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ABSTRACT
Cloud-based systems enable to manage ever-increasing medical
data. The Digital Imaging and Communication in Medicine (DI-
COM) standard has been widely accepted to store and transfer
the medical data, which uses single (row/column) or hybrid data
storage technique (row-column). In particular, hybrid systems
leverage the advantages of both techniques and allow to take into
account various kinds of queries from full records retrieval (online
transaction processing) to analytics (online analytical process-
ing) queries. Additionally, the pay-as-you-go model and elasticity
of cloud computing raise an important issue regarding to Multi-
ple Objective Optimization (MOO) to find a data configuration
according to users preferences such as storage space, process-
ing response time, monetary cost, quality, etc. In such a context,
the considerable space of solutions in MOO leads to generation
of Pareto-optimal front with high complexity. Pareto-dominated
based Multiple Objective Evolutionary Algorithms are often used
as an alternative solution, e.g., Non-dominated Sorting Genetic
Algorithms (NSGA) which provide less computational complexity.
This paper presents NSGA-G, an NSGA based on Grid Partition-
ing to improve the complexity and quality of current NSGAs and
to obtain efficient storage and querying of DICOM hybrid data.
Experimental results on DTLZ test problems [10] and DICOM
hybrid data prove the relevance of the proposed algorithm.

1 INTRODUCTION
A widely international standard between various vendors to trans-
mit, store, retrieve, print, process and display medical imaging
information is Digital Imaging and Communications in Medicine
(DICOM). Cloud computing makes it possible to manage a tremen-
dous growth medical data volume. In particular, DICOM data
is also deployed in a cloud by traditional (row/column) [2, 27,
30, 35] or hybrid (row-column) [11, 14, 29] data storage tech-
nique. The hybrid stores take advantage of both techniques and
take into account various kinds of queries, including Online an-
alytical processing (OLAP) and Online transaction processing
(OLTP) queries. Some recent works [11, 14, 28, 29] have been
proposed to optimize the hybrid data configuration. However,
HYRISE [14] and SAP HANA [11] do not consider the high
volume and sparsity of DICOM data. Besides, the pay-as-you-
go model of DICOM leads to Multiple Objective Optimization
(MOO) problem to find a data configuration according to users
preferences regarding storage space, processing response time,
monetary cost, quality, etc. Moreover, an automatic approach
producing data storage configurations for DICOM data is also
presented in [28]. Authors claimed that the space of candidate
solutions in MOO is large, but did not give any method to find
the optimal hybrid data configurations. The vast space of data
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Table 1: Frequency of Queries in Workload W.

Queries Detail Freq
Q1 SELECT UID, GeneralTags, GeneralVRs, GeneralNames, Gener-

alValues FROM GeneralInfoTable
100

Q2 SELECT GeneralTags, count(GeneralValues) FROM GeneralIn-
foTable GROUP BY GeneralTags

100

Q3 SELECT UID, GeneralNames FROM GeneralInfoTable WHERE
GeneralNames = ’Modality’

100

Q4 SELECT UID, GeneralVRs FROM GeneralInfoTable WHERE
GeneralVRs = ’DA’

100

Table 2: Attribute Usage Matrix of GeneralInfoTable.

Queries
GeneralTags

(a1)
GeneralVRs

(a2)
GeneralNames

(a3)
GeneralValues

(a4) Freq

Q1 1 1 1 1 100
Q2 1 0 0 1 100
Q3 0 0 1 0 100
Q4 0 1 0 0 100

Table 3: Data configuration candidate of GeneralInfoTable.

Conf Typical candidate
data storage configu-
ration

No. of stored
data cells

Null
ratio

No.
of
joins

No. of scanned
data cells

Exec.
time
(sec)

C1 {UID, a1, a2 , a3, a4}
=> row store

81,135,145 3.49% 0 32,454,058,000 15,180

C2 {UID, a1, a2 , a3, a4}
=> column store

81,135,145 3.49% 0 19,472,434,800 13,790

configuration candidates in hybrid store system leverages an al-
ternative solution to find a Pareto-optimal. Evolutionary Multi-
objective Optimization (EMO) [8, 9, 18, 22, 34, 41] based on
Pareto dominance techniques is an approximations approach for
MOO. Among EMO approaches, Non-dominated Sorting Algo-
rithms (NSGAs) [6, 9, 40, 41] are potential solutions. However,
the diversity, convergence and computational quality of NSGAs
still need to be improved.

