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Abstract

We report on the modeling of the formation of a cavity at the surface of crystals confined by a flat wall
during growth in solution. Using a continuum thin film model, we discuss two phenomena that could
be observed when decreasing the thickness of the liquid film between the crystal and the wall down to
the nanoscale. First, in the presence of an attractive van der Waals contribution to the disjoining
pressure, the formation of the cavity becomes subcritical, i.e., discontinuous. In addition, thereis a
minimum supersaturation required to form a cavity. Second, when the thickness of the liquid film
between the crystal and the substrate reaches the nanoscale, viscosity becomes relevant and hinders
the formation of the cavity. We demonstrate that there is a critical value of the viscosity above which
no cavity will form. The critical viscosity increases as the square of the thickness of the liquid film. A
quantitative discussion of model materials such as calcite, sodium chlorate, glucose and sucrose is
provided.

1. Introduction

Crystal growth is commonly confined in pores, faults, or gaps, as observed for example in rocks, in natural and
artificial cements, or in biomineralization. In these conditions, crystals can be directly formed on substrate
surfaces—such as during heterogeneous nucleation [1-5], or can be sedimented on substrates due to gravity.
The subsequent growth then occurs in the presence of a contact with a substrate. Here, we wish to discuss the
growth dynamics with the simplest type of contact, i.e. with a flat, rigid, and impermeable wall.

While growth can then occur at the free surface away from the contacts via bulk transport of growth units,
growth in the contact regions requires mass transport along the interface between the crystal and the substrate
[6] when the substrate is impermeable. The presence of aliquid film in the contact is a key ingredient to allow for
such mass transport along the interface during growth from the solution, as discussed in the literature [7-9].

A recent combination of experiments with optical measurements and modeling via a thin film model has
shown that when mass supply through the liquid film is insufficient, growth cannot be maintained in the central
part of the contact, and a cavity forms in the crystal within the contact region [9]. In later stages, the cavity
expands and gives rise to a rim along the edge of the contact. Such rims have been observed in many previous
experiments [ 10—13] focusing on the crystallization force produced by the growth process [8, 14-16], which is
known to have important consequences for deformation and fracturing of rocks, and the weathering of building
materials [17, 18]. However, here we wish to focus on the case where external forces are small, which correspond
for example to the experiments of [9], where the crystal was only weakly maintained against the substrate due to
its own weight.

These experiments were also realized with liquid film thicknesses in the range from 10 to 100 nm due to the
presence of nanoscale roughness or dust between the crystal and the substrate. Our aim here is to investigate the
possible changes in this scenario when the thickness of the film is decreased down to the nanometer scale using a
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thin film model [9, 19] which accounts consistently for thermodynamics, non-equilibrium transport processes
(diffusion and advection) and crystal-surface interaction.

At the nanoscale, novel ingredients come into play. The first type of ingredient is related to disjoining
pressure effects, which describe the energetic cost of placing the crystal surface at a given distance from the
substrate.

The standard theory of disjoining pressure, named the DLVO approach [20], combines two effects. The first
one s an electrostatic double-layer repulsion due to the redistribution of charged ions close to the surfaces.
These forces are exponentially decreasing with the distance. They are repulsive between similar surfaces but can
be both repulsive or attractive between dissimilar surfaces [20, 21]. The second contribution to the DLVO theory
are van der Waals forces, which lead to power-law interactions between surfaces. Van der Waals interactions are
usually attractive when a liquid film is present in between the surfaces [20, 21]. In the past decades, significant
deviation from the DLVO theory were measured at short ranges (few nanometers). These additional (usually
repulsive) interactions related, e.g., to the local ordering or binding of water molecules, are referred to as
hydration forces [22—-25]. The sum of power-law attractive forces and of exponential repulsive forces gives rise to
aminimum in the interaction potential, which corresponds to an equilibrium thickness for the liquid film,
hereafter denoted as /1 [20, 22]. This distance is usually in the scale from 1 to 10 nm [20]. In the presence of such a
minimum, heterogeneous nucleation can occur on the substrate, because there is a gain of energy when a crystal
grows with an interface in this minimum. Hence, our study could describe growth along a flat substrate after
heterogeneous nucleation.

In order to account for these effects in our model, we use a disjoining pressure with an attractive van der
Waals contribution together with a generic effective short range repulsion. We show that the presence of an
attraction makes the appearance of the cavity discontinuous. Indeed, various quantities, such as the depth of the
cavity, exhibit a jump at the transition. In addition, there is a minimum supersaturation needed to induce cavity
formation. However, the non-equilibrium morphology diagram describing the occurrence of the cavity remains
unaffected as compared to the case where disjoining pressure is purely repulsive [9].

