
HAL Id: hal-02285762
https://hal.science/hal-02285762v1

Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic estimation for medical data management in a
cloud federation

Trung-Dung Le, Verena Kantere, Laurent D ’ Orazio

To cite this version:
Trung-Dung Le, Verena Kantere, Laurent D ’ Orazio. Dynamic estimation for medical data man-
agement in a cloud federation. International Workshop on Data Analytics solutions for Real-LIfe
APplications, Mar 2019, Lisbon, Portugal. �hal-02285762�

https://hal.science/hal-02285762v1
https://hal.archives-ouvertes.fr

Dynamic estimation for medical data management in a
cloud federation

Trung-Dung Le
Univ Rennes

CNRS, IRISA
Lannion, France

trung-dung.le@irisa.fr

Verena Kantere
University of Ottawa

School of Electrical Engineering and
Computer Science
Ottawa, Canada

vkantere@uOttawa.ca

Laurent d′Orazio
Univ Rennes

CNRS, IRISA
Lannion, France

laurent.dorazio@irisa.fr

ABSTRACT
Data sharing is important in the medical domain. Sharing data al-
lows large-scale analysis with many data sources to provide more
accurate results (especially in the case of rare diseases with small
local datasets). Cloud federations consist in a major progress in
sharing medical data stored within different cloud platforms, such
as Amazon, Microsoft, Google Cloud, etc. It also enables to ac-
cess distributed data of mobile patients. The pay-as-you-go model
in cloud federations raises an important issue in terms of Multi-
Objective Query Processing (MOQP) to find a Query Execution
Plan according to users preferences, such as response time, money,
quality, etc. However, optimizing a query in a cloud federation is
complex with increasing heterogeneity and additional variance,
especially due to a wide range of communications and pricing
models. Indeed, in such a context, it is difficult to provide accurate
estimation to make relevant decision. To address this problem, we
present Dynamic Regression Algorithm (DREAM), which can
provide accurate estimation in a cloud federation with limited
historical data. DREAM focuses on reducing the size of historical
data while maintaining the estimation accuracy. The proposed al-
gorithm is integrated in Intelligent Resource Scheduler, a solution
for heterogeneous databases, to solve MOQP in cloud federations
and validate with preliminary experiments on a decision support
benchmark (TPC-H benchmark).

1 INTRODUCTION
Medical data sharing is full of promises. It allows large-scale med-
ical data analysis to diagnose diseases more accurately. To reach
this goal, the distributed clinics need to optimize queries on shared
medical data with data sources in a cloud federation. For instance,
in health-care, information of a given patient may be owned by
different hospitals that may use various providers. Pay-as-you-go
models in cloud federations and elasticity thus raise an important
issue in terms of Multi-Objective Query Processing (MOQP) to
find a Query Execution Plan (QEP) according to users preferences,
such as time, money, quality, etc. However, optimizing queries in
a cloud federation raises issues of heterogeneity and variability
of cloud environment, such as wide-range communications and
pricing models.

In variable environment like a cloud federation with various
database systems, we should build a model to estimate the cost
values for the MOQP. A cloud federation may rely on various
hardware and systems. In addition, it also depends on the variety
of physical machines, load evolution and wide-range communica-
tions. As a consequence, estimation is complex with the variability

© 2019 Copyright held by the author(s). Published in the Workshop Proceedings
of the EDBT/ICDT 2019 Joint Conference (March 26, 2019, Lisbon, Portugal) on
CEUR-WS.org

of environment. In this context, a challenging problem is how to
estimate accurate values for MOQP without precise knowledge of
execution environment in a cloud federation consisting of different
sites.

Cost modeling can be classified into two classes: without
[23, 26, 34] and with machine learning algorithms [11]. How-
ever, in a cloud federation with variability and different systems,
cost functions may be quite complex. In the first class, cost mod-
els introduced to build optimal group of queries [23] are limited
to MapReduce [8]. Besides, PostgreSQL cost model [34] aims
to predict query execution time for this specific relational Data
Base Management system. Moreover, OptEx [26] provides esti-
mated job completion times for Spark [28] with respect to the
size of the input dataset, the number of iterations, the number of
nodes composing the underlying cloud. However, these papers
only mention the estimation of execution time for a job, not for
other metrics, such as monetary cost. Meanwhile, various machine
learning techniques are applied to estimate execution time in re-
cent researches [1, 15, 30, 35]. They predict the execution time
by many machine learning algorithms. They treated the database
system as a black box and try to learn a query running time pre-
diction model using the total information for training and testing
in the model building process. It may lead to the use of expired
information. In addition, most of these solutions solve the opti-
mization problem with a scalar cost value and do not consider
multi-objective problems.

