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Abstract. In the recent years, Graph Edit Distance has awaken inter-
est in the scientific community and some new graph-matching algorithms
that compute it have been presented. Nevertheless, these algorithms usu-
ally cannot be used in real applications due to runtime restrictions. For
this reason, other graph-matching algorithms have also been used that
compute an approximation of the graph correspondence with lower run-
time. Clearly, in a real application, there is a tradeoff between runtime
and accuracy. One of the most costly part in these algorithms is the de-
duction of the node-to-node mapping. We present a new graph-matching
algorithm that returns a graph correspondence without the explicit com-
putation of the assignment problem. This is done thanks to a classifica-
tion of the node-to-node assignment learned in a previous training stage.

Keywords: Graph edit distance, Node assignment classification, Graph
embedding, Graph matching

1 Introduction

Attributed graphs have found widespread applications in several research fields
of structural pattern recognition [1–3]. This is due to their ability to represent
structured objects through unary and binary local entities. To compare them,
several distance measures between attributed graphs have been presented [2, 3].
Among them, one of the most used distances is the Graph Edit Distance [4, 5].

Typically, the problem is mathematically formulated as a quadratic assign-
ment problem, which consists of finding the node-to-node assignment that min-
imizes an objective function encoding local dissimilarities (a linear term) and
structural dissimilarities (a quadratic term). To do so, it is needed to define
the cost functions between the linear terms and also the quadratic terms, given
the application at hand. Note that a proper definition of these cost functions
is crucial to achieve good classification or recognition results. For this reason,
several methods have been presented to learn these edit costs [6, 7]. Moreover,
the Graph Edit Distance has been demonstrated to be an NP-hard problem. For
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this reason, several algorithms that return a graph correspondence in polyno-
mial time with respect to the number of nodes at the expense of not having the
certainty of being the correspondence that minimizes the graph edit distance,
have been presented [8–12].

In this paper, we present another graph matching algorithm that deduces the
graph correspondences in a sub-optimal way, as the ones commented above. The
novelty of our algorithm is that we classify the node-to-node assignments at a
first step and then there is no need of using a combinatorial optimization algo-
rithm (such as the Hungarian method [13]) to deduce the graph correspondence,
thus avoiding their computational cost.

2 Definitions

2.1 Attributed Graphs and Graph Edit Distance

We define an attributed graph G as a quadruplet G = {
∑
v,
∑
e, γv, γe} where∑

v = {vi|i = 1...n} is the set of n nodes and
∑
e = {ei,j |i, j ∈ 1...n} is the set

of edges connecting pairs of nodes. γv = {vi → ψi|i = 1..n} and γe = {vi →
E(vi)|i = 1..n} are functions that map the nodes and edges to their attribute
values, respectively. ψi ∈ Rm maps each node to its m local attributes and E(·)
refers to the degree of a certain node [14, 15]. For simplicity, in this paper we only
consider undirected and unattributed edges. However, all the concepts presented
in this paper could be extended to directed and attributed edges.

The Graph Edit Distance (GED) [4] is a distance between two attributed
graphs G and G′. It consists of the best combination of edit operations that
transform G into G′. Three operations are considered on the local attributes
of the nodes and also on its structures: Substitution, deletion and insertion. To
quantify the degree of distortion that each edit operation introduces, a cost is
assigned to them depending on the attributes on the involved nodes or edges. A
sequence of edit operations that completely transform G into G′ is referred to
as edit path λG,G′ between G and G′. The cost of an edit path is the sum of
the costs of the edit operations included on it. Thus, the GED is defined as the
edit path from one graph into another that obtains the minimum cost under all
possible edit paths TG,G′ between G and G′. Formally:

GED(G,G′) = min
λG,G′∈TG,G′

Cost(G,G′, λG,G′) (1)

The edit path λG,G′ can be defined through a node-to-node matching f between
nodes of both graphs where f(vi) = v′a. Graphs can be enlarged by null nodes
to assure having the same order.