A second ingredient which becomes relevant when the film thickness is decreased down to the nanoscale is
viscosity. Indeed we observe that viscosity hinders the formation of the cavity. We also show the existence of a
critical viscosity above which cavities cannot form. We determine the value of the critical viscosity and find it to
be proportional to the square of the film thickness. This result can also be reformulated as the existence of a
critical thickness below which the cavity will not form for a given viscosity.

We accompany the presentation of model results with a semi-quantitative discussion of the nano-confined
growth of some materials, viz., calcium carbonate, sodium chlorate, glucose and sucrose. Although they belong
to disparate classes of materials, with time-scales ranging from seconds to geological times and contact
lengthscales from microns to centimeters, our modeling approach suggests that their behavior can be globally
classified based on a small number of dimensionless physical parameters.

2.Model and methods

We consider a system with a confinement geometry similar to that of the experiments in [9, 12]: a growing crystal
is separated from a flat, impermeable and inert substrate by a thin film of solution. However, here, the film
thickness is assumed to be of the order of nanometers. We assume the presence of a macroscopic concentration
reservoir outside the contact region.

To predict the evolution of the confined interface during crystal growth, we use the thin film model
presented in [19]. This model describes the growth of a rigid crystal, and accounts for diffusion and
hydrodynamics in the liquid film. We assume that the slope of the crystal surface is small. Dynamical equations
for the interface evolution can therefore be obtained by means of the standard lubrication expansion [26].
Within this limit, due to the slenderness of the film, attachment-detachment kinetics is fast as compared to
diffusion along the liquid film. This assumption is more robust when considering highly soluble materials. In
addition, we neglect hydrodynamic flow induced by crystal-solution density difference, assume the dilute limit
and linearized Gibbs—Thomson relation. We also assume for simplicity an axisymmetric geometry.

The system can be visualized in figure 1, where the profile of the crystal projected along the radius,
represented in white, is growing via transport of mass from the macroscopic solution reservoir at the boundary
of the simulation box to the crystal surface via the thin film solution. The velocity field of the liquid is represented
by the color map and the substrate is represented by the dark-blue rectangle at the top of the images.

Let us now describe the evolution equations in more details. Using cylindrical coordinates z, r, the dynamical
equation relating the local film thickness ((r, t), and the vertical rigid-body translational velocity of the crystal u,
along zreads
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Figure 1. Simulation screenshots representing section of an axisymmetric growing crystal (white). Time flows from top to bottom.
The normalized supersaturation is for both panels &5, = 0.21. Left column 7 = 1072; right column #) = 107}, the cavity is not
observed. The units of the vertical scale is 1 nm. The substrate is located at i, = 2 nm. The scale of the horizontal axis depends on the
material. For instance for NaClOj; the radial scale unit is 3.2 nm. The color map represents the liquid velocity in normalized units. Red
color: positive velocities (flow from left to right); blue: negative velocities; green: vanishing velocity. The physical liquid velocity

depends on the material, for instance in the left panel for NaClOj3 its maximum value (darker color) is u; ~ 66 pum s~ 1.

0,6 = ~B-OLrCO(Ap/ ] = s, W

Ap/Q = 50, + }arc ~ U0, @

where B = D¢,/ (kgT) is an effective mobility, with D the diffusion constant, {2 the molecular volume, ¢, the
numerical solubility, kg the Boltzmann constant and T the temperature. In the local chemical potential A, the
first two terms represent the contribution of surface tension (6) (6 = 0 surface parallel to substrate). These
terms are proportional to the surface stiffness 4 = (0) + " (0). The last term represents the contribution of
the interaction potential U({) between the substrate and the crystal.

Since we here focus on small distances ¢, we need to account for the van der Waals contribution to U((),
which is usually attractive for a liquid film between two solids [20]. We also included a short range repulsive term
to account for a generic effective repulsion preventing contact. The interaction potential then reads

A 1 2h
VO =—|-5*+ =) 3
-2 .
where A is the Hammaker constant and 4 the equilibrium thickness. It follows that the term appearingin (2) is
1 h
U/(O = A(F - F): (4)

where A = A/6m. Given the system under study, in the following we assume & = 1 nm.
The global balance between viscous forces produced by hydrodynamic flow and the forces resulting from the
interaction potential provides an additional relation which allows one to determine 1,

R R, 6 R )
U, 2 j; drr f & s = fo dr rU'(0). )
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Table 1. Constants used in the simulations. Other parameters intervening in the scalings are
assumed to be independent of the system considered. These are the temperature T' = 300 K, the
interaction strength .4 = 102! J and the typical separation i = 1 nm. Surface stiffnesses at the
crystal water interface are assumed equal to surface tensions and are rough estimations due to lack
of data and/ or to large variability of it found in the literature. The last column indicates the
solution viscosity at saturation.

