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Abstract
We report on themodeling of the formation of a cavity at the surface of crystals confined by aflat wall
during growth in solution.Using a continuum thinfilmmodel, we discuss two phenomena that could
be observedwhen decreasing the thickness of the liquid film between the crystal and thewall down to
the nanoscale. First, in the presence of an attractive van derWaals contribution to the disjoining
pressure, the formation of the cavity becomes subcritical, i.e., discontinuous. In addition, there is a
minimum supersaturation required to form a cavity. Second, when the thickness of the liquidfilm
between the crystal and the substrate reaches the nanoscale, viscosity becomes relevant and hinders
the formation of the cavity.We demonstrate that there is a critical value of the viscosity abovewhich
no cavity will form. The critical viscosity increases as the square of the thickness of the liquid film. A
quantitative discussion ofmodelmaterials such as calcite, sodium chlorate, glucose and sucrose is
provided.

1. Introduction

Crystal growth is commonly confined in pores, faults, or gaps, as observed for example in rocks, in natural and
artificial cements, or in biomineralization. In these conditions, crystals can be directly formed on substrate
surfaces—such as during heterogeneous nucleation [1–5], or can be sedimented on substrates due to gravity.
The subsequent growth then occurs in the presence of a contact with a substrate. Here, wewish to discuss the
growth dynamics with the simplest type of contact, i.e. with a flat, rigid, and impermeable wall.

While growth can then occur at the free surface away from the contacts via bulk transport of growth units,
growth in the contact regions requiresmass transport along the interface between the crystal and the substrate
[6]when the substrate is impermeable. The presence of a liquidfilm in the contact is a key ingredient to allow for
suchmass transport along the interface during growth from the solution, as discussed in the literature [7–9].

A recent combination of experiments with opticalmeasurements andmodeling via a thin filmmodel has
shown that whenmass supply through the liquidfilm is insufficient, growth cannot bemaintained in the central
part of the contact, and a cavity forms in the crystal within the contact region [9]. In later stages, the cavity
expands and gives rise to a rim along the edge of the contact. Such rims have been observed inmany previous
experiments [10–13] focusing on the crystallization force produced by the growth process [8, 14–16], which is
known to have important consequences for deformation and fracturing of rocks, and theweathering of building
materials [17, 18]. However, here wewish to focus on the case where external forces are small, which correspond
for example to the experiments of [9], where the crystal was only weaklymaintained against the substrate due to
its ownweight.

These experiments were also realizedwith liquidfilm thicknesses in the range from10 to 100 nmdue to the
presence of nanoscale roughness or dust between the crystal and the substrate. Our aimhere is to investigate the
possible changes in this scenariowhen the thickness of thefilm is decreased down to the nanometer scale using a
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thinfilmmodel [9, 19]which accounts consistently for thermodynamics, non-equilibrium transport processes
(diffusion and advection) and crystal-surface interaction.

At the nanoscale, novel ingredients come into play. Thefirst type of ingredient is related to disjoining
pressure effects, which describe the energetic cost of placing the crystal surface at a given distance from the
substrate.

The standard theory of disjoining pressure, named theDLVOapproach [20], combines two effects. Thefirst
one is an electrostatic double-layer repulsion due to the redistribution of charged ions close to the surfaces.
These forces are exponentially decreasing with the distance. They are repulsive between similar surfaces but can
be both repulsive or attractive between dissimilar surfaces [20, 21]. The second contribution to theDLVO theory
are van derWaals forces, which lead to power-law interactions between surfaces. Van derWaals interactions are
usually attractive when a liquidfilm is present in between the surfaces [20, 21]. In the past decades, significant
deviation from theDLVO theoryweremeasured at short ranges (few nanometers). These additional (usually
repulsive) interactions related, e.g., to the local ordering or binding of watermolecules, are referred to as
hydration forces [22–25]. The sumof power-law attractive forces and of exponential repulsive forces gives rise to
aminimum in the interaction potential, which corresponds to an equilibrium thickness for the liquidfilm,
hereafter denoted as h [20, 22]. This distance is usually in the scale from1 to 10 nm [20]. In the presence of such a
minimum, heterogeneous nucleation can occur on the substrate, because there is a gain of energywhen a crystal
growswith an interface in thisminimum.Hence, our study could describe growth along aflat substrate after
heterogeneous nucleation.

In order to account for these effects in ourmodel, we use a disjoining pressure with an attractive van der
Waals contribution togetherwith a generic effective short range repulsion.We show that the presence of an
attractionmakes the appearance of the cavity discontinuous. Indeed, various quantities, such as the depth of the
cavity, exhibit a jump at the transition. In addition, there is aminimum supersaturation needed to induce cavity
formation.However, the non-equilibriummorphology diagramdescribing the occurrence of the cavity remains
unaffected as compared to the case where disjoining pressure is purely repulsive [9].