In this paper, we introduce a medical system on a cloud feder-
ation called Medical Data Management System (MIDAS). It is
based on the Intelligent Resource Scheduler (IReS) [11], an open
source platform for complex analytics workflows executed over
multi-engine environments. In particular, we focus on Dynamic
Regression Algorithm (DREAM) to provide accurate estimation
with low computational cost. DREAM is then implemented and
validated with preliminary experiments on a decision support
benchmark (TPC-H benchmark [31]).

The remaining of this paper is organized as follows. Section 2
presents the research background. DREAM is presented in Sec-
tion 3, while Section 4 presents experiments to validate DREAM.
Finally, Section 5 concludes this paper and lists some perspectives.

2 BACKGROUND
Our work is a part of the MIDAS project, which aims to provide a
data management system for cloud federation. In this section, we
introduce an architecture of the system, concepts and techniques,
allowing us to implement the proposed medical data management
on a cloud federation.

First of all, an overview of MIDAS and the benefits of cloud
federation where our system is built on are introduced. After that,
an open source platform, which helps our system managing and
executing workflows over multi-engine environments is described.

Interface

User query
policy

Modelling

Generating
QEP

Hive
engine

Multi-Objective
Optimizer

Hive

A Query

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud
Platform

IReS

DREAM

Figure 1: Architecture of MIDAS.

The concept of Pareto plan set related to MOQP in MIDAS is then
defined. In addition, Multiple Linear Regression is also introduced
as the basic foundation of our proposed algorithm for MOQP.

2.1 MIDAS
MIDAS is a medical data management system for cloud federa-
tion. The proposal aims to provide query processing strategies to
integrate existing information systems (with their associated cloud
provider and data management system) for clinics and hospitals.
Figure 1 presents an overview of the system. Integrating the sys-
tem within a cloud federation allows to choose the best strategy
for MOQP. The different cloud resource pools allow the system
to run in the most appropriate infrastructure environments. The
system can optimize workflows between different data sources
on different clouds, such as Amazon Web Services [3], Microsoft
Azure [4] and Google Cloud Platform [16]. The proposed system
is developed based on the Intelligent Resource Scheduler (IReS)
for complex analytics workflows executed over multi-engine envi-
ronments on a cloud federation.

2.2 Cloud federation
A cloud federation enables to interconnect different cloud com-
puting environments. Cloud computing [2] allows to access on
demand and configurable resources, which can be quickly made
available with minimal maintenance. According to the pay-as-
you-go pricing model, customers only pay for resources (storage
and computing) that they use. Cloud Service Providers (CSP)
supply a pool of resources, development platforms and services.
There are many CSPs on the market, such as Amazon, Google
and Microsoft, etc., with different services and pricing models.
For example, Table 1 shows the pricing of instances in two cloud
providers. The price of Amazon instances are lower than the price
of Microsoft instances, but the price of Amazon is without storage.
Hence, depending on the demand of a query, the monetary cost is
lower or higher at a specific provider.

In medical domain, cloud federation may lead to query data on
different clouds. For example, mobile patient data can be analyzed
with many distributed sources of data to provide more accurate
results. Data management in a cloud federation is thus a critical

issue in terms of multi-engine environment and Multi-Objective
Query Processing.

2.3 Pareto plan set
Let a query q be an information request from databases, presented
by a set Q of tables. A Query Execution Plan (QEP) includes
an ordered set of operators (select, project, join, etc.). The set
of QEPs p of q is denoted by symbol P. The set of operators is
denoted by O. A plan p can be divided into two sub-plans p1 and
p2 if p is the result of function Combine(p1,p2,o), where o ∈ O.