2.2 Approximating the Graph Edit Distance

The graph-matching algorithms that return the GED are based on exploring all
the combinations of correspondences f between G and G′ and selecting the one
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with the minimum cost. However, several approaches have appeared to reduce
the computational complexity of the GED computation [16, 9, 17, 18] at the ex-
pense of returning a sub-optimal correspondence. Usually, these algorithms are
based on two main steps:

In the first step, a cost matrix is filled with the edit cost between all com-
binations of the local structures of both graphs. The computational cost of this
step is approximated by O(s×n2), where s is the computational cost of mapping
the local structures.

In the second step, a node-to-node matching f is found. The problem at
hand is seen as a minimization of the sum of the linear assignation given the
cost matrix. Thus, the computational cost of this second step is O(n3) or O(n2)
depending on whether the matching is deduced by the Bipartite graph match-
ing [9, 18], or the Greedy edit matching [17, 14, 8, 16], respectively. In the case
of the Bipartite graph matching, it is usually solved through the Munkres or
Jonker-Volgenant algorithms [13, 19]. In another case, the matching between
nodes f is obtained through an algorithm that iteratively selects the minimum
value per row and discards the selected columns for the remaining rows.

3 Learning Graph Matching

We propose a sub-optimal graph matching algorithm which avoids the second
step in the classical sub-optimal graph matching algorithms (see 2.2). This is
because the second part turns out to be more expensive than the first part, from
the computational time point of view. In the next section, we list the known
methods that learn the edit costs, from which our method is inspired.

3.1 Learning the edit costs and Graph embedding

Several methods have been presented to learn the edit costs based on supervised
machine learning techniques, which can be divided in two main groups. The ones
that return a constant on the edit operations [20–24], and the other ones that
define the edit costs as functions. For instance, in [25], they use a probabilistic
model of the distribution of graph edit operations. Another paper is based on a
self-organizing map model [26] in which the edit costs are the output of a Neural
Network. In both papers, the learning set is composed of classified graphs and
the edit costs are optimized with regard to Dunns index [27]. Recently, two
new papers assume the cost matrix could filled as the output of a supervised
machine learning model. In [7], the authors use a Neural Network to learn only
the substitution costs (no insertion nor deletion operations are allowed). And
in [6], a general framework is presented to learn and define this costs.

3.2 From Edit Costs Estimation to Node Assignment Classification

Inspired by methods such as the ones in [7, 6], we propose a supervised machine
learning model that splits the node-to-node assignments in two classes, depend-
ing whether the learning database considers that they have to be mapped in f
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or not. Note that in [7, 6], the learning algorithms deduce edit costs instead of
discerning between two classes. The key idea of our model is to decide if a node
in G is mapped to a node in G′ using a classifier. Then, the classes mapped or
non-mapped are assigned considering the output of a previously trained classifier.
Note that a node could remain unmapped in f if it is classified as non-mapped
in all cases. We treat this particular case as a deletion or an insertion of the
corresponding node.

Our method is independent of the classification method (Support Vector
Machine, K-Nearest Neighbours, Neural Network, etc.), however, in any case
we need to transform each node-to-node mapping into a vector that becomes
the input of the classifier. Thus, we propose to embed each matching into
a vector, similar as proposed in [7]. In this case, the embedded representa-
tion of a mapping between two nodes vi and v′a of G and G′, is xvi→v′a =

[γv(vi), γe(vi), γ
′
v(v
′
a), γ′e(v

′
a)] ∈ R(m+1)·2.

Our matching algorithm is shown in Algorithm 1. It is a greedy algorithm
that goes across all nodes vi ∈ G and, for each of them, deduces the first node
v′a ∈ G′ that can be mapped to vi. Note that this strategy avoids: a) The explicit
computation of the graph correspondences in the second step of the classical
sub-optimal graph matching algorithms. b)The whole computation of the cost
matrix in the first step of the classical sub-optimal graph matching algorithms.
Note that in our case, instead of having a cost matrix, we have a classification
matrix.

Nevertheless, it is important to remark that the model does not return a
distance but only a graph correspondence. Moreover, the performance of the
model depends on the quality of the classifier.

Algorithm 1: Graph matching based on node assignment classification.