A second ingredient which becomes relevant when the film thickness is decreased down to the nanoscale is
viscosity. Indeedwe observe that viscosity hinders the formation of the cavity.We also show the existence of a
critical viscosity abovewhich cavities cannot form.We determine the value of the critical viscosity andfind it to
be proportional to the square of thefilm thickness. This result can also be reformulated as the existence of a
critical thickness belowwhich the cavitywill not form for a given viscosity.

We accompany the presentation ofmodel results with a semi-quantitative discussion of the nano-confined
growth of somematerials, viz., calcium carbonate, sodium chlorate, glucose and sucrose. Although they belong
to disparate classes ofmaterials, with time-scales ranging from seconds to geological times and contact
lengthscales frommicrons to centimeters, ourmodeling approach suggests that their behavior can be globally
classified based on a small number of dimensionless physical parameters.

2.Model andmethods

Weconsider a systemwith a confinement geometry similar to that of the experiments in [9, 12]: a growing crystal
is separated from aflat, impermeable and inert substrate by a thinfilm of solution.However, here, the film
thickness is assumed to be of the order of nanometers.We assume the presence of amacroscopic concentration
reservoir outside the contact region.

To predict the evolution of the confined interface during crystal growth, we use the thin filmmodel
presented in [19]. Thismodel describes the growth of a rigid crystal, and accounts for diffusion and
hydrodynamics in the liquidfilm.We assume that the slope of the crystal surface is small. Dynamical equations
for the interface evolution can therefore be obtained bymeans of the standard lubrication expansion [26].
Within this limit, due to the slenderness of the film, attachment-detachment kinetics is fast as compared to
diffusion along the liquid film. This assumption ismore robust when considering highly solublematerials. In
addition, we neglect hydrodynamicflow induced by crystal-solution density difference, assume the dilute limit
and linearizedGibbs–Thomson relation.We also assume for simplicity an axisymmetric geometry.

The system can be visualized infigure 1, where the profile of the crystal projected along the radius,
represented inwhite, is growing via transport ofmass from themacroscopic solution reservoir at the boundary
of the simulation box to the crystal surface via the thin film solution. The velocityfield of the liquid is represented
by the colormap and the substrate is represented by the dark-blue rectangle at the top of the images.

Let us nowdescribe the evolution equations inmore details. Using cylindrical coordinates z, r, the dynamical
equation relating the localfilm thickness ζ(r, t), and the vertical rigid-body translational velocity of the crystal uz
along z reads

2
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whereB=DΩ2c0/(kBT) is an effectivemobility, withD the diffusion constant,Ω themolecular volume, c0 the
numerical solubility, kB the Boltzmann constant andT the temperature. In the local chemical potentialΔμ, the
first two terms represent the contribution of surface tension γ(θ) (θ=0 surface parallel to substrate). These
terms are proportional to the surface stiffness 0 0g g g= + ˜ ( ) ( ). The last term represents the contribution of
the interaction potentialU(ζ) between the substrate and the crystal.

Sincewe here focus on small distances ζ, we need to account for the van derWaals contribution toU(ζ),
which is usually attractive for a liquidfilm between two solids [20].We also included a short range repulsive term
to account for a generic effective repulsion preventing contact. The interaction potential then reads
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where A 6 p= . Given the systemunder study, in the followingwe assume h=1 nm.
The global balance between viscous forces produced by hydrodynamicflow and the forces resulting from the

interaction potential provides an additional relationwhich allows one to determine uz:
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Figure 1. Simulation screenshots representing section of an axisymmetric growing crystal (white). Timeflows from top to bottom.
The normalized supersaturation is for both panels 0.21bcs =¯ . Left column 10 ;2h = -¯ right column 10 1h = -¯ , the cavity is not
observed. The units of the vertical scale is 1 nm. The substrate is located at hs=2 nm. The scale of the horizontal axis depends on the
material. For instance forNaClO3 the radial scale unit is 3.2 nm. The colormap represents the liquid velocity in normalized units. Red
color: positive velocities (flow from left to right); blue: negative velocities; green: vanishing velocity. The physical liquid velocity
depends on thematerial, for instance in the left panel forNaClO3 itsmaximumvalue (darker color) is u 66 m sL

1m» - .
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Herewe have no contribution of external force sincewe expect gravity effects to be negligible as compared to van
derWaals attraction at this scales.

