
HAL Id: hal-02285787
https://hal.science/hal-02285787

Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Catfish density estimation by aerial images analysis and
deep learning

Donatello Conte, Pierre Gaucher, Carlo Sansone

To cite this version:
Donatello Conte, Pierre Gaucher, Carlo Sansone. Catfish density estimation by aerial images analysis
and deep learning. The 34th ACM/SIGAPP Symposium, Apr 2019, Limassol, Cyprus. pp.1111-1114,
�10.1145/3297280.3297575�. �hal-02285787�

https://hal.science/hal-02285787
https://hal.archives-ouvertes.fr


1

Catfish Density Estimation by Aerial Images Analysis and Deep Learning

Donatello Contea,∗, Pierre Gauchera, Carlo Sansoneb
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ABSTRACT

The food economic chain of many rivers is based on an important control of the presence of predatory
fish in the water. The assessment of the predation pressure on migratory species cannot be done
manually. Therefore some automatic techniques are needed. In this paper we propose, for the first
time, a deep neural architecture to estimate the catfish density from Aerial Images taken on the Loire
river. The proposed architecture is adapted to the problem in hand and some variations to existing
approaches, never applied in this application context, are designed to better fit the needs of the
problem. Preliminary results show the appropriateness of the proposal and form the foundations for
future developments on this new application.

1. Introduction

Recent studies in the Loire basin have shown that the catfish (Silurus glanis), known to be opportunistic from a food point of

view, consume cyprinids but also migratory fish such as shad Boisneau (2015). This consumption in spring is not without impact

of this species on the migratory fish community in the Loire and so impact to the economy linked to fish consumption.

Although it is not currently possible to assess predation pressure on migratory species, this pressure does exist. It would

therefore be important to develop a method for estimating catfish densities in the natural environment, in the absence of obstacles,

in order to begin to assess the predation pressure exerted by this species on migratory species including shad and salmon. It

currently seems difficult to estimate catfish densities in the natural environment of the large river type without combining different

techniques. Indeed, electric fishing can be used in habitats such as banks, plants, algae, for small individuals, and for depths of

less than one metre but does not allow access to habitats such as large encumbrances or in areas with depths more than one meter.

Underwater diving can be a complement for habitats in deep or difficult to access areas (blocks, crevices, encumbers, etc.) provided

that the current is not a risk for the diver and that the transparency of the water allows observations. In very deep watercourses or

canals, the use of multibeam sounders would have to be tested. Therefore, these two techniques are not applicable in all cases.
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One promising technique is an estimation of catfish densities from aerial images analysis. This type of analysis is not very

widespread. Several sections of the Loire have been filmed with a drone.

Several approaches were tested, in particular, indirect estimation techniques based on descriptor points (Harris’ corners Derpanis

(2004), SIFT Lowe (1999), SURF Bay et al. (2006)). These approaches have not been successful due to the very high variability

of the images. and due to the presence of many artifacts (algae, trunks, vegetation, etc.). Because of these issues, more recent and

probably more effective approaches are being considered in this paper for address this problem. Therefore, classification approaches

based on deep neural networks (specifically convolutional neural networks, CNN LeCun et al. (2015)) have been applied. Deep

neural networks, by their architecture, make it possible to avoid choosing the best descriptors to use for the estimation of the number

of objects of interest and, on the contrary, they learn about the examples, the best configuration and the best parameters adapted to

images to have an effective recognition.

Event CNN are now widely used in many computer vision taks, for the considered applicative context, there are several speci-

ficities that make this study interesting and original. Therefore the contributions of this paper are the following: first, it is the first

time that image analysis techniques, and in particular CNN, are used in the context of catfish density estimation; more important,

deep learning has been used mainly for classifications tasks, and less for regression tasks, image density estimation. Actually, even

if there are some, few, approaches for people crowding estimation with CNN (as we will see in the next Section), this problem is

still largely open and never addressed in the case of estimation density of different kind of objects than people. This make this paper

the first attempt in this direction and lays the foundations for future developments.