The execution cost of a QEP depends on parameters, which
values are not known at the optimization time. A vector x denotes
parameters value and the parameter space X is the set of all
possible parameter vectors x. In MOQP, N is denoted as the set of
n cost metrics. We can compare QEPs according to n cost metrics
which are processed with respect to the parameter vector x and
cost functions cn (p, x). Let denote C as the set of cost function c.

Let p1,p2 ∈ P, p1 dominates p2 if the cost values according to
each cost metric of plan p1 is less than or equal to the correspond-
ing values of plan p2 in all the space of parameter X. That is to
say:

C(p1,X) ⪯ C(p2,X) | ∀n ∈ N ,∀x ∈ X : cn (p1, x) ≤ cn (p2, x).
(1)

The function Dom(p1,p2) ⊆ X yields the parameter space region
where p1 dominates p2 [32]:

Dom(p1,p2) = {x ∈ X | ∀n ∈ N : cn (p1, x) ≤ cn (p2, x)}. (2)

Assume that in the area x ∈ A,A ⊆ X,p1 dominatesp2, C(p1,A) ⪯
C(p2,A), Dom(p1,p2) = A ⊆ X. p1 strictly dominates p2if all
values for the cost functions of p1 are less than the corresponding
values for p2 [32], i.e.

StriDom(p1,p2) = {x ∈ X | ∀n ∈ N : cn (p1, x) < cn (p2, x)}.
(3)

A Pareto region of a plan is a space of parameters where there is
no alternative plan has lower cost than it [32]:

PaReд(p) = X \ (
⋃
p∗∈P

StriDom(p∗,p)). (4)

2.4 IReS
Intelligent Multi-Engine Resource Scheduler (IReS) [11] is an
open source platform for managing, executing and monitoring
complex analytics workflows. IReS provides a method of opti-
mizing cost-based workflows and customizable resource manage-
ment of diverse execution and various storage engines. Interface
is the first module which is designed to receive information on
data and operators, as shown in Figure 1. The second module
is Modelling, as shown in Figure 1, is used to predict the exe-
cution time by a model chosen by comparing machine learning
algorithms. For example, Least squared regression [25], Bagging
predictors [6], Multilayer Perceptron in WEKA framework [33]
are used to build the cost model in Modelling module. The mod-
ule tests many algorithms and the best model with the smallest
error is selected. It guarantees the predicted values as the best
one for estimating process. Next module, Multi-Objective Opti-
mizer, optimizes MOQP and generates a Pareto QEP set. In Multi-
Objective problem, the objectives are the cost functions user con-
cerned, such as the execution time, monetary, intermediate data,
etc. Multi-Objective Optimization algorithms can be applied to the
Multi-Objective Optimizer. For instance, the algorithms based
on Pareto dominance techniques [7, 9, 10, 19, 21, 22, 29, 36, 37]

Table 1: Example of instances pricing.

Provider Machine vCPU Memory (GiB) Storage (GiB) Price
Amazon a1.medium 1 2 EBS-Only $0.0049/hour

a1.large 2 4 EBS-Only $0.0098/hour
a1.xlarge 4 8 EBS-Only $0.0197/hour
a1.2xlarge 8 16 EBS-Only $0.0394/hour
a1.4xlarge 16 32 EBS-Only $0.0788/hour

Microsoft B1S 1 1 2 $0.011/hour
B1MS 1 2 4 $0.021/hour
B2S 2 4 8 $0.042/hour

B2MS 2 8 16 $0.084/hour
B4MS 4 16 32 $0.166/hour
B8MS 8 32 64 $0.333/hour

are solutions for Multi-objective Optimization problems. Finally,
the system selects the best QEP based on user query policy and
Pareto set. The final query plan is run on multiple engines, as
shown in Figure 1.