In practice the dynamical equationswere solved in normalized units. Defining the dimensionless repulsion
strength A h2 g=¯ (˜ ), dimensionless variables are the normalizedwidth hz z=¯ , radius r rA h1 2=¯ ¯ and
time t tB A h2 3g=¯ ˜ ¯ . Rewriting themodel equations in a dimensionless form, the only parameter explicitly
appearing in the equation is the normalized viscosity
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A large value of h̄ indicates a strong influence of viscosity. Since h 2h ~ -¯ in (6), viscosity effects are seen to be
important when h is small.

The other relevant dimensionless quantities are the normalized system size

R
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Twomain sets of simulationswith different dimensionless viscosities, 10 5h = -¯ and 10 2h = -¯ , were
performed. They respectively aim atmodeling low solubility crystals such as calcium carbonate (CaCO3), and
highly soluble crystals like salts and sugars. For the latter class, we focused on sodium chlorate (NaClO3), which
was used in our previous work [9], and glucose.

The value of the dimensionless viscosity depends on the physical parameters as described by (6). The values
we chose for the simulations are rough estimations. For instance glucose actually lies in an intermediate regime
between 10 2h = -¯ and 10 1h = -¯ . Some exploratory simulationswere also performed at viscosities higher than
10−2. Larger viscosities could be encountered in other naturalmaterials asmore complex sugars. In the case of
sucrose for instance, we have η≈100 mPa so that 1h >¯ at saturation [27]. As a summary, the parameters used
in the simulations are listed in table 1.

Finally, the value of the normalized repulsion strength Ā is chosen following the same lines as in [19]. For
simplicity we assumeA≈10−20 J [20] to be the same for allmaterials considered here.We then obtain
A h A h62 2 g pg= =¯ (˜ ) ( ˜ ). In any case, the qualitative behavior is not influenced by this parameter which
never appears explicitly in the normalized equations, and only contributes to the spatial and temporal scales on
which phenomena can be observed.

Table 1.Constants used in the simulations. Other parameters intervening in the scalings are
assumed to be independent of the system considered. These are the temperatureT=300 K, the
interaction strength 10 J21 = - and the typical separation h=1 nm. Surface stiffnesses at the
crystal water interface are assumed equal to surface tensions and are rough estimations due to lack
of data and/or to large variability of it found in the literature. The last column indicates the
solution viscosity at saturation.

Material c0 3W (Å) D 10 m s9 2 1- -( ) mJ m 2g -˜ ( ) η (mPa s)

CaCO3
a 1025 59 0.8 100 1

NaClO3
b 6 × 1027 69 0.3 10 7

Glucosec 3 × 1027 194 0.2 100 10

Sucrosed 3.5 × 1027 355 0.2 100 100

a References [28–30]. Calcium carbonate is in general characterized by awide range of solubility

due to its strong dependency on carbon dioxide presence. The value in absence of CO2 at 25
◦ is

[31] c0=0.013 g l−1≈1023.However this value can increase of about two orders ofmagnitude

whenCO2 is present as is the case in natural environments as seawater [32].We assume the latter.
b References [33–36]. Data for the diffusion coefficient at saturationwas not found.We estimated

this value by extrapolating at higher concentration from [37]. Similarly we extrapolated the data

for the viscosity from [35].
c References [38–40]. There is lack of data for surface tension of glucose–water interfaces.We

assume 100 mJ m 2g » -˜ as suggested by some experiments on sucrose [41].
d References [27, 38, 41, 42]. Diffusion constant was assumed similar to the one of glucose.

4
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3.Discontinuous transition

Wenumerically solved (1) and (5) in a circular simulation box offixed radiusR, andfixedfilmwidth ζ(R)=ζbc
and supersaturationσ(R)=σbc at the boundary of the integration domain. In all simulationswewere able to
reach a steady-state characterized by a constant growth rate and crystal interface profile.We observe that for low
enough viscosities h̄, a cavity appears when increasing the simulation box radiusR, or the boundary
supersaturationσbc. Infigure 1we show two examples of simulations. The two columnswhere realized using
different normalized viscosities h̄, and keeping the other parameters fixed. Simulations at higher viscosity, e.g.