The remainder of the paper is organized as follows: Section 2 discuss about related works, in particular the use of CNN for

people crowding estimation; in Section 3 we describe the proposed architecture and some implementation details of our network

while in Section 4 results of the application of the proposed techniques are drawn; Section 5 concludes the paper with some finally

remarks and future perspectives.

2. Related Works

The first attempt to tackle the object counting problem has been called counting by detection (Barinova et al. (2012); Desai

et al. (2011); Descombes et al. (2009); Dong et al. (2007); Moosmann et al. (2007)). The main idea is to use some detectors,

to localize individual object instances in the image. Given the localization of all instances, counting becomes trivial. However,

object detection is very far from being solved Borji et al. (2015), especially for overlapping instances. In our case, there are many

overlapping instances, because catfishes usually move in group and many parts of single instances are not visible.

The second category of works is called counting by regression. These methods avoid solving the hard detection problem.

Instead, a direct mapping from some global image characteristics (interest points, HOG, etc.) to the number of objects is learned
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Fig. 1. The structure of network proposed in (Zhang et al., 2016).

(Cho et al. (1999); Kong et al. (2006); Conte et al. (2013); Zhang and Li (2012)). This approach however require a large number of

training images with the supplied counts needs to be provided during training. This is not the case of our application framework as

we will discussed later.

Recently, a more effective technique is based on learning density map model. They introduce a counting approach, which works

by learning a linear mapping from local image features to object density maps. With a successful learning, one can provide the

object count by simply integrating over regions in the estimated density map (Onoro-Rubio and López-Sastre (2016); Zhang et al.

(2015, 2016); Boominathan et al. (2016)).

Authors in Zhang et al. (2015) propose a Convolutional Neural Network (CNN) based framework for cross-scene crowd count-

ing. After a CNN is trained with a fixed dataset, a data-driven method is introduced to fine-tune (adapt) the learned CNN to an

unseen target scene, where training samples similar to the target scene are retrieved from the training scenes for fine-tuning. This

adaptation improve accuracy on a specific dataset, but it requires a fine-tuning phase each time an unseen target scene comes up.

The first work that introduce the dealing with the perspective problem in crowding estimation with Deep Neural Networks, is

the work by (Zhang et al., 2016). The authors propose a multi-column convolutional neural network (MCNN) (inspired by the work

of Cireşan et al. (2012)) containing three columns of convolutional neural networks whose filters have different sizes to take into

account perspective problems. Then final predictions are obtained by averaging individual predictions of all deep neural networks.

Figure 1 shows their proposed architecture.

Boominathan et al. Boominathan et al. (2016) propose the use of a combination of deep and shallow, fully convolutional

networks to predict the density map for a given crowd image. Such a combination is used capturing both the high-level semantic

information (face/body detectors) and the low-level features (blob detectors), that are necessary for crowd counting under large

scale variations. Furthermore, they use a different augmentation data management on the different part of the network according to

the available amount of training data at different scales. Figure 2 shows their proposed architecture.
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Fig. 2. The structure of network proposed in (Boominathan et al., 2016).

Fig. 3. The structure of network proposed in (Onoro-Rubio and López-Sastre, 2016).

Lastly, the authors of Onoro-Rubio and López-Sastre (2016) propose a new solution whose main contribution is that object

densities can be estimated without the need of any perspective map or other geometric information of the scene. They do that by

introducing the Hydra CNN architecture, a scale-aware model, which works learning a multiscale regressor inspired by the so called

pyramidal network Lin et al. (2017). The problem of this approach remain the complexity of the network that is not necessary in

our case in which we have limited scaling problems. Figure 3 shows their proposed architecture.

Our proposition is mainly inspired by this last work, but it present two main differences, which are also the contributions of this

paper:

• First, since for aerial images there is not the problem of perspective, we simplify the deep network in such a way that it has

not necessarly be aware of this issue. This results in two advantages: one is that the network is more efficient in terms of time

processing; second there less parameters to learn so it needs less amount of training data.