Data: graph G and graph G′

Result: matching f
1 f = empty node-to-node correspondence
2 forall vi in G do
3 forall v′a in G′ and not in f do
4 x = embed(vi → v′a)
5 y = class predictor(x)
6 if y = mapped then
7 f(vi) = v′a
8 break loop

9 end

10 end

11 end

Figure 1 (on the left) shows a pair of graphs (blue and red) and the optimal
graph correspondence (green arrows), edges do not have attributes and the node
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edit cost is the distance between attributes. In the center of Figure 1 the cost
matrix computed in the first step of a sub-optimal graph-matching algorithm
(Section 2.2) is shown. Finally, Figure 1 (on the right) shows the outputs of
the classifier (T: mapped or F: non-mapped) by our proposed algorithm. Grey
cells are the node pairs that our algorithm needs to analyze. In our example,
only 7 values have been computed. Being 4 the minimum and 10 the maximum
number in the worst case (n and n(n+1)/2, respectively, where n is the number
of nodes).

Fig. 1. Left: A pair of graphs (blue and red) and the optimal correspondence (green
arrows). Centre: The cost matrix. Right: The computed classes (T: mapped or F: non-
mapped). Highlighted in green: Node-to-node mappings. Grey: Computed values (nodes
are processed consecutively from 1 to 4).

3.3 Training the Classifier

In supervised machine learning, databases entries are composed of an element
and its expected outputs. In our case, an entry p in the database is composed
of a pair of graphs (Gp, Gp′) and their ground-truth correspondence f̂p. These

correspondences f̂p have been deduced by an external system (typically a hu-
man expert) and they are considered to be the best mappings for our learning
purposes. The aim of the learning method is to define a model that, given a
pair of nodes, returns the class mapped when the two nodes are mapped in the
ground-truth, and non-mapped otherwise.

To do so, we define two sets of node-to-node mappings: The one with node
pairs that have to be mapped according the ground-truth correspondences and
the set of node pairs assumed they do not have to be mapped. Assuming that the
ground-truth correspondences are bijective functions, each node of G is mapped
to a single node of G′, while it has not to be mapped to the rest of nodes of G′.
This means that for each node-to-node mapping classified as mapped, there are
n − 1 node-to-node mappings classified as non-mapped, where n is the order of
the graphs. In order to prevent imbalance problem, the node-to-node mappings
in mapped are repeated n− 1 times when we feed the training algorithm.
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4 Experimental Evaluation

In this section, we show the performance of our graph-matching algorithm in
terms of accuracy and runtime. To do so, we compare our results to different
existing approaches in the literature. In Section 4.1, we describe the databases
used in our experiments while in Section 4.2, we present the computed accuracy
and runtime. Finally, in Section 4.3, we evaluate the performance of our method
using synthetically generated graphs to analyze how the graph order affects our
model. Experiments were conducted using MATLAB 2018 on a Windows 10,
with an Intel i5 processor at 1.6 GHz and 8GB of RAM.

4.1 Database Description

We used the House-Hotel [28] and a database synthetically generated by the
method in [29]. The House-Hotel database [28] consists of two sequences of frames
showing two computer modeled objects, 111 frames of a House and 101 frames
of a Hotel moving and rotating on its own axis throughout the scene. Each frame
has 30 salient points manually labelled. Each salient point represents a graph
node and it is attributed by 60 Context Shape features. The salient points has
been triangulated by Delaunay triangulation according to its coordinates to build
the edges. Since the salient points are manually labelled, we know the ground-
truth correspondence between the nodes of the graphs. As more separated are
the frames that represents each graph, the differences between graphs increase
and consequently, more difficult is the graph matching process. We performed
different experiments changing the number of frames of separation between the
frames in the video sequence. For each experiment, we built three sub-sets of
graph pairs (train, validation and test).

The synthetic database was composed of several sets of graphs that had the
same order. We generated different pairs of graph prototypes inspired by the
method detailed in [29]. Nodes has four Integer attributes randomly generated
in a range from 0 to 999. Edges are unattributed and it was imposed a probability
of 20% for each pair of nodes to be connected by an edge. Next, a collection of
pairs of graphs has been generated by distorting original prototypes adding some
Gaussian noise (Standard deviation: 500) to the last attribute of each node.