2.5 Multiple Linear Regression
A cost function of Multiple Linear Regression (MLR) model [27]
is following defined:

c = β0 + β1x1 + ... + βLxL + ϵ, (5)

where βl , l = 0, ..., L, are unknown coefficients, xl , l = 1, ..., L, are
the independent variables, e.g., size of data, computer configura-
tion, etc., c is cost function values and ϵ is random error following
normal distributionN(0,σ 2) with zero mean and variance σ 2. The
fitted equation is defined by:

ĉ = β̂0 + β̂1x1 + ... + β̂LxL . (6)

EXAMPLE 2.1. A query Q could be expressed as follows:

SELECT p.PatientSex, i.GeneralNames

FROM Patient p, GeneralInfo i

WHERE p.UID = i.UID

where Patient table is stored in cloud A and uses Hive database en-
gine [18], while GeneralInfo table is in cloud B with PostgreSQL
database engine [24]. This scenario leads to concern two metrics
of monetary cost and execution time cost. We can use the cost
functions which depend on the size of tables of Patient and Gener-
alInfo. Besides, the configuration and pricing of virtual machines
cloud A and B are different. Hence, the cost functions depend on
the size of tables and the number of virtual machines in cloud A
and B.

ĉt i = β̂t0 + β̂t1xPa + β̂t2xGe + β̂t3xnodeA + β̂t4xnodeB

ĉmo = β̂m0 + β̂m1xPa + β̂m2xGe + β̂m3xnodeA + β̂m4xnodeB

where ĉt i , ĉmo are execution time and monetary cost function;
xPa, xGe are the size of Patient and GeneralInfo tables, respec-
tively, and xnodeA, xnodeB are the number of virtual machines
created to run query Q.

There are M historical data, each of them associates with a re-
sponse cm , which can be predicted by a fitted value ĉm calculated
from corresponding xlm as follows:

ĉm = β̂0 + β̂1x1m + ... + β̂LxLm ;m = 1, ...,M . (7)

Let denote

A =

1 x11 x21 ... xL1
1 x12 x22 ... xL2
.

.

1 x1M x2M ... xLM

, (8)

C =

c1
c2
.

.

cM

, (9)

B =

β̂0
β̂1
.

.

β̂L

. (10)

To minimize the Sum Square Error (SSE), defined by:

SSE =
M∑

m=1
(cm − ĉm)

2, (11)

the solution for B is retrieved by:

B = (ATA)−1ATC . (12)

2.6 Motivation
Our proposed method is integrated into Modelling module to pre-
dict the cost values with low computational cost in MOQP of a
cloud environment. However, the machine learning algorithms
in Modelling module of IReS need entire of training datasets. It
may lead to use expired information. Hence, the proposal algo-
rithm aims to improve the accuracy of estimated values with low
computational cost.

In addition, MOQP could be solved by Multi-objective Opti-
mization algorithms or the Weighted Sum Model (WSM) [17].
However, Multi-objective Optimization algorithms may be se-
lected thanks to their advantages when comparing with WSM.
The optimal solution of WSM could be not acceptable, because
of an inappropriate setting of the coefficients [13]. Furthermore,
the research in [20] proves that a small change in weights may
result in significant changes in the objective vectors and signif-
icantly different weights may produce nearly similar objective
vectors. Moreover, if WSM changes, a new optimization process
will be required. Hence, our system applies a Multi-objective Op-
timization algorithm to the Multi-Objective Optimizer to find a
Pareto-optimal solution.

In conclusion, our solution aims to improve the accuracy of cost
value prediction with low computational cost and to solve MOQP
by Multi-objective Optimization algorithm in a cloud federation
environment. To provide accurate estimation while reducing the
number of previous measures, our algorithm is proposed based on
Multiple Linear Regression.

3 DYNAMIC REGRESSION ALGORITHM
Most of cost models [12, 23, 34] depend on the size of data.
Hence, our cost functions are functions of the size of data. In
particular, cost function and fitted value of Multiple Linear Re-
gression model are previously defined in Section 2.5. The bigger
M for sets {cm, xlm } is, the more accurate MLR model usually is.
However, the computers is slowing down when M is too big.

Furthermore, the target of Multi-Objective Query Processing is
the Multi-Objective Optimization Problem [36], which is defined
by:

minimize(F (x) = (f1(x), f2(x)..., fK (x))
T), (13)

where x = (x1, ..., xL)T ∈ Ω ⊆ RL is an L-dimensional vector of
decision variables, Ω is the decision (variable) space and F is the
objective vector function, which contains K real value functions.