0.1h =¯ , do not show the appearance of a cavity.
For the two set of simulations considered, namely 10 2h = -¯ and 10 5h = -¯ , we studied the steady-state

profiles close to the transition. Infigure 2we show as an example the variation of the normalizedwidth
0 0z z=¯ ( ) ¯ of thefilm in the center of the contact as a function of the normalized supersaturation bcs̄ , and for

fixed box size R 40=¯ . Each dot corresponds to a steady-state reached in a single simulation.
Considering a surface which is initiallyflat and in theminimumof the interaction potential ( 10z =¯ ), and

gradually increasing the supersaturation bcs̄ , we observe a sharp jump in the value of 0z̄ at the transition. This
process corresponds to black circles and blue squares infigure 2.However if we start with a systembeyond the
critical supersaturation, thus featuring a cavity, and slowly decrease the supersaturation bcs̄ , the transition is not
observed at the same point, but at a lower supersaturation. This is represented by red and yellow triangles in
figure 2.Hence, the transition exhibits hysteresis. A similar behavior is observedwhen looking at the crystal
growth rate. This is showed infigure A1, where the discontinuity is less apparent especially in the backward
transition (i.e.when decreasing the supersaturation).

No qualitative difference is observed between simulations at 10 2h = -¯ and 10 5h = -¯ . Themain difference
lies in the shift of the transition towards larger supersaturationswhen the viscosity is increased.

4.Non-equilibriummorphology diagram

In [9], the conditions underwhich the formation of a cavity can be observedwere summarized in a non-
equilibriummorphology diagram. Let us recall the derivation of the condition for the transition following the
same lines as in [9]. Consider steady-state with aflat contact. Frommass conservation (neglecting the
consequences of solute advection), the totalmass entering the liquidfilm from the boundary of a disc of radius r
must be equal to themass entering the crystal, leading to

r J rhJ r2 , 10k d
2p p= ( ) ( )

where h is the film thickness, Jk is themassflux entering the crystal per unit area and Jd(r) is the the diffusion flux
entering the liquidfilm. Integrating the previous relation and using the identities J uk z= W∣ ∣ where uz∣ ∣ is the
growth rate, and Jd(r)=D∂rc, we obtain the concentration profile c. Then, using the definition of the
supersaturationσ=c(r)/c0−1, we find

Figure 2. Film thickness at the center of the contact r 0 0z z= =¯ ( ) ¯ versus supersaturation bcs̄ at the boundary of the simulation box
at different normalized viscosities h̄ . The size of the simulation box is R 40=¯ . The vertical axis is in nanometers. The size of the
simulation boxR and the supersaturation scale depend on thematerial. Calcium carbonate, red triangles and black circles:
R=400 nm, 0.014 ;bc bcs s= ´ ¯ sodium chlorate, yellow triangles and blue squares:R≈127 nm, 0.017 ;bc bcs s= ´ ¯ glucose,
yellow triangles and blue squares:R≈400 nm, 0.05bc bcs s= ´ ¯ .
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where L andσb=σ(L) are respectively the radius and the supersaturation at the boundary of the contact area.
Using 0 0s ( ) as condition for cavity formation, we obtain the growth rate at the threshold
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Following [9], the heuristicmultiplicative constantα is introduced in order to capture quantitatively the
simulation results within this simplified approach.

In order to build a non-equilibriummorphology diagram representing the location of the transition (when it
exists) in a planewhere the axes are the left-hand side and right-hand side of (12), we need to evaluate the
observables L andσb

cav. First, we determine the coupleR andσbc at the transition. Then, we consider the contact
radius L from the condition that ζ(L) exceeds the equilibriumposition h by 1%. Finally we obtain b

cavs using

L

k T k T
L U L , 13b

B B
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=
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whereκ is the localmean curvature. The procedure is repeated for simulations at different box sizes and
viscosities, and on the different branches of the hysteresis curve.

The results, shown infigure 3, confirm the expected linearity of the transition line. Interestingly, the forward
and the backward transitions roughly collapse on the same line. The differences inmass transport kinetics
between differentmaterials however lead to differences in the orders ofmagnitude of the critical vertical growth
velocity uz

cav (from about 0.1 to 100 nm s−1). A linearfit for the slope of the transition line leads to
α=0.65±0.04. This result is close to the valueα≈0.61 obtained in [9]. However, themodel of [9]was
different, with a purely repulsive potential and a load tomaintain the crystal close to the substrate. This result
suggests that the constantα could be robust with respect to the details of themodel.

5. Critical supersaturation and critical viscosity

Tounderstand how viscosity can affect the transitionwe resort to a perturbative analysis of the steady-state
solution. This is done assuming that, just before the transition, the profile deviates slightly from the equilibrium
configuration eqz z dz= + . The details of the derivation, reported in appendix B, reveal that the perturbation
δζ exhibits a concave parabolic profile. Hence, the thickness ζ0 in the center of the contact increases as the
supersaturation increases even in the absence of cavity.