For example, GeneralInfoTable table of DICOM data is the
largest entity table in terms of storage space size for a given
medical dataset. GeneralInfoTable, comprising 16,226,762 tuples
and 4,845,042 MB, is often processed by a workfload W, as
shown in Table 1. The Attribute Usage Matrix of this table is
shown in Table 2. The statistic of null value ratios corresponding
to the attributes in GeneralInfoTable table is described as follows:
GeneralTags (0.0 %), GeneralVRs (0.0 %), GeneralNames (0.0
%), GeneralValues (13.97 %).

Table 3 shows two original candidates of data configuration of
GenealInTable. Besides, many other candidates can decompose
this table into sub-tables and can be stored in row or column stores
corresponding to four different objective values: null ratio, number
of joins, number of scanned data cells and execution time.

To solve the multi-objective problems above, the problems
are often solved by turning the problem into a single-objective
problem first and then solving that problem. However, single-
objective problems cannot adequately represent multi-objective
problems [13]. This approach may significantly changes the prob-
lem nature. In some cases, the problem becomes harder to solve



or certain optimal solutions are not found anymore [13]. In gen-
eral, Multi-Objective Optimization problem is more complex than
single-objective optimization problem. Moreover, large space of
candidates leads to the necessity of finding a Pareto set of data
configurations in MOO. Besides, generating Pareto-optimal front
is often infeasible due to high complexity [42]. Therefore, in the
context of hybrid DICOM data storage in clouds, a challenging
problem is how to optimize the hybrid data storage with an effi-
cient algorithm.

Meanwhile, Evolutionary Algorithms, an alternative to the
Pareto-optimal, look for approximations (set of solutions close to
the optimal front). For example, EMO approaches [8, 9, 18, 22, 34,
41] have been developed based on Pareto dominance techniques.

Among EMO approaches, [6, 9] proposed Non-dominated Sort-
ing Algorithms (NSGAs) to decrease the computational complex-
ity while maintaining the diversity among solutions. The crowding
distance operators are used to maintain the diversity in NSGA-
II [9] and SPEA-II [41]. However, the crowding distance operators
need to be replaced because of high complexity and not unsuit-
ability for the problems of more than two objectives [20]. Fur-
thermore, MOEA/D maintains the diversity with more than three
objectives problem [40]. This algorithm uses an approach based
on decomposition to divide a multiple objectives problem into
various single objective optimization sub-problems. Nevertheless,
MOEA/D can only solves up to four objectives [33]. Meanwhile,
Deb and Jain [8] proposed a set of reference directions to guide the
search process in NSGA-III. In spite of good quality, NSGA-III
has the highest computational complexity among NSGAs.

This paper presents Non-dominated Sorting Algorithm based
on Grid Partitioning (NSGA-G) [25] to improve both quality and
computational efficiency of NSGAs, and also provides an alter-
native Pareto-optimal for MOO problem of DICOM hybrid store.
NSGA-G maintains the convergence by keeping the original gen-
eration process and the diversity by randomly selecting solutions
in a Pareto set in sub-groups. A solution is selected by compar-
ing members in a group, which is created by a Grid Partitioning
in the space of solutions, instead of all members in the space.
NSGA-G improves both quality and computation time to solve
MOO, while inheriting the superior characteristics of NSGAs in
terms of computational complexity. NSGA-G is validated through
experiments on DTLZ problems [10] in Generational Distance
(GD) [37], Inverted Generational Distance (IDG) and Maximum
Pareto Front Error (MPFE) statistic [38], comparing with other
NSGAs, such as, NSGA-II, NSGA-III, etc. Furthermore, NSGA-
G is also experimented in finding the Pareto-optimal of DICOM
hybrid data configuration.

The remaining of this paper is organized as follows. Section 2
presents the background of our research. NSGA-G is presented in
Section 3, while Sections 4 and 5 present experiments to validate
NSGA-G to DTLZ problems and hybrid DICOM data storage,
respectively. Finally, conclusions and perspectives are presented
in Section 6.

2 BACKGROUND
2.1 DICOM
The international standard of medical data, DICOM, to transfer,
store and display medical imaging information was firstly released
in 1980 to make inter-operable between different manufacturers.