Material o Q&) D (107° m?s71) 4 (m] m™2) 71 (mPas)
CaCO5* 107 59 0.8 100

NaClO5" 6 x 1077 69 0.3 10 7
Glucose® 3 x 10% 194 0.2 100 10
Sucrose® 3.5 x 107 355 0.2 100 100

* References [28—30]. Calcium carbonate is in general characterized by a wide range of solubility
due to its strong dependency on carbon dioxide presence. The value in absence of CO, at 25° is
[31]co = 0.013 g17! ~ 10*. However this value can increase of about two orders of magnitude
when CO, is present as is the case in natural environments as sea water [32]. We assume the latter.
b References [33—36]. Data for the diffusion coefficient at saturation was not found. We estimated
this value by extrapolating at higher concentration from [37]. Similarly we extrapolated the data
for the viscosity from [35].

¢ References [38—40]. There is lack of data for surface tension of glucose—water interfaces. We
assume 4 ~ 100 mJ m~2 as suggested by some experiments on sucrose [41].

4 References [27, 38, 41, 42]. Diffusion constant was assumed similar to the one of glucose.

Here we have no contribution of external force since we expect gravity effects to be negligible as compared to van
der Waals attraction at this scales.

In practice the dynamical equations were solved in normalized units. Defining the dimensionless repulsion
strength A = A/(yh?), dimensionless variables are the normalized width { = (/h, radius 7 = rA'/2/hand
time f = tBYA?/h’. Rewriting the model equations in a dimensionless form, the only parameter explicitly
appearing in the equation is the normalized viscosity

Bn  DQ%c

n— — — . 6
=1 kBThzn (6)

Alarge value of 7} indicates a strong influence of viscosity. Since ) ~ h~2in (6), viscosity effects are seen to be
important when / is small.
The other relevant dimensionless quantities are the normalized system size

_ Al2R
R = , 7
h ™)
normalized supersaturation
LU ®
AFQ)

and the normalized crystal velocity (growth rate)

n2
u, = AZ_% U,. (9)

Two main sets of simulations with different dimensionless viscosities, 7 = 107>and 7) = 1072, were
performed. They respectively aim at modeling low solubility crystals such as calcium carbonate (CaCOs3), and
highly soluble crystals like salts and sugars. For the latter class, we focused on sodium chlorate (NaClOs), which
was used in our previous work [9], and glucose.

The value of the dimensionless viscosity depends on the physical parameters as described by (6). The values
we chose for the simulations are rough estimations. For instance glucose actually lies in an intermediate regime
between 77 = 1072and 7 = 10~!. Some exploratory simulations were also performed at viscosities higher than
1072, Larger viscosities could be encountered in other natural materials as more complex sugars. In the case of
sucrose for instance, we have ) = 100 mPaso that 77 > 1atsaturation [27]. As a summary, the parameters used
in the simulations are listed in table 1.

Finally, the value of the normalized repulsion strength A is chosen following the same lines as in [ 19]. For
simplicity we assume A &~ 10~ J[20] to be the same for all materials considered here. We then obtain
A = A/(vh*) = A/(6m7h2).In any case, the qualitative behavior is not influenced by this parameter which
never appears explicitly in the normalized equations, and only contributes to the spatial and temporal scales on
which phenomena can be observed.
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Figure 2. Film thickness at the center of the contact { (r = 0) = (, versus supersaturation &y, at the boundary of the simulation box
at different normalized viscosities 7). The size of the simulation box is R = 40. The vertical axis is in nanometers. The size of the
simulation box R and the supersaturation scale depend on the material. Calcium carbonate, red triangles and black circles:

R = 400 nm, oj,. = 0.014 X &}, sodium chlorate, yellow triangles and blue squares: R &~ 127 nm, o, = 0.017 X &y glucose,
yellow triangles and blue squares: R & 400 nm, ojc = 0.05 X Fy.

3. Discontinuous transition

We numerically solved (1) and (5) in a circular simulation box of fixed radius R, and fixed film width {(R) = (.
and supersaturation o(R) = oy, at the boundary of the integration domain. In all simulations we were able to
reach a steady-state characterized by a constant growth rate and crystal interface profile. We observe that for low
enough viscosities 7), a cavity appears when increasing the simulation box radius R, or the boundary
supersaturation oy, In figure 1 we show two examples of simulations. The two columns where realized using
different normalized viscosities 7, and keeping the other parameters fixed. Simulations at higher viscosity, e.g.
71 = 0.1, do not show the appearance of a cavity.

For the two set of simulations considered, namely 7 = 10~2and ) = 107>, we studied the steady-state
profiles close to the transition. In figure 2 we show as an example the variation of the normalized width
€ (0) = (, of the film in the center of the contact as a function of the normalized supersaturation 3., and for
fixed box size R = 40. Each dot corresponds to a steady-state reached in a single simulation.