This result suggests a simplemechanism for cavity formation.We use the standard result of the linear
stability analysis of an infinite flat profile of thickness ζ, which indicates that the surface of the crystal should be
stable whenU 0z >( ) , and unstable whenU 0z <( ) . This is similar to usual spinodal decomposition [43].
Hence, the initial profile with ζ=h is constant and at theminimumof the potential withU h 0 >( )
corresponds to a stable configuration. Considering now a non-equilibriumprofile with a concave parabolic ζ(r),
an approximate criterion for the cavity to form is that the thickness ζ0=ζ(r=0) at the center of the contact
reaches the inflection point ζcav of the potential, withU 0cavz =( ) . This scenario is consistent with a
discontinuous transition, since upon destabilization the thickness ζ0 in the center of the contact becomes larger
than ζcav. Once the instability is initiated, the larger ζ0, the largerU 0z( ), and the stronger the destabilization,

Figure 3.Non-equilibriumphase diagram for cavity formation for differentmaterials and transition pathways. The scaled viscosity h̄
is assumed to be 10−5 for CaCO3 and 10

−2 forNaClO3 and glucose.
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leading to a self-amplifying feedback.Note once again that this behavior is reminiscent of spinodal instabilities
[44–46].

Using this simple argument, i.e. 0
cavz z= , and in the limit of large contacts, we find an expression for the

critical supersaturation:
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The details of the derivation are reported in appendix B.
As a first consequence of (14), the critical supersaturation b

cavs is expected to reach afinite value b*s , when the
viscosity vanishes. This result differs from the behavior of purely repulsive potentials discussed in [9], where
vanishingly small supersaturationswere able to destabilize large crystals. This difference is intuitively
understood from the fact that the supersaturation here needs to be large enough to lead to an escape of the crystal
surface from the potential well at ζ=h. Thus the thermodynamic force related to supersaturationΔμ/Ωmust
be larger than the disjoining force dragging the interface towards theminimumof the potential
U h U hcav cavz z¢ » - ( ) ( ) ( ). Sinceσb=Δμb/kBT, we obtain that h U h k Tb B

cav*s z= -  W( ) ( ) ( ), which is
identical to (14)when 0h =¯ andU is given by (3). This result, which states that the the critical supersaturation

b
cavs is expected to reach a constant value when the viscosity vanishes and the size is large, is confirmed by

simulations infigure 4 for small viscosities (blue and red triangles). However, the predicted value 0.33b*s »¯ is
larger than the value observed in simulations L 0.12b

cavs  ¥ »¯ ( ) . Going back to physical variables
k ThB

3s s= W¯ ( ), we find that the critical supersaturation at vanishing viscosities is small 10b
2*s ~ - –10−3 for

h∼1 nm. Since hb
3*s ~ - , the critical supersaturation decreases quickly when the equilibrium thickness h

increases, and 10b
5*s < - for h=10 nm.

The expression (14) also provides information about the consequences of viscosity. For example, it agrees
qualitatively with figure 2, where higher viscosities were shown to lead to a transition at higher supersaturations.
Infigure 4, we show the normalized critical (forward) supersaturation b

cavs̄ at different normalized viscosities as
obtained by simulations. This again confirms good qualitative agreement with (14), since it agrees bothwith the
increase of b

cavs with increasing h̄, andwith the divergence of b
cavs for a finite value of h̄.

However, (14) is quantitatively inaccurate. For example, the observed threshold at 0.034*h »¯ is lower than
the predicted value 1 12 0.08*h = »¯ . Despite the absence of a quantitatively accurate expression for the
critical supersaturation as a function of viscosity, it is possible to obtain quantitative insights about the critical
viscosity using themorphology diagram. Indeed, inserting the parabolic profile ζeq+δζ of thefilm in the
contact in the force balance equation (5), leads to a second relation valid below the transition

u
hD c

L

4

6 1 2
. 15z

b0
2

s
h

»
- W

+( ¯ )
( )

The details of this derivation are presented in appendix B.2. This expression exhibits quantitative agreement
with simulation results as illustrated infigure B2. It follows from (15) that, as viscosity increases, the growth rate
uz decreases. In addition, for low viscosities the growth rate is independent of the viscosity.

Figure 4.Critical supersaturation for the appearance of a cavity as a function of viscosity, as obtained from simulations for the forward
transition (initiallyflat contact). The results are reported in normalized units. The critical supersaturation diverges at 0.34*h »¯ . For
larger normalized viscosities, cavities are not observed in simulations independently from the size of the contact (shaded area). The
critical supersaturation converges to a fixed valuewhen the contact size increases atfixed viscosity, as predicted by (B.16) and (14). At
vanishing viscosity the critical supersaturation is 0.12b*s »¯ (red and blue triangles). Cavities cannot be observed independently from
the size of the contact below this value (shaded area).
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Inserting (15) in (12), wefind the critical value of the viscosity abovewhich the cavity cannot form

D c

k Th

2 1

12
0.025 0.007. 16

B

2
0
2
* *h h

aW
= =

-
» ¯ ( )

Interestingly, if we assume the idealized case to hold (α=1), wewould have obtained 1 12*h =¯ as in (14).
Even though (15) and (16) rely on some approximations—based on our perturbative analysis and on the
heuristic character of the parameterα—wefind that (16) provides a reasonably accurate prediction close to the
value 0.034*h »¯ from the full numerical solution of themodel.