Besides characteristic of BigData, such as volume, variety and
velocity [24], DICOM has been accessed by various OLAP, OLTP

and mixed workloads. Row stores data associated with a row to-
gether has the advantage of adding/modifying a row and efficiently
reading many columns of a single row at the same moment. This
strategy is suitable for OLTP workload, but wastes I/O costs for
a query which requires few attributes of a table [15]. In contrast,
column stores (e.g. MonetDB [2] and C-Store [35]) organize data
by column. A column contains data for a single attribute of a
tuple and stores sequentially on disk. The column stores allow
to read only relevant attributes and efficiently aggregating over
many rows, but only for a few attributes. Although, the column
stores are suitable for read-intensive (OLAP) workloads, their
tuple reconstruction cost in OLTP workloads is higher than row
stores. To improve performance of storing and querying in OLAP,
OLTP and mixed workloads, DICOM data needs to be stored in a
row-column store, called hybrid data storage.

2.2 Hybrid data configuration
Hybrid stores (e.g., HYRISE [14], SAP HANA [11], HYTORMO
[28]) are proposed to optimize the performance of both OLAP
and OLTP workloads. The hybrid store has two processes in opti-
mizing storage and query.

Data Storage Strategy. The first strategy aims to optimize
query performance and storage space over a mixed OLTP and
OLAP workload by extracting, organizing and storing data in a
manner to reduce space, tuple construction and I/O cost. The data
are organized into entity tables. The tables are decomposed into
multiple sub-tables, which are stored in row or column stores of
the hybrid store. A group of attributes classified as frequently-
accessed-together attributes can be stored in a row table. Other
groups are classified as optional attributes and stored in a column
store. Each attribute belongs to one group except that it is used
to join the tables together. This strategy removes the null rows in
tables.

Query Processing Strategy. In order to improve perfor-
mance of query processing in a distributed file system of a cloud
environment, the hybrid store needs to modify sub-tables to reduce
the left-outer joins and irrelevant tuples in the input tables of join
operations. When a query needs attributes from many sub-tables,
the hybrid store should change data configuration to have efficient
query processing in joining operators between sub-tables. The
query performance is negatively impacted if the query execution
needs attributes by joining many tables. The hybrid store needs
to reconstruct result tuples and the storage space will increase to
store surrogate attributes.

In general, based on a given workload and data specific infor-
mation, a large number of candidates of data storage configuration
can be created for a given table. The number of candidates depends
on the attributes, null values in tables, the number of database
engines, etc.

2.3 Non-dominated Sorting Genetic Algorithms
NSGAs are often used with low computational complexity of non-
dominated sorting. At the beginning, a population P0 consisting
of N solutions is initialized. In hybrid data optimization problem,
a population represents a set of candidates of hybrid data config-
uration. The space of all candidates is larger than the size of P0.
Each solution belongs to only one non-dominated level (there is
no candidate dominating any solution in level 1, each candidate in
level 2 is dominated by at least one solution in level 1 and so on).
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Figure 1: NSGA-II and NSGA-III procedure [8, 9].

Algorithm 1 Generation t of NSGA-II and NSGA-III [8, 9].
1: function EVALUATION(Pt ,N )
2: St = 0, i = 1
3: Qt = Recombineation +Mutation (Pt )
4: Rt = Pt ∪Qt
5: F1, F2, ... = Non − diminated − sor t (Rt )
6: while | St | ≤ N do
7: St = St ∪ Fi
8: i + +
9: end while

10: Last front is Fl
11: if | St |= N then
12: Pt+1 = St
13: break
14: else
15: select N −

∑j=l−1
j=1 | Fj | solutions in Fl

16: end if
17: return Pt+1
18: end function

The binary tournament selection and mutation operators [7] gen-
erate N solutions for the offspring population Q0. After that, 2N
solutions in R0 = P0 ∪Q0 are selected to multiple sub populations
with different rank or non-dominated level. The next generation
P1 includes N candidates from R0. The first domination principle
is based on non-dominated sorting [3]. A population R0 is classi-
fied into different non-domination ranks (F1, F2 and so on). As a
consequence, N solutions in R0 from rank 1 to k are selected to
prepare the parent population for next-generation P1 and so on.