Considering a surface which is initially flat and in the minimum of the interaction potential ({, = 1), and
gradually increasing the supersaturation 3y, we observe a sharp jump in the value of ¢, at the transition. This
process corresponds to black circles and blue squares in figure 2. However if we start with a system beyond the
critical supersaturation, thus featuring a cavity, and slowly decrease the supersaturation &, the transition is not
observed at the same point, but at alower supersaturation. This is represented by red and yellow triangles in
figure 2. Hence, the transition exhibits hysteresis. A similar behavior is observed when looking at the crystal
growth rate. This is showed in figure A1, where the discontinuity is less apparent especially in the backward
transition (i.e. when decreasing the supersaturation).

No qualitative difference is observed between simulations at 77 = 10~2and 7 = 10~°. The main difference
lies in the shift of the transition towards larger supersaturations when the viscosity is increased.

4. Non-equilibrium morphology diagram

In [9], the conditions under which the formation of a cavity can be observed were summarized in a non-
equilibrium morphology diagram. Let us recall the derivation of the condition for the transition following the
same lines as in [9]. Consider steady-state with a flat contact. From mass conservation (neglecting the
consequences of solute advection), the total mass entering the liquid film from the boundary of a disc of radius r
must be equal to the mass entering the crystal, leading to

wrie = 2mrhJi(r), (10)

where h is the film thickness, Ji is the mass flux entering the crystal per unit area and J(r) is the the diffusion flux
entering the liquid film. Integrating the previous relation and using the identities J, = |u,|/$2 where |u,|is the
growth rate, and J,(r) = DOJ,c, we obtain the concentration profile c. Then, using the definition of the
supersaturation o = ¢(r)/cy — 1, we find
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Figure 3. Non-equilibrium phase diagram for cavity formation for different materials and transition pathways. The scaled viscosity 7
is assumed to be 10 for CaCO5 and 102 for NaClO; and glucose.

lusl 5
0(0) =0y — ——L7, 11
0) = o Dy (an

where Land 0, = o(L) are respectively the radius and the supersaturation at the boundary of the contact area.
Using 0 (0) < 0as condition for cavity formation, we obtain the growth rate at the threshold

alu™| = 4DQCOUZ“%. (12)

Following [9], the heuristic multiplicative constant « is introduced in order to capture quantitatively the
simulation results within this simplified approach.

In order to build a non-equilibrium morphology diagram representing the location of the transition (when it
exists) in a plane where the axes are the left-hand side and right-hand side of (12), we need to evaluate the
observables L and 0. First, we determine the couple R and o, at the transition. Then, we consider the contact
radius L from the condition that {(L) exceeds the equilibrium position & by 1%. Finally we obtain o} using

Ap@y  Q

=T kB—T[%(L) - U'cinl; 13)

where k is the local mean curvature. The procedure is repeated for simulations at different box sizes and
viscosities, and on the different branches of the hysteresis curve.

The results, shown in figure 3, confirm the expected linearity of the transition line. Interestingly, the forward
and the backward transitions roughly collapse on the same line. The differences in mass transport kinetics
between different materials however lead to differences in the orders of magnitude of the critical vertical growth
velocity u® (from about 0.1 to 100 nms ™~ "). A linear fit for the slope of the transition line leads to
« = 0.65 £ 0.04. This result is close to the value o =~ 0.61 obtained in [9]. However, the model of [9] was
different, with a purely repulsive potential and a load to maintain the crystal close to the substrate. This result
suggests that the constant a could be robust with respect to the details of the model.

5. Critical supersaturation and critical viscosity

To understand how viscosity can affect the transition we resort to a perturbative analysis of the steady-state
solution. This is done assuming that, just before the transition, the profile deviates slightly from the equilibrium
configuration ¢ = (., + 6¢. The details of the derivation, reported in appendix B, reveal that the perturbation
6( exhibits a concave parabolic profile. Hence, the thickness (, in the center of the contact increases as the
supersaturation increases even in the absence of cavity.

This result suggests a simple mechanism for cavity formation. We use the standard result of the linear
stability analysis of an infinite flat profile of thickness ¢, which indicates that the surface of the crystal should be
stablewhen U”({) > 0, and unstable when U”({) < 0. This is similar to usual spinodal decomposition [43].
Hence, the initial profile with { = his constant and at the minimum of the potential with U” (h) > 0
corresponds to a stable configuration. Considering now a non-equilibrium profile with a concave parabolic {(r),
an approximate criterion for the cavity to form is that the thickness (, = {(r = 0) at the center of the contact
reaches the inflection point (**" of the potential, with U” ((%@) = 0. This scenario is consistent with a
discontinuous transition, since upon destabilization the thickness {, in the center of the contact becomes larger
than ¢*". Once the instability is initiated, the larger (o, the larger U” (), and the stronger the destabilization,