• Second, as we will see our problem is very unbalanced, we change the data augmentation strategy in order to tackle this issue.

Furthermore, we want to highlight, that this proposal is the first one to address the problem of catfish density estimation by image

analysis and deep learning.
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Fig. 4. The process of patches extraction.

Fig. 5. Our proposal for the structure of deep network.

3. Proposed Framework

Figure 5 shows the proposed architecture. As you can see, it is inspired by HydraNet Onoro-Rubio and López-Sastre (2016),

but it simplified to only one scale layer because Aeriel Images does not present the problem of perspective. The architecture is a

classic ConvNet with 6 convolution layers interlaced by two max-pooling layers on the first two convolution levels. The input of

the network is an image of 116x116 pixels size and the output is a density map (of 29x29 pixels size) of the input image.

For the problem in hand, we have hard unbalancing data. In fact we own a dataset of around 300 images of size 6000x4000,

but only 12 images contain positive samples, i.e. there are catfishes within. Therefore, to address this unbalancing problem, we

proceed as follows.

The first step is to extract patches for our big size images. In fact, as we said, the input size of the network is 116x116 and

we have images whose size is 6000x4000. Therefore, we extract some 116x116 patches from the images starting from the top left

corner and moving right a certain number of pixels (stride) and down when we reach the rightest limit of the image (see Figure 4).

Now it is important to highlight that this extraction is not done in the same way on negative images (i.e. images without catfishes)

and positive images. On positive images we used a dense extraction (stride size equals to 10). It is worth noting that on positive

images, there are also parts of images without the object of interest, so with such a dense extraction we collect also negative samples.

Therefore from negative images we extract, randomly, only 2 patches. This is done in order to deal with the unbalancing issue.

The second step is data augmentation, because we have very few positive samples. The augmentation is done by increasing the

number of patches by making flips and rotations: in this way we obtain 21565 patches.
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Fig. 6. Convolutional neural networks training cost for CIFAR10 deep architecture over 45 epochs (from Kingma and Ba (2015)).

It must be noted that the size of each patch (both original and density patches) is 116x116 but the output results to be 29x29

therefore we have to re-size the output density patches. This re-sizing has to be done carefully: when the sum of the pixels is made

to obtain the estimation of the number of objects, this value has to be the same as the value provided by the network. Therefore, the

re-sizing is done as follows: first, a uniform normalization in range [0, 1] is performed; then the image is transformed to original

input size; third, the values are re-normalized in order to give the expected value.

Concerning the implementation details of the network (following Onoro-Rubio and López-Sastre (2016) with some changes for

adapting to our problem): the architecture consists of 6 convolutional layers; Conv1 and Conv2 layers have filters of size 7x7 with

a depth of 32, and they are followed by a max-pooling layer, with a 2x2 kernel size; the Conv3 layer has 3x3 filters with a depth of

64, and it is also followed by a max-pooling layer with another 2x2 kernel; Conv4 and Conv5 layers are made of 1x1 filters with

a depth of 1000 and 400, respectively (fully convolutional architecture Long et al. (2015)); all the previous layers are followed by

rectified linear units (ReLU); finally, Conv6 is another 1x1 filter with a depth of 1, Conv6 is in charge of returning the density map

estimation for the input patch P.

We adopt Adam algorithm Kingma and Ba (2015) for gradient-based optimization of stochastic objective functions. Empir-

ical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods (see

Figure 6).

3.1. Counting model and Ground Truth construction

It is important to spend some words to describe the process of the construction of the Ground Truth. In fact, while in classifica-

tion and detection contexts, the ground truth for an image of video is straightforward, in case of density map estimation is somehow

complex.
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Fig. 7. A toy example to explain the process of ground truth annotation.