The discussion of this result can be presented in two different ways. First, wemay assume that disjoining
pressure effects lead to afixed film thickness, assumed for example to be h≈1 nm. Then, using (16) and
considering thematerials listed in table 1, wefind 3.7 103*h » ´ mPa s for calcite, 12*h » mPa s for sodium
chlorate, 4.6*h » mPa s for glucose and 1.2*h » mPa s for sucrose. Cavity formation should be hindered or
suppressed by viscosity effects when these values are equal to, or smaller than the values of viscosity at saturation
reported in the last columnof table 1. These are 1, 7, 10 and 100 mPa s, respectively. Thus, for examplewe do not
expect a cavity to appear for sucrosewhile calcite could feature a cavity. Conclusions on glucose or sodium
chlorate aremore difficult since the value of the critical viscosity is close to the viscosity at saturation.

The threshold can be reformulated in a differentmanner. Indeed, since the value of the critical viscosity
increases as the square of h there is a critical thickness h* abovewhich a cavity can form for a given system.Using
the viscosity at saturation, we find h 0.016* » nm for CaCO3, h 0.76* » nm forNaClO3, h 1.5* » nm for
glucose, and h 9.2* » nm for sucrose. These results once again state that cavity formation should be suppressed
for sucrosewith nanoscale confinement. For othermaterials with smaller viscosities, themain effect of viscosity
should be to shift the transition as shown infigures 2 and 3. In general, when thefilm thickness is larger than
h≈10 nmas in [9, 12], we expect cavities can form formostmaterials.

6.Discussion

Some limitations of our approach are discussed in this section. Thefirst one concerns the difficulty to analyze
strongly anisotropic crystals which exhibit facets. Indeed, the stiffness g̃ is expected to diverge at faceted
orientations. However, in [9], satisfactory quantitative agreementwith experimental data for faceted crystals was
obtained using a large butfinite stiffness. Applying this ad hoc assumption to the results of the present paper
would not change themqualitatively.However, the value of some physical observables would change. If we
assume an effective stiffness about 103–104 times the surface tension [9], crystal velocities (see figure 3) reduce by
the same factor. In addition, due to our stiffness-dependent normalization of space variables, our simulations
would correspond to larger crystal sizes (by a factor 10–100). In any case this will not change themeasured slope
α of the non-equilibriumphase diagramnor the value of the critical viscosity since these quantities are
independent of the stiffness.

A second difficulty is to use continuummodels to describe the consequences of nanoscale confinement on
diffusion and hydrodynamics. It is known for example that diffusion constants inwater can vary significantly
with confinement [47]. In contrast, the hydrodynamic description of waterwith bulk viscosity is known to be
quantitatively accurate for separations larger than∼1 nm [47]. At the nanoscale, liquids can also be structured in
the vicinity of solid surfaces. For example, layeringmay lead to oscillations in the disjoining pressure [20].
Additional confinement effects specific to solutions appear when the liquid film thickness is decreased up to
values that are comparable to the size of the solutemolecules. Such confinement effects could be observed, e.g.,
for sucrosewhich exhibits amolecular size of the order of one nanometer. Globally, using continuummodels to
probe nanoscale hydrodynamic effects is a challenge. In order to reach quantitative accuracy, suchmethods
must be based on effectivemodels which are calibrated onmolecular simulations to account for possible
deviations from the bulk behavior. This strategy should allow one to describe some of the consequences of
confinement bymeans of the thickness-dependence of physical parameters such as the diffusion constant and
the viscosity. Achieving this goal would be an important step toward themodeling of crystal growthwith
nanoscale confinement. Indeed,modeling of the growth process in standardmolecular dynamics simulations is
difficult due to prohibitive computational time.