4.2 Graph Matching Performance

We analyzed the graph matching accuracy and the time spent to perform it.
The matching accuracy is defined as the number of node-to-node mappings in
the deducted correspondences that are equal to the node-to-node mappings in
the ground-truth correspondences, normalized by the graph order.

Our method was implemented with two different classifiers: a) A Neural
Network with one hidden layer that has 60 neurons and an output layer with
two neurons (a neuron per class: mapping and non-mapping). b) A Quadratic
Support Vector Machine, which classifies the node-to-node mappings among the
two classes: mapping and non-mapping.
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Moreover, we compared our approach to four graph-matching methods (Ta-
ble 1). In the first two methods, the cost function is defined as an edit cost based
on the Euclidean distance between the node attributes plus the difference of the
degree of these attributes, as it was done in [14, 15]. In the other two, the cost
function is defined as the output of a Neural Network previously trained as in [7].

Table 1. Graph matching methods used in this paper for comparative purposes.

Cost Function Solver Complexity Year Reference

Edit Cost Hungarian O(n3) 2009 [9]

Edit Cost Greedy O(n2) 2017 [16]

Neural Network Hungarian O(n3) 2018 [7]

Neural Network Greedy O(n2) - -

Fig. 2. Matching accuracy (top) and Runtime in seconds (bottom) versus number of
frames of separation. Database: Hotel-House.

Figure 2 (top) shows the matching accuracy versus the number of frames
of separation using the Hotel-House database. When the number of frames of
separation increases, graphs tend to be more different and this fact is reflected
on the the accuracy decrease. On the bottom of the Figure 2 the mean runtime
spent to perform a matching between two graphs (in seconds) is shown. There
is a slight tendency of increasing the runtime.

In these experiments, our method shows a good balance on runtime and
matching accuracy. The accuracy is similar to the Neural Network methods [7]
but the runtime is lower. Moreover, the GED methods [9, 16] are faster but return
a worse matching accuracy when the number of frames of separation increases.
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4.3 Runtime analysis

Fig. 3. Matching accuracy and speedup with respect to the GED-Hungarian versus
number of nodes per graph. Database: Synthetic.

We analyzed the relevance of the graph order with regard to the performance
of the model in the synthetic database. Our model was the one implemented with
a Neural Network that has 6 neurons in the hidden layer. The Quadratic Support
Vector Machine was not used in this experiment due to the high computational
time necessary in the learning step.

Figure 3 (left) shows the accuracy versus the number of nodes of the graphs.
We observe that there is an important decrease in the accuracy when the order
of the graphs achieves 1500 nodes. Moreover, the methods that use edit costs
return low accuracies given any graph order.

Figure 3 (right) shows the speedup of each graph matching alg: Speedupalg =
Runtime[9]/Runtimealg, where Runtimex is the runtime of algorithm x. We
observe that the speedup of our model grows faster than any other method when
we increase the graphs order. We achieve the best results in terms of speedup
and the second best accuracy when the graphs order is 1500 nodes.

We observed that there is an extra computational cost when using a classifier
like a Neural Network instead of a cost function such as the Edit Costs due to
the number of internal operations that have to be carried out. For this reason,
when the graph order is small, there is no improvement in terms of runtime with
respect to the methods that use Edit Costs and the Hungarian solver. However,
for larger graphs, the increase of runtime due to the classifier is compensated by
the fact that we do not need to evaluate all node-to-node correspondences and
it is not necessary to solve the assignment problem either.

5 Conclusions

In this paper, we present a fast approach to deduce the graph correspondence.
Previous methods are based on two steps. In the first one, a cost matrix is filled
and in the second one, a linear solver is applied on it to deduce the graph cor-
respondence. In our proposal, we do not need this second step since the first
one, the node-to-node mapping, is directly deduced. To do so, we have used a
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classifier that separates the node-to-node assignment in two classes: mapped and
non-mapped. In the experimental section, we show that our method achieves a
good accuracy with a low matching runtime, comparing it to four existing meth-
ods. The experiments show a larger decrease of runtime, compared to the other
methods, when the graph order increases. This allows to compute matchings be-
tween graphs with the proposed method for very large graphs in an acceptable
computational time.
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