In general, there is no point in Ω that minimizes all the objec-
tives together. Pareto optimality is defined by trade-offs among
the objectives. If there is no point x ∈ Ω such that F (x) dominates
F (x∗), x∗ ∈ Ω, x∗ is called Pareto optimal and F (x∗) is called a
Pareto optimal vector. Set of all Pareto optimal points is the Pareto
set. A Pareto front is a set of all Pareto optimal objective vectors.
Generating the Pareto-optimal front can be computationally ex-
pensive [5]. In cloud environment, the number of equivalent query
execution plans is multiplied.

EXAMPLE 3.1. Assuming that a query is processed on Amazon
EC2. If the pool of resources includes 70 vCPU and 260GB of
memory, the number of different configurations to execute this
query is thus 70 x 260 = 18,200. Hence, the system can generate
18,200 equivalent QEPs from a give execution plan.

Example 3.1 shows that a query execution plan can generate
multiple equivalent QEPs in cloud environment. The smaller M for
sets {cm, xlm } is, the faster speed for the estimation cost process
of Multi-Objective Query Processing for a QEP is. In the system
of computationally expensiveness in cloud environment as in
Example 3.1, a small reduction of computation for an equivalent
QEP estimation will become significant for a large number of
equivalent QEPs estimation.

The most important idea is to estimate MLR quality by using
the coefficient of determination. The coefficient of determination
[27] is defined by:

R2 = 1 − SSE/SST , (14)

where SSE is the sum of squared errors and SST represents the
amount of total variation corresponding to the predictor variableX .
Hence, R2 shows the proportion of variation in cost given by the
Multiple Linear Regression model of variable X . For example, the
model gives R2 = 0.75 of time response cost, it can be concluded
that 3/4 of the variation in time response values can be explained
by the linear relationship between the input variables and time
response cost. Table 2 presents an example of MLR with different
number of measures. The smallest dataset is M = L + 2 = 4
[27], where M is the size of previous data and L is the number
of variables in Equation (5). In general, R2 increases in parallel
with M . In particular, R2 should be greater than 0.8 to provide a
sufficient quality of service level. As a consequence, M should

Table 2: Using MLR in different size of dataset.

Cost x1 x2 M R2

20.640 0.4916 0.2977
15.557 0.6313 0.0482
20.971 0.9481 0.8232
24.878 0.4855 2.7056 4 0.7571
23.274 0.0125 2.7268 5 0.7705
30.216 0.9029 2.6456 6 0.8371
29.978 0.7233 3.0640 7 0.8788
31.702 0.8749 4.2847 8 0.8876
20.860 0.3354 2.1082 9 0.8751
32.836 0.8521 4.8217 10 0.8945

be greater than 5 to provide enough accuracy. Hence, when the
system requires the minimum values of R2 is equal to 0.8, M > 6
is not recommended. In general, R2 still rises up when M goes
up. Therefore, we need to determine the model which is sufficient
suitable by the coefficient of determination.

Training set DREAM

coefficient of
determination

New training
set Modelling

Figure 2: DREAM module.

Our motivation is to provide accurate estimation while reducing
the number of previous measures based on R2. We thus propose
DREAM as a solution for cloud federation and their inherent
variance, as shown in Table 2. DREAM uses the training set to
test the size of new training dataset. It depends on the predefined
coefficient of determination. The new training set is generated
in oder to have the updated value and avoid using the expired
information. With the new training set, Modelling uses less data
in building model process than the original approach.

Cost modeling without machine learning [23, 26, 34] often
uses the size of data to estimate the execution time for the specific
system. Besides, the machine learning approach [11, 33] can use
any information to estimate the cost value. Hence, our algorithm
uses the size of data as variables of DREAM. In (6), ĉ is the cost
value, which needs to be estimated in MOQP, and x1, x2, . . . are
the information of system, such as size of input data, the number
of nodes, the type of virtual machines. If R2 ≥ R2r equire , where

R2r equires is predefined by users, the model is reliable. In contrast,
it is necessary to increase the number of set value. Algorithm 1
shows a scheme as an example of increasing value set:m =m + 1.