Algorithm 1 shows the population generation in NSGA-II [9]
and NSGA-III [8]. At the t th generation, a population Rt = Pt ∪
Qt is formed by a parent Pt and offspring Rt population. Then, 2N
solution in Rt are sorted in ranks F1,F2, etc . The non-dominated
F1 is the best front for the next generation Pt+1. All solutions in
F1 are moved to Pt+1 if the size of the first front F1 is smaller
than N . Thus, all candidates in the next front F2 are moved if
the size of the second front is smaller than N− | F1 | and so on.
At level l , if front Fl cannot be fitted in Pt+1, the process selects
N −

∑l−1
j=1 | Fj | remaining solutions in Fl . The procedure is

illustrated in Figure 1.
The difference among NSGA-II, NSGA-III and other NSGAs

is the way to select members in the last level Fl . The crowd-
ing distance operator [9, 41] is used to select solutions in last
front. However, the crowding distance operator should be replaced
for better performance [17, 23] in MOO problems. In particular,
NSGA-II prefers selecting the solutions in low-density area and
rejecting the candidates in high-density area. For example, when
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Figure 2: Grid points and Groups.

the number of solutions needs to be selected for the next genera-
tion is 10, NSGA-II focuses on rejecting solutions in the square
near (1.0, 0.0), as shown in Figure 2.

In a different way, MOEA/D [40] generates various scalar op-
timization subproblems, instead of solving a multiple objectives
problem. The diversity of solutions depends on the way to choose
the scalar objectives. However, the number of neighborhoods
should be defined at the beginning. Furthermore, authors do not
mention the way to estimate good neighborhoods. The diversity
is considered as the selected solution associated with these differ-
ent sub-problems. Various versions of MOEA/D approaches are
presented in [8]. However, they fail to maintain the diversity of
solutions.

To keep the diversity, an Evolutionary Many-Objective Opti-
mization Algorithm Using Reference-point Based Non-Dominated
Sorting Approach [8] (NSGA-III) uses various directions. The
crowding distance operator is replaced by comparing solutions.
NSGA-III generates multiple reference points and each solution
is associated with one of them. However, comparing solutions and
building reference points impact the execution time. NSGA-III
has the better diversity, but the execution time is longer than other
NSGAs. For example, in the problem of two objectives and two di-
visions, NSGA-II creates three reference points, (0.0,1.0), (1.0,0.0)
and (0.5,0.5), as shown in Figure 2. After the selection process, the
selected solutions are closed to these three reference points. The
diversity of the population is improved by this approach. However,
comparing all solutions associated with reference points leads to
the high execution time of this algorithm.

Furthermore, all approaches compare all candidates in Fl to
move good candidates to the next generation Pt+1. Hence, the
execution time for calculating and comparing becomes significant
when the number of solutions in the last front is huge.

2.4 Motivation
Optimizing data configuration based on queries has been ad-
dressed by systems like HYRISE [14] and SAP HANA [11]. In
particular, HYRISE can be applied to Customer Relationship Man-
agement (CRM) and SAP HANA uses TPC-H [36] to experiment
the approach. However, they do not consider the high volume
and sparsity of DICOM data. Besides, HYTORMO [29] uses
data storage strategy (α , β ∈ [0, 1]) and query processing strat-
egy (θ , λ ∈ [0, 1]) to automatically generate a data configuration
corresponding to these parameters, but do not provide the opti-
mal algorithm to choose the best hybrid model or a Pareto data
configuration set.



In the problem of the hybrid data configuration, HYTORMO
concerns at least four objectives. In some cases, some objectives
are homogeneous. In the reason of the homogeneity between the
multi-objectives functions, removing an objective do not affect to
the final results of MOO problem. In other cases, the objectives
may be contradictory. For example, the monetary is proportional
to the execution time in the same virtual machine configuration
in a cloud. However, cloud providers usually leases computing
resources that are typically charged based on a per time quan-
tum pricing scheme [21]. The solutions represent the trade-offs
between time and money. Hence, the execution time and the mon-
etary cost cannot be homogeneous. As a consequence, the multi-
objective problem cannot be reduced to a mono-objective problem.
Moreover, if we want to reduce the MOO to a mono-objective
optimization, we should have a policy to group all objectives by
the Weighted Sum Model (WSM) [16]. However, estimating the
weights corresponding to different objectives in this model is also
a multi-objective problem.

In addition, MOO problems could be solved by MOO algo-
rithms or WSM [16]. However, MOO algorithms are selected
thanks to their advantages when comparing with WSM. The op-
timal solution of WSM could be unacceptable, because of an
inappropriate setting of the coefficients [12]. Furthermore, the
research in [19] proves that a small change in weights may result
in significant changes in the objective vectors and significantly
different weights may produce nearly similar objective vectors.
Moreover, if WSM changes, a new optimization process will be re-
quired. Hence, our system applies a Multi-objective Optimization
algorithm to find a Pareto-optimal solution.

As consequence, this paper proposes an approach to find a
Pareto data configuration set of hybrid store for DICOM using
Non-dominated Sorting Genetic Algorithm based on Grid Parti-
tioning [25].