6
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Figure 4. Critical supersaturation for the appearance of a cavity as a function of viscosity, as obtained from simulations for the forward
transition (initially flat contact). The results are reported in normalized units. The critical supersaturation diverges at 7* 2 0.34. For
larger normalized viscosities, cavities are not observed in simulations independently from the size of the contact (shaded area). The
critical supersaturation converges to a fixed value when the contact size increases at fixed viscosity, as predicted by (B.16) and (14). At
vanishing viscosity the critical supersaturation is 5; = 0.12 (red and blue triangles). Cavities cannot be observed independently from
the size of the contact below this value (shaded area).

leading to a self-amplifying feedback. Note once again that this behavior is reminiscent of spinodal instabilities
[44—46].

Using this simple argument, i.e. {, = (¥, and in the limit of large contacts, we find an expression for the
critical supersaturation:

cav AQ (1 + 127_]) (14)

7 e\ 1 - 127
The details of the derivation are reported in appendix B.

Asa first consequence of (14), the critical supersaturation 05" is expected to reach a finite value o}, when the
viscosity vanishes. This result differs from the behavior of purely repulsive potentials discussed in [9], where
vanishingly small supersaturations were able to destabilize large crystals. This difference is intuitively
understood from the fact that the supersaturation here needs to be large enough to lead to an escape of the crystal
surface from the potential well at { = h. Thus the thermodynamic force related to supersaturation Ap/€2 must
be larger than the disjoining force dragging the interface towards the minimum of the potential
U'(C) &~ (¢ — h)U”(h).Since oy, = A,/ kT, we obtain that o = (¢ — h)U” (h) /(Qkp T), which is
identical to (14) when 7 = 0 and U'is given by (3). This result, which states that the the critical supersaturation
o is expected to reach a constant value when the viscosity vanishes and the size is large, is confirmed by
simulations in figure 4 for small viscosities (blue and red triangles). However, the predicted value &;" ~ 0.33 is
larger than the value observed in simulations 3; "' (L — o0) ~ 0.12. Going back to physical variables
o = 5. AQ/ (kg Th®), we find that the critical supersaturation at vanishing viscosities is small o ~ 1072-10 " for
h ~ 1 nm. Since o ~ h~3, the critical supersaturation decreases quickly when the equilibrium thickness h
increases, and U;f < 10~ forh = 10 nm.

The expression (14) also provides information about the consequences of viscosity. For example, it agrees
qualitatively with figure 2, where higher viscosities were shown to lead to a transition at higher supersaturations.
In figure 4, we show the normalized critical (forward) supersaturation 65" at different normalized viscosities as
obtained by simulations. This again confirms good qualitative agreement with (14), since it agrees both with the
increase of 0" with increasing 7, and with the divergence of o3"" for a finite value of 7.

However, (14) is quantitatively inaccurate. For example, the observed threshold at 7* =~ 0.034 is lower than
the predicted value 7* = 1/12 a2 0.08. Despite the absence of a quantitatively accurate expression for the
critical supersaturation as a function of viscosity, it is possible to obtain quantitative insights about the critical
viscosity using the morphology diagram. Indeed, inserting the parabolic profile (.q + ¢ of the film in the
contact in the force balance equation (5), leads to a second relation valid below the transition

—4hDScy o
oL (15)
(61 + 1/2)L
The details of this derivation are presented in appendix B.2. This expression exhibits quantitative agreement

with simulation results as illustrated in figure B2. It follows from (15) that, as viscosity increases, the growth rate
u, decreases. In addition, for low viscosities the growth rate is independent of the viscosity.

7
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Inserting (15) in (12), we find the critical value of the viscosity above which the cavity cannot form

2 p—
%7]* =q* = % ~ 0.025 + 0.007. (16)
B

Interestingly, if we assume the idealized case to hold (o« = 1), we would have obtained 7* = 1/12 asin (14).
Even though (15) and (16) rely on some approximations—based on our perturbative analysis and on the
heuristic character of the parameter a—we find that (16) provides a reasonably accurate prediction close to the
value 7* & 0.034 from the full numerical solution of the model.

The discussion of this result can be presented in two different ways. First, we may assume that disjoining
pressure effects lead to a fixed film thickness, assumed for example tobe 4 ~ 1 nm. Then, using (16) and
considering the materials listed in table 1, we find n* ~ 3.7 x 103 mPa s for calcite, n* ~ 12 mPa s for sodium
chlorate, n* &~ 4.6 mPa s for glucose and n* ~ 1.2 mPa s for sucrose. Cavity formation should be hindered or
suppressed by viscosity effects when these values are equal to, or smaller than the values of viscosity at saturation
reported in the last column of table 1. These are 1, 7, 10 and 100 mPa s, respectively. Thus, for example we do not
expect a cavity to appear for sucrose while calcite could feature a cavity. Conclusions on glucose or sodium
chlorate are more difficult since the value of the critical viscosity is close to the viscosity at saturation.