In this paper, we focus on the accuracy of execution time es-
timation with the low computational cost in MOQP. The origi-
nal optimization approach in IReS uses Weighted Sum Model
[17] with user policy to find the best candidate. However, Multi-
objective Optimization algorithms have more advantages than
WSM [13, 20]. Hence, after having a set of predicted cost func-
tion values for each query plan, a Multi-objective Optimization
algorithm, such as Non-dominated Sorting Genetic Algorithm II
[10] is applied to determine a Pareto plan set. At the final step,
the weight sum model S and the constraint B associated with the

Algorithm 1 Calculate the predict value of multi-cost function

1: function ESTIMATECOSTVALUE(R2r equire ,X ,Mmax)
2: for n = 1 to N do
3: R2n ← ∅ //with all cost function
4: end for
5: m = L + 2 //at leastm = L + 2
6: while (any R2n < R2n−r equire) andm < Mmax do
7: for ĉn (p) ⊆ ĉN(p) do
8: R2n = 1 − SSE/SST
9: ĉn = β̂n0 + β̂n1x1 + ... + β̂nLxL

10: end for
11: m =m + 1
12: end while
13: return ĉN(p)
14: end function

Initial
Population

Objective
values

Fitness
Distribution

Genetic
Operation

Insert Parent

Satisfied
Termination
Criteria?

Termination
Population

All Candidates

Weighted Sum
Model Values

Comparing
Scalar Values

Weighted Sum
Model Values

Comparing
Scalar Value

The best QEP

The best QEP

Multi-Objecitve Optimization based
on Genetic Algorithm

Multi-Objecitve Optimization
based on Weighted Sum Model

Figure 3: Comparing two MOQP approaches

Algorithm 2 Select the best query plan in P

1: function BESTINPARETO(P, S,B)
2: PB ← p ∈ P|∀n ≤ |B| : cn (p) ≤ Bn
3: if PB , ∅ then
4: return p ∈ PB |C(p) =min(WeiдhtSum(PB , S))
5: else
6: return p ∈ P|C(p) =min(WeiдhtSum(P, S))
7: end if
8: end function

user policy are used to return the best QEP for the given query
[17]. In particular, the most meaningful plan will be selected by
comparing function values with weight parameters between ĉn
[17] at the final step, as shown in Algorithm 2. Figure 3 shows the
different between two MOQP approaches.

Our algorithms are developed based on the MLR described
above using xi for size of data and ci for the metric cost, such as
the execution time, energy consumption, etc.

Table 3: Comparison of mean relative error with 100MiB
TPC-H dataset.

Query BMLN BML2N BML3N BML DREAM
12 0.265 0.459 0.220 0.485 0.146
13 0.434 0.517 0.381 0.358 0.258
14 0.373 0.340 0.335 0.358 0.319
17 0.404 0.396 0.267 0.965 0.119

4 EVALUATION
DREAM has been implemented on top of IReS platform. It has
been validated with experiments.

4.1 Implementation
Our experiments are executed on a private cloud [14] with a
cluster of three machines. Each node has four 2.4 GHz CPU, 80
GiB Disk, 8 GiB memory and runs 64-bit platform Linux Ubuntu
16.04.2 LTS. The system uses Hadoop 2.7.3 [24], Hive 2.1.1 [18],
PostgreSQL 9.5.14 [24], Spark 2.2.0 [28] and Java OpenJDK
Runtime Environment 1.8.0. IReS platform is used to manage
data in multiple database engine and deploy the algorithms.

4.2 Experiments
TPC-H benchmark [31] with two datasets of 100MB and 1GB is
used to have experiments with DREAM. Experiments with TPC-H
benchmark are executed in a multi-engine environment consisting
of Hive[18] and PostgreSQL[24] deployed on a private cloud [14].
In TPC-H benchmark, the queries related to two tables are 12,
13, 14 and 17. These queries with two tables in two different
databases, such as Hive and PostgreSQL, are studied.

4.3 Results
To estimate the quality of DREAM in comparison with other
algorithms, Mean Relative Error (MRE), a metric used in [1] is
used and described as below:

1
M

i=1∑
M

|ĉi − ci |

ci
, (15)

where M is the number of testing queries, ĉi and ci are the predict
and actual execution time of testing queries, respectively. IReS
platform uses multiple machine learning algorithms in their model,
such as Least squared regression, Bagging predictors, Multilayer
Perceptron.