Another phenomenonwhich comes to the fore at the nanoscale is thermalfluctuations.While themodel
discussed here is purely deterministic, atomistic simulations such asmolecular dynamics ofMonteCarlo
simulations [48] can account forfluctuations. Thermalfluctuations could trigger the randomopening and
closure of the cavity observed inNaClO3 crystals reported in [9]. Larger-scale fluctuations or perturbations, such
as those due to convection or stirring in the bulkfluid outside the crystal, should not be relevant here, since they
influencemass transport at scales larger than the thickness of the diffusion boundary layerℓBL=D/uL at the
free surface of the crystal, which is itself larger than the film thicknesses h considered here. Indeed, taking
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D 10 m s9 2 1~ - - , wewould need a very large hydrodynamic velocity u 10 cm sL
1~ - outside the contact region

forℓBL to reach a scale comparable to that of the liquidfilm in the contact h∼10 nm.
As alreadymentioned in the introduction, since it leads to growth perpendicular to the substrate

incorporation ofmass in the crystal at contactsmay lead to the generation of forces on the substrate [8, 14–16].
These crystallization forces play an important role in geology since they are responsible for deformation and
fracturing of rocks, and are also crucial for theweathering of buildingmaterials [17, 18]. Even though these
forces arewell characterized at equilibrium via energy balance [49, 50], we still lack a precise understanding of
the related non-equilibriumdynamics. Amajor issue is for instance to understand the interplay between the
force of crystallization and the non-equilibriummorphology of the contact [10], often characterized by the
presence of a rim along the edge of the contact region [10–13]. Despite the absence of external forces in our
model, we hope that our results will provide hints toward a better understanding of the conditions under which
rims can form.

7. Conclusions

In conclusion, we have studied the formation of cavities in nano-confined crystal surfaces. Examples are
discussed for somemodelmaterials ranging frompoorly solubleminerals (calcite) to high soluble salts (sodium
chlorate) and sugars.

Cavity formationwas recently observed experimentally usingNaClO3 crystals with liquidfilm thicknesses
thatwere one or two orders ofmagnitude larger than those used here [9]. Despite the different scales the
resulting non-equilibriummorphology diagrams are very similar (with a similar value of the phenomenological
constantα). This further confirms the robustness of cavity formationwith respect to variations of physical
conditions andmaterials.

However, some differences are observed at the nanoscale. First, we show that an attractive van derWaals
interaction induces a discontinuous (subcritical) transitionwith hysteresis.Moreover, there is aminimum
supersaturation belowwhich cavities cannot formbecause the driving force is not sufficient for the interface to
escape from the potential well of the disjoining pressure (however its quantitative value is relatively small when h
is larger than 1 nm). Second, due to the nanoscale width of the liquidfilm separating the crystal and the
confiningwall, viscosity becomes relevant. The effect of viscosity is to shift the transition toward larger crystal
sizes and larger supersaturations.Moreover, the formation of the cavity can also be prevented by sufficiently
large viscosities.We estimated the relevant critical viscosity abovewhich no cavity should appear. In practice,
such condition could be realized for instance for sucrose.

We hope that ourworkwill inspire novel experimental investigations ormolecular simulations of growth
after heterogeneous nucleation and of growth of sedimented crystals.
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AppendixA. Growth rate as a function of supersaturation

Infigure A1we show the normalized growth rate uz¯ as a function of the normalized supersaturation at the
boundary of the simulation box as obtained fromnumerical solution of (1) and (5). The growth rate responds
roughly linearly to changes in the supersaturation, and a small jump followed by a change of slope is observed at
the transition.Hysteresis is also found here but the discontinuity ismore apparentwhen increasing the
supersaturation from an initial flat surface (forward transition).

Appendix B. Perturbation to equilibrium

Using a perturbative approach from the equilibrium solution of (1) and (5), we here derive approximate
expressions for the growth rate and the critical supersaturation.

As a preamble, we characterize the equilibrium solution itself. Steady-state solution of (1) and (5) obey

B
r

r
r

U u0
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. B.1r r rr r zz g z
g

z z= ¶ ¶ ¶ + ¶ - ¢ +⎜ ⎟⎡
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The equilibrium solution is a particular steady-state equation obeying uz=0 and

r
U , B.2rr req eq eq

eqg z
g

z z
m

¶ + ¶ - ¢ =
D

W
˜ ˜ ( ) ( )

where eqmD W is a constant which corresponds to the equilibrium chemical potential. The radius of the contact
region is denoted as L.Multiplying (B.2) by 2πr, and integrating between the center of the contact at r=0 and a
radius r=R>L, we find a relation between the equilibrium chemical potential and the slope at the boundary
of the integration domain
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m g
z
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wherewe have used the relation r rU2 d 0
R

0òp z¢ =( ) , corresponding to the equilibrium force balance(5). A
second relation can be foundwhenmultiplying (B.2) by r eqz¶ and integratingwith respect to r:
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whereΔU=U(ζeq(R))−U(ζeq(0)). Equation (B.4) relating the surface slope∂rζeq(R) outside the contact to the
depth of the potential wellΔU, is equivalent to a generalized formof the Young contact angle condition. The
integral term in the second equation is related to the effect of line tension. In the following, wewill neglect
this term.