The threshold can be reformulated in a different manner. Indeed, since the value of the critical viscosity
increases as the square of & there is a critical thickness #* above which a cavity can form for a given system. Using
the viscosity at saturation, we find #* ~ 0.016 nm for CaCO3, h* ~ 0.76 nm for NaClOs, h* ~ 1.5 nm for
glucose, and h* & 9.2 nm for sucrose. These results once again state that cavity formation should be suppressed
for sucrose with nanoscale confinement. For other materials with smaller viscosities, the main effect of viscosity
should be to shift the transition as shown in figures 2 and 3. In general, when the film thickness is larger than
h ~ 10 nmasin[9, 12], we expect cavities can form for most materials.

6. Discussion

Some limitations of our approach are discussed in this section. The first one concerns the difficulty to analyze
strongly anisotropic crystals which exhibit facets. Indeed, the stiffness 4 is expected to diverge at faceted
orientations. However, in [9], satisfactory quantitative agreement with experimental data for faceted crystals was
obtained using a large but finite stiffness. Applying this ad hoc assumption to the results of the present paper
would not change them qualitatively. However, the value of some physical observables would change. If we
assume an effective stiffness about 10°~10* times the surface tension [9], crystal velocities (see figure 3) reduce by
the same factor. In addition, due to our stiffness-dependent normalization of space variables, our simulations
would correspond to larger crystal sizes (by a factor 10-100). In any case this will not change the measured slope
o of the non-equilibrium phase diagram nor the value of the critical viscosity since these quantities are
independent of the stiffness.

A second difficulty is to use continuum models to describe the consequences of nanoscale confinement on
diffusion and hydrodynamics. It is known for example that diffusion constants in water can vary significantly
with confinement [47]. In contrast, the hydrodynamic description of water with bulk viscosity is known to be
quantitatively accurate for separations larger than ~1 nm [47]. At the nanoscale, liquids can also be structured in
the vicinity of solid surfaces. For example, layering may lead to oscillations in the disjoining pressure [20].
Additional confinement effects specific to solutions appear when the liquid film thickness is decreased up to
values that are comparable to the size of the solute molecules. Such confinement effects could be observed, e.g.,
for sucrose which exhibits a molecular size of the order of one nanometer. Globally, using continuum models to
probe nanoscale hydrodynamic effects is a challenge. In order to reach quantitative accuracy, such methods
must be based on effective models which are calibrated on molecular simulations to account for possible
deviations from the bulk behavior. This strategy should allow one to describe some of the consequences of
confinement by means of the thickness-dependence of physical parameters such as the diffusion constant and
the viscosity. Achieving this goal would be an important step toward the modeling of crystal growth with
nanoscale confinement. Indeed, modeling of the growth process in standard molecular dynamics simulations is
difficult due to prohibitive computational time.

Another phenomenon which comes to the fore at the nanoscale is thermal fluctuations. While the model
discussed here is purely deterministic, atomistic simulations such as molecular dynamics of Monte Carlo
simulations [48] can account for fluctuations. Thermal fluctuations could trigger the random opening and
closure of the cavity observed in NaClOj crystals reported in [9]. Larger-scale fluctuations or perturbations, such
as those due to convection or stirring in the bulk fluid outside the crystal, should not be relevant here, since they
influence mass transport at scales larger than the thickness of the diffusion boundary layer £5; = D/u; atthe
free surface of the crystal, which is itself larger than the film thicknesses h considered here. Indeed, taking

8



10P Publishing

New J. Phys. 20 (2018) 073050 L Gagliardiand O Pierre-Louis

D ~ 107 m? s~!, we would need a very large hydrodynamic velocity u; ~ 10 cm s~! outside the contact region
for £ to reach a scale comparable to that of the liquid film in the contact b ~ 10 nm.

As already mentioned in the introduction, since it leads to growth perpendicular to the substrate
incorporation of mass in the crystal at contacts may lead to the generation of forces on the substrate [8, 14-16].
These crystallization forces play an important role in geology since they are responsible for deformation and
fracturing of rocks, and are also crucial for the weathering of building materials [17, 18]. Even though these
forces are well characterized at equilibrium via energy balance [49, 50], we still lack a precise understanding of
the related non-equilibrium dynamics. A major issue is for instance to understand the interplay between the
force of crystallization and the non-equilibrium morphology of the contact [10], often characterized by the
presence of a rim along the edge of the contact region [10—13]. Despite the absence of external forces in our
model, we hope that our results will provide hints toward a better understanding of the conditions under which
rims can form.