In IReS model building process, IReS tests many algorithms
and the best model with the smallest error is selected. It guar-
antees the predicted values as the best one for estimating pro-
cess. DREAM is compared to the Best Machine Learning model
(BML) in IReS platform with many observation window (N , 2N ,
3N and no limit of history data). The smallest size of a window,
N = L+2 [27], where L is the number of variables, is the minimum
data set DREAM requires. As shown in Tables 3 and 4, MRE
of DREAM are the smallest values between various observation
windows. In our experiments, the size of historical data, which
DREAM uses, are very small, around N .

5 CONCLUSION
This paper is about medical data management in cloud federa-
tion. It introduces Dynamic Regression Algorithm (DREAM) as a
part of MIDAS and on top of IReS, an open source platform for

Table 4: Comparison of mean relative error with 1GiB TPC-
H dataset.

Query BMLN BML2N BML3N BML DREAM
12 0.349 0.854 0.341 0.480 0.335
13 0.396 0.843 0.457 0.487 0.349
14 0.468 0.664 0.539 0.790 0.318
17 0.620 0.611 0.681 0.970 0.536

complex analytics work-flows executed over multi-engine envi-
ronments. DREAM aims to address variance in a cloud federation
and to provide accurate estimation for MOQP. Preliminary results
with DREAM and TPC-H benchmark are quite promising with
respect to existing solutions.

In the future, we plan to validate our proposal with more cloud
providers (and their associated pricing model and services) and
data management systems. We will also define new strategies to
choose QEPs in a Pareto Set.

ACKNOWLEDGMENT
The authors would like to thank members of SHAMAN team at
Univ Rennes, CNRS, IRISA and University of Ottawa School
of Electrical Engineering and Computer Science for insightful
comments.

REFERENCES
[1] M. Akdere, U. Çetintemel, M. Riondato, E. Upfal, and S. B. Zdonik. 2012.

Learning-based query performance modeling and prediction. International
Conference on Data Engineering (2012), 390–401.

[2] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. 2010. A View of Cloud Computing. Commun. ACM 53, 4
(April 2010), 50–58.

[3] AWS 2018. Amazon Web Services Website. (2018). https://aws.amazon.com/
[4] Azure 2018. Microsoft Azure Website. (2018). https://azure.microsoft.com/
[5] Lucas S. Batista. 2012. Performance Assessment of Multiobjective Evolution-

ary Algorithms. 7 (2012).
[6] Leo Breiman. 1996. Bagging predictors. Machine Learning 24 (1996), 123–

140.
[7] Carlos A. Coello Coello, David A. Van Veldhuizen, and Gary B. Lamont. 2002.

Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and
Evolutionary Computation).

[8] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data
Processing on Large Clusters. Commun. ACM 51 (Jan. 2008), 107–113.

[9] Kalyanmoy Deb and Himanshu Jain. 2013. An Evolutionary Many-Objective
Optimization Algorithm Using Reference-point Based Non-dominated Sorting
Approach, Part I: Solving Problems with Box Constraints. IEEEXplore 18
(2013).

[10] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. 2002. A
fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 6 (2002), 182–197.

[11] K. Doka, Ni Papailiou, D. Tsoumakos, C. Mantas, and N. Koziris. 2015. IReS:
Intelligent, Multi-Engine Resource Scheduler for Big Data Analytics Work-
flows. In SIGMOD ’15.

[12] H. M. Fard, R. Prodan, J. J. D. Barrionuevo, and T. Fahringer. 2012. A Multi-
objective Approach for Workflow Scheduling in Heterogeneous Environments.
12th IEEE/ACM (2012).

[13] C. M. Fonseca and P. J. Fleming. 1995. An Overview of Evolutionary Algo-
rithms in Multiobjective Optimization. Evolutionary Computation 3, 1 (Mar.
1995), 1–16.

[14] Galactica 2018. The Galactica Website. (2018). https://horizon.isima.fr
[15] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D.

Patterson. 2009. Predicting Multiple Metrics for Queries: Better Decisions
Enabled by Machine Learning. In 2009 IEEE 25th International Conference
on Data Engineering. 592–603.

[16] Google 2018. Google Cloud Website. (2018). https://cloud.google.com/
[17] Florian Helff and Laurent Orazio. 2016. Weighted Sum Model for Multi-

Objective Query Optimization for Mobile-Cloud Database Environments. In
EDBT/ICDT Workshops.

