: △,

Yoon et al. [29] ◦ this work and −− for a circular cylinder.
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Figure 10: Drag coefficient as a function of the Reynolds number for (a) 1 ≤ Re ≤ 10 and (b) 10 ≤ Re ≤ 70:

diamond-shaped cylinder with α = ◦ 33◦, ◦ 40◦, ◦ 50◦, ◦ 60◦, ◦ 90◦, + 120◦; lines : Eq. 12; −− circular cylinder

and −.− ±10% of circular cylinder drag coefficient.
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Figure 11: Local heat flux as a function of the angular position θ for (a) Re = 1, (b) Re = 10, (c) Re = 40 : –

circular cylinder and diamond-shaped cylinder with α = ◦ 33◦, ◦ 60◦, ◦ 90◦, + 120◦.
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Figure 12: Nusselt number as a function of the Reynolds number;� circular cylinder and — Eq. 9; diamond-shaped

cylinder with α = ◦ 33◦, ◦ 40◦, ◦ 50◦, ◦ 60◦, ◦ 90◦, + 120◦; diamond-shaped cylinder with α = 90◦ according to △
Rashidi et al.[12] and * Vijaybabu et al. [15] ; −− Eq.13.
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Figure 13: Nusselt number as a function of the Reynolds number Re = U ′a/ν with U ′ = Ωmax(a/2): diamond-

shaped cylinder with α =◦ 33◦, ◦ 40◦, ◦ 50◦, ◦ 60◦, ◦ 90◦, + 120◦; � circular cylinder; −−− Nu = 0.56Re′0.28.
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