7. Conclusions

In conclusion, we have studied the formation of cavities in nano-confined crystal surfaces. Examples are
discussed for some model materials ranging from poorly soluble minerals (calcite) to high soluble salts (sodium
chlorate) and sugars.

Cavity formation was recently observed experimentally using NaClOj crystals with liquid film thicknesses
that were one or two orders of magnitude larger than those used here [9]. Despite the different scales the
resulting non-equilibrium morphology diagrams are very similar (with a similar value of the phenomenological
constant «v). This further confirms the robustness of cavity formation with respect to variations of physical
conditions and materials.

However, some differences are observed at the nanoscale. First, we show that an attractive van der Waals
interaction induces a discontinuous (subcritical) transition with hysteresis. Moreover, there is a minimum
supersaturation below which cavities cannot form because the driving force is not sufficient for the interface to
escape from the potential well of the disjoining pressure (however its quantitative value is relatively small when h
islarger than 1 nm). Second, due to the nanoscale width of the liquid film separating the crystal and the
confining wall, viscosity becomes relevant. The effect of viscosity is to shift the transition toward larger crystal
sizes and larger supersaturations. Moreover, the formation of the cavity can also be prevented by sufficiently
large viscosities. We estimated the relevant critical viscosity above which no cavity should appear. In practice,
such condition could be realized for instance for sucrose.

We hope that our work will inspire novel experimental investigations or molecular simulations of growth
after heterogeneous nucleation and of growth of sedimented crystals.
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Appendix A. Growth rate as a function of supersaturation

In figure A1 we show the normalized growth rate i, as a function of the normalized supersaturation at the
boundary of the simulation box as obtained from numerical solution of (1) and (5). The growth rate responds
roughly linearly to changes in the supersaturation, and a small jump followed by a change of slope is observed at
the transition. Hysteresis is also found here but the discontinuity is more apparent when increasing the
supersaturation from an initial flat surface (forward transition).

Appendix B. Perturbation to equilibrium

Using a perturbative approach from the equilibrium solution of (1) and (5), we here derive approximate
expressions for the growth rate and the critical supersaturation.
As a preamble, we characterize the equilibrium solution itself. Steady-state solution of (1) and (5) obey

0 Blar[rcar(aaﬂc + To - U’(C))] ou (B.1)
r r
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Figure Al. Normalized growth rate |ii,| versus supersaturation &y at the boundary of the simulation box for different normalized
viscosities 7. The size of the simulation box is R = 40. The system size and scales of the axes depend on the material. Calcium
carbonate, red triangles and black circles: R = 400 nm, o ~ 0.014 X &y, 1, &~ 6.7 X 10 nm s~} X ii,; sodium chlorate, yellow
triangles and blue squares: R ~ 127 nm, o ~ 0.017 X &y, u, &~ 2.1 X 10° nms~! x i,; glucose, yellow triangles and blue
squares: R ~ 400 nm, op. ~ 0.05 - &, 1, ~ 5.5 X 10* nm s™! X iI,. Vertical dashed lines indicate the critical supersaturation at
the boundary of the simulation box for forward and backward transitions. Their color is the same as that of the corresponding
symbols.

The equilibrium solution is a particular steady-state equation obeying 1, = 0 and

~ Ap,
0nCeg + 20 — UG = =5 (B.2)

where Ay, /€isaconstant which corresponds to the equilibrium chemical potential. The radius of the contact
region is denoted as L. Multiplying (B.2) by 277, and integrating between the center of the contactatr = Oanda
radiusr = R > L, we find arelation between the equilibrium chemical potential and the slope at the boundary
of the integration domain

AV
Q

2
== ?&Ceq(R), (B'S)

where we have used the relation 27 fo *rdru (¢) = 0, corresponding to the equilibrium force balance (5). A
second relation can be found when multiplying (B.2) by 0, (,, and integrating with respect to r:

) Ap, R (8,¢)?
,_Y ~ r
SO (R = AU = Tq(ceq@) ~ (@) 7 fo —

(B.4)

where AU = U((q(R)) — U((cq(0)). Equation (B.4) relating the surface slope 9,{.q(R) outside the contact to the
depth of the potential well AU, is equivalent to a generalized form of the Young contact angle condition. The
integral term in the second equation is related to the effect of line tension. In the following, we will neglect
this term.

We now assume that the equilibrium profile s flat (.4(r) ~ hwith U’(h) = 0 for r < L. Then, we expect
Ceq(L) = (eq(0) = h,and combining (B.4) and (B.3) we find

20
Afteg ~ T1/—21U(h), (B.5)

where we assumed that the interaction potential vanishes far from the contact region U({(r > L)) = 0. Note that
under these approximations the right-hand side of (B.4) vanishes, and this equation is the small slope limit of the
Young contact angle condition.