[18] Hive 2018. The Hive Website. (2018). http://hive.apache.org/
[19] Himanshu Jain and Kalyanmoy Deb. 2014. An evolutionary many-objective

optimization algorithm using reference-point based nondominated sorting ap-
proach, Part II: Handling constraints and extending to an adaptive approach.

IEEE Transactions on Evolutionary Computation 18 (2014), 602–622.
[20] Salman A. Khan and Shafiqur Rehman. 2013. Iterative non-deterministic

algorithms in on-shore wind farm design: A brief survey. Renewable and
Sustainable Energy Reviews 19 (2013), 370 – 384.

[21] J. Knowles and D. Corne. 1999. The Pareto archived evolution strategy: a new
baseline algorithm for Pareto multiobjective optimisation. In 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Vol. 1. 98–105.

[22] Trung-Dung Le, Verena Kantere, and Laurent d’Orazio. 2018. An efficient
multi-objective genetic algorithm for cloud computing: NSGA-G. In Interna-
tional Workshop on Benchmarking, Performance Tuning and Optimization for
Big Data Applications (BPOD@BigData). Seattle, WA, USA.

[23] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. 2010. MRShare:
sharing across multiple queries in MapReduce. VLDB Endowment (2010).

[24] PostgreSQL 2018. The PostgreSQL Website. (2018). https://www.postgresql.
org/

[25] Peter J. Rousseeuw and Annick M. Leroy. 1987. Robust regression and outlier
detection.

[26] S. Sidhanta, W. Golab, and S. Mukhopadhyay. 2016. OptEx: A Deadline-Aware
Cost Optimization Model for Spark. IEEE/ACM (2016).

[27] Tsu T. Soong. 2004. Fundamentals of probability and statistics for engineers.
John Wiley & Sons.

[28] Spark 2018. The Spark Website. (2018). https://spark.apache.org/
[29] N. Srinivas and K. Deb. 1994. Muiltiobjective Optimization Using Nondomi-

nated Sorting in Genetic Algorithms. Evolutionary Computation 2 (Sept 1994),
221–248.

[30] Sean Tozer, Tim Brecht, and Ashraf Aboulnaga. 2010. Q-Cop: Avoiding bad
query mixes to minimize client timeouts under heavy loads. International
Conference on Data Engineering (2010), 397–408.

[31] TPC-H 2018. The TPC-H Website. (2018). http://www.tpc.org/tpch/
[32] Immanuel Trummer and Christoph Koch. 2016. Multi-objective parametric

query optimization. VLDB J. 8 (2016).
[33] Weka 2018. The Weka Website. (2018). https://www.cs.waikato.ac.nz/ml/

weka/
[34] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigümüs, and J. F. Naughton. 2013.

Predicting query execution time: Are optimizer cost models really unusable?.
In IEEE 29th International Conference on Data Engineering (ICDE).

[35] Pengcheng Xiong, Ferst Drive, and Yun Chi. 2011. ActiveSLA : A Profit-
Oriented Admission Control Framework for Database-as-a-Service Providers
Categories and Subject Descriptors. 2nd ACM Symposium on Cloud Computing
SOCC 11 (2011), 1–14.

[36] Q. Zhang and H. Li. 2007. MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. IEEE Transactions on Evolutionary Computation 11
(2007), 712–731.

[37] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. 2001. SPEA2: Improving
the strength Pareto evolutionary algorithm. TIK-report 103 (2001).

https://aws.amazon.com/
https://azure.microsoft.com/
https://horizon.isima.fr
https://cloud.google.com/
http://hive.apache.org/
https://www.postgresql.org/
https://www.postgresql.org/
https://spark.apache.org/
http://www.tpc.org/tpch/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.cs.waikato.ac.nz/ml/weka/

	Abstract
	1 Introduction
	2 Background
	2.1 MIDAS
	2.2 Cloud federation
	2.3 Pareto plan set
	2.4 IReS
	2.5 Multiple Linear Regression
	2.6 Motivation

	3 Dynamic Regression Algorithm
	4 Evaluation
	4.1 Implementation
	4.2 Experiments
	4.3 Results

	5 Conclusion
	References