Our counting objects model follow the basic principles introduced by Lempitsky and Zisserman in Lempitsky and Zisserman

(2010). Our solution requires a set of annotated images, where all the objects are marked by dots. In this scenario, the ground truth

density map DI , for an image I, is defined as a sum of Gaussian functions centered on each dot annotation,

DI(p) =
∑
µ∈AI

N(p; µ,Σ) (1)

where AI is the set of 2D points annotated for the image I, and N(p; µ,Σ) represents the evaluation of a normalized 2D Gaussian

function, with mean µ and isotropic covariance matrix Σ, evaluated at pixel position defined by p. With this density map DI, the

total object count NI can be directly obtained by integrating the density map values in DI over the entire image, as in Eq. 2.

NI =
∑
p∈I

DI(p) (2)

Note that all the Gaussian are summed, so the total object count is preserved even when there is overlap between objects. Figure 7

shows a toy example of the annotation model and Figure 8 shows a real example of annotated image from our dataset.

4. Results

4.1. Our dataset

The Aerial Images which constitute our dataset show the considerable difficulty of the problem: the environment is highly

variable in terms of colors, lightning, presence of obstacle and so on (see Figure 9); the appearance of the catfish is sometimes very

similar to the background (see Figure 10) and it is difficult, even for a human expert to provide the real number of objects of interest

also due to grouping of fishes; finally the presence of fishes is very sparse (often on an image of 6000x4000 pixels there is only one

catfish whose size is around 50x150). In the dataset there 300 images, of which 12 positive images. We trained the network with 9

positive images and 3 negative images, then we test on the on the remaining 3 positive images.

In the test phase, for each image, we extract the patches without overlapping (stride equals to 0, we obtain the density map of

the patch resulting from the application of our deep architecture on the patch, we obtain the number of the catfishes by sum all

pixels values of the density map of the patch and the total number estimated of catfishes on the image is the sum of the values on

all the patches of the image.
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Fig. 8. A positive image sample and its corresponding ground truth annotation.

Fig. 9. Some example images from the considered dataset.

Fig. 10. An example of image in which the presence of catfishes is annotated by bounding boxes. Note the difficult for counting the group of catfishes on
the right of the image.
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Image Estimation Ground-truth
S1/DSC09754.jpg 101.97 2
S1/DSC09755.jpg 99.03 2
S1/DSC09768.jpg 104.23 13
S1/DSC09769.jpg 90.03 14
S1/DSC09770.jpg 96.45 1
S1/DSC09771.jpg 96.33 1
S1/DSC09773.jpg 88.60 1
S2/DSC00403.jpg 219.63 2
S3/DSC00592.jpg 102.89 1

MAE 106.92
MSE 13017.92

Table 1. Results on training set at epoch 0.

Image Estimation Ground-truth
S1/DSC09777.jpg 85.63 2
S2/DSC00404.jpg 128.74 2
S2/DSC00493.jpg 91.51 1

MAE 100.29
MSE 10416.86

Table 2. Results on test set at epoch 0.

4.2. Numerical Results

By following the convention of existing works Conte et al. (2010, 2013); Zhang et al. (2015) for crowd counting, we evaluate

different methods with both the absolute error (MAE) and the mean squared error (MSE), which are defined as in the Eq. 3 and

Eq. 4.

MAE =
1
N

N∑
1

|zi − ẑi| (3)

MS E =

√√√
1
N

N∑
1

(zi − ẑi)2 (4)

where N is the number of test images, zi is the actual number of people in the ith image, and ẑi is the estimated number of objects

(in our case catfishes) in the ith image. Intuitively, MAE indicates the accuracy of the estimates, and MSE indicates the robustness

of the estimates.

In this section we present the results obtained at different epochs of training, in order to understand the behavior of the network

and to interpret the result in our application context. For each epoch, we show the number of fishes estimated on each training and

test images and the MAE and MSE indexes on the entire training and test set.

Table 1 and Table 2 show results at epoch 0. Obviously the estimation is very bad, because the network has not yet learned.