Wenow assume that the equilibriumprofile isflat ζeq(r)≈hwithU h 0¢ =( ) for r L . Then, we expect
ζeq(L)≈ζeq(0)≈h, and combining (B.4) and (B.3)we find

L
U h

2
2 , B.5eqm gD »

W
- ˜ ( ) ( )

wherewe assumed that the interaction potential vanishes far from the contact regionU(ζ(r>L))≈0.Note that
under these approximations the right-hand side of (B.4) vanishes, and this equation is the small slope limit of the
Young contact angle condition.

Consider now a systembelow the transition, so that no cavity is present. The crystal surface profile is then
expected to be close to the equilibriumprofile.We therefore consider the difference δζ (r)=ζ(r)−ζeq(r)
between the steady-state solution and the equilibrium solution to be small. Expanding (B.1) to linear order in δζ
(r), and integrating two times, wefind

r
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wherewe have used the parity of ζ(r) and (B.2), andwe have defined the chemical potential at the edge of the
contact zoneΔμb=Δμ(L)withΔμ(L) given by (2). Assuming again that in the contact area r<L the
equilibriumprofile isflat ζeq≈h, (B.6) can be rewritten as:

Figure A1.Normalized growth rate uz∣ ¯ ∣ versus supersaturation bcs̄ at the boundary of the simulation box for different normalized
viscosities h̄ . The size of the simulation box is R 40=¯ . The system size and scales of the axes depend on thematerial. Calcium
carbonate, red triangles and black circles:R=400 nm, 0.014bc bcs s» ´ ¯ , u u6.7 10 nm s ;z z

1» ´ ´- ¯ sodium chlorate, yellow
triangles and blue squares:R≈127 nm, 0.017bc bcs s» ´ ¯ , u u2.1 10 nm s ;z z

5 1» ´ ´- ¯ glucose, yellow triangles and blue
squares:R≈400 nm, 0.05bc bcs s» · ¯ , u u5.5 10 nm sz z

4 1» ´ ´- ¯ . Vertical dashed lines indicate the critical supersaturation at
the boundary of the simulation box for forward and backward transitions. Their color is the same as that of the corresponding
symbols.
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Aparticular solution of this equation is a parabola:
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A comparison between this solution and the profile obtained fromnumerical integration is shown infigure B1
for a crystal close to the transition. The agreement is very satisfactory.

B.1. Viscosity effect on the growth rate
Applying a similar procedure to the force balance expression in (5)wehave to leading order
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Using (B.6) to express the right-hand side, we are left with
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As done previously we assume that in the contact area r<L, the equilibriumprofile is ζeq≈h.With this
assumption the previous relation reduces to
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Using (B.8) to express the last term in the right-hand sidewe have
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We then obtain
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As showed infigure B2 the comparison between this relation and the direct numerical solution of uz proves to be
satisfactory.

Here, wewish to focus on steady-states close to the threshold of cavity formation. SinceΔμeq∼1/L from
B.5, this term can be neglected far from equilibrium and for large system sizes where cavity formation occurs.
For the same reasonwe neglect the termof order 1/L2. Finally, assuming the supersaturation is small, we have
Δμb=kBTσb, andwe obtain (15).

Figure B1. Section of the crystal profile close to the transition. The black zone at the top represents the substrate. The black line is the
simulation result. The vertical axis is in physical units. The horizontal axis scaling depends on thematerial (via the constant Ā).
Simulation parameters: size of the box R 40=¯ , supersaturation at the boundary of the integration domain 0.2bcs =¯ . The dashed red
line is obtained from (B.8)with L, uz,Δμbmeasured in the simulation.
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B.2. Viscosity effect on the critical supersaturation
As discussed in themain text, we expect the cavity to appear when ζ0>ζcav, where ζ0 is thewidth at the center of
the contact, and ζcav is defined by the relationU 0cavz =( ) . Given (4) and assuming again ζeq≈h, we find
ζcav=4/3 h and δζcav=ζcav− h=h/3. Let us recall (B.8) and consider the correction to ζ0:
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Nowwe use the condition δζ(0)=δζcav for the appearance of the cavity, and deduce the corresponding critical
value of the chemical potential at the boundary:
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Using (B.13)wehave
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Using again the identityΔμ=kBTσ, neglecting the last term in the denominator (∼1/L2) and the equilibrium
chemical potential (∼1/L), we obtain (14).
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