Consider now a system below the transition, so that no cavity is present. The crystal surface profile is then
expected to be close to the equilibrium profile. We therefore consider the difference 6¢ () = ((r) — (eq(r)
between the steady-state solution and the equilibrium solution to be small. Expanding (B.1) to linear order in 6¢
(), and integrating two times, we find

B r”)‘/ u, L r! A:U’b - Alueq
08¢ + L8,6¢ — SCU"(C,) — 2= f dr' = , B.6
W0+ T8 = 6" G = 35 [ v . (B.6)
where we have used the parity of ((r) and (B.2), and we have defined the chemical potential at the edge of the
contact zone Ay, = Ap(L) with Ap(L) given by (2). Assuming again that in the contactarear < Lthe
equilibrium profile s flat (. /= h, (B.6) can be rewritten as:
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Figure B1. Section of the crystal profile close to the transition. The black zone at the top represents the substrate. The black line is the
simulation result. The vertical axis is in physical units. The horizontal axis scaling depends on the material (via the constant A).
Simulation parameters: size of the box R = 40, supersaturation at the boundary of the integration domain &;. = 0.2. The dashed red
line is obtained from (B.8) with L, u,, A p,, measured in the simulation.

5 Apy, — Ap
~ Y U, 2 n o b eq
0 6C + —0,6¢ — 6CU"(h) — —(L* — 1) = —. B.7
Y0rb¢ » ¢ — 6¢U"(h) 4Bh( ) 0 (B.7)
A particular solution of this equation is a parabola:
5 Apy, — A
bo=—te |y M) 2T Pl (B.8)
4BhU" (h) U”(h) QU"(h)

A comparison between this solution and the profile obtained from numerical integration is shown in figure B1
for a crystal close to the transition. The agreement is very satisfactory.

B.1. Viscosity effect on the growth rate
Applying a similar procedure to the force balance expression in (5) we have to leading order

L L / L
uz27rf dr rf dr’ 61 27rf dr ré(U”(Qeq). (B.9)
0 r 0

G

Using (B.6) to express the right-hand side, we are left with

L L 6n 1
22 d dr’ ' +
u 7'(']; r rj; rr Ciq(r/) ZBCeq(r/)
Apy, — A
S ol feg | 2m5L8,6¢ (L). (B.10)

As done previously we assume that in the contact area r < L, the equilibrium profileis (.q ~ h. With this
assumption the previous relation reduces to

617 1 I* A:ub - A:ueq ~
A& Lo 2 P orsh.60(0). B.11
! (h3 th) 4 O 70:6¢(L) (31D

Using (B.8) to express the last term in the right-hand side we have

4 ~ Ap, — A
ifen Ly 4 |, _ ptf” “le (B.12)
41 KW 2Bh L?’BhU" (h) Q
We then obtain
—4Bh(Ap, — A
u, = (D — Beg) (B.13)

B 1 _ 47\
(hz 7] + 2 LZU”(h))L Q

As showed in figure B2 the comparison between this relation and the direct numerical solution of u, proves to be
satisfactory.

Here, we wish to focus on steady-states close to the threshold of cavity formation. Since Afieq ~ 1/L from
B.5, this term can be neglected far from equilibrium and for large system sizes where cavity formation occurs.
For the same reason we neglect the term of order 1/L”. Finally, assuming the supersaturation is small, we have
A iy, = kgToy, and we obtain (15).
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Figure B2. Growth rate |u,| as a function of the viscosity shown in normalized units before undergoing the transition (flat growth) for
different sizes. The dots are simulation results, the dashed lines were computed using (B.13) with L and A 44(n) (see (13)) measured in
simulations and Ayiq given by (B.5). The value of the contact size L varies weakly when the viscosity is varied.

B.2. Viscosity effect on the critical supersaturation

As discussed in the main text, we expect the cavity to appear when {, > (**", where (, is the width at the center of
the contact, and (**" is defined by the relation U” ((**") = 0. Given (4) and assuming again (.q ~ h, we find

Y =4/3hand 6C* = ¥ — h = h/3. Let usrecall (B.8) and consider the correction to (:

. Ay, — A
5C(0) = — =2 ( 4y LZ)M. (B.14)

4BhU"(W\ U"(h) QU”(h)

Now we use the condition 6¢(0) = 6¢™ for the appearance of the cavity, and deduce the corresponding critical
value of the chemical potential at the boundary:

A/‘l’lcyav - A/‘l’eq _ Ug ( 4;)’/

_ 2z _ 72 — 5CU (h). .
Q 4B\ U" (h) L] U (319

Using (B.13) we have

6B 1 45
Aps — Aueq N 5CcavU//(h)(h—277 + 5 LZU:(h))

b
6B
Q o

(B.16)

1
2
Using again the identity Ay = kgTo, neglecting the last term in the denominator (~1,/L*) and the equilibrium
chemical potential (~1/L), we obtain (14).
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