After only 10 epochs the estimated values have suddenly decreased. For 7 out of 12 images, the estimation are below the true

value (Table 3 and Table 4). The MAE and MSE continue to decrease at epoch 20.
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Image Estimation Ground-truth
S1/DSC09754.jpg 1.08 2
S1/DSC09755.jpg 0.34 2
S1/DSC09768.jpg 4.83 13
S1/DSC09769.jpg 154.32 14
S1/DSC09770.jpg 3.00 1
S1/DSC09771.jpg 3.25 1
S1/DSC09773.jpg 5.04 1
S2/DSC00403.jpg 1.26 2
S3/DSC00592.jpg 0.58 1

MAE 17.83
MSE 2198.66

Table 3. Results on training set at epoch 10.

Image Estimation Ground-truth
S1/DSC09777.jpg 13.98 2
S2/DSC00404.jpg 28.43 2
S3/DSC00493.jpg 59.87 1

MAE 32.42
MSE 1436.06

Table 4. Results on test set at epoch 10.

Image Estimation Ground-truth
S1/DSC09754.jpg 13.89 2
S1/DSC09755.jpg 12.46 2
S1/DSC09768.jpg 13.50 13
S1/DSC09769.jpg 12.14 14
S1/DSC09770.jpg 11.88 1
S1/DSC09771.jpg 12.31 1
S1/DSC09773.jpg 12.26 1
S2/DSC00403.jpg 33.68 2
S3/DSC00592.jpg 18.02 1

MAE 11.87
MSE 213.59

Table 5. Results on training set at epoch 20.

Image Estimation Ground-truth
S1/DSC09777.jpg 5.07 2
S2/DSC00404.jpg 5.53 2
S2/DSC00493.jpg 8.19 1

MAE 4.60
MSE 24.56

Table 6. Results on test set at epoch 20.



11

Fig. 11. The estimated density map of Figure 10.

Image Estimation Ground-truth
S1/DSC09754.jpg 0.05 2
S1/DSC09755.jpg 0.02 2
S1/DSC09768.jpg 3.18 13
S1/DSC09769.jpg 0.00 14
S1/DSC09770.jpg 4.38 · 10−4 1
S1/DSC09771.jpg 3.35 · 10−5 1
S1/DSC09773.jpg 7.82 · 10−4 1
S2/DSC00403.jpg 0.01 2
S3/DSC00592.jpg 7.2 · 10−65 1

MAE 4.10
MSE 42.33

Table 7. Results on training set at epoch 40.

Still at epoch 40, MAE and MSE continue to decrease, but actually all the estimation fall down to 0. The network weights

seem to converge towards 0. This is mainly due to the sparsity of catfishes in the images. Even if we only took positive images

for training, these are very big (6000x4000) with often only 1 positive sample (a catfish) in the image. Therefore, most of the

116x116-sized patches will not contain any fish. As a result, the neural network must return density maps composed entirely of

zeros for a large part of the image (Figure 11 shows the estimated density map of the image depicted in Figure 10). This partly

explains why the weights of the neural network seem to be converging towards zero.

Image Estimation Ground-truth
S1/DSC09777.jpg 2.42 · 10−5 2
S2/DSC00404.jpg 0.002 2
S2/DSC00493.jpg 0.032 1

MAE 1.65
MSE 2.97

Table 8. Results on test set at epoch 40.
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5. Conclusions

In this paper we have presented a deep neural network for estimating the density of catfishes from aerial images. This is the first

attempt to use machine learning and image analysis in this application context. The architecture has been inspired by the recent

works on estimating people crowd density from images. But theses architecture was adapted at the specificity of the acquisition

technology (aerial images) and the application context (catfish detection).

Preliminary results are not yes so good, the analysis shows many promising directions for improving performance. Future

works will be precisely dedicated to improve the system in several ways: first we plan to study more in-depth the problem of data

augmentation especially for positive sample, given their scarcity in our dataset; second we plan to use transfer learning technique

to compensate for this lack of data; third we will try to add some application specific features that should improve the learning

capability of the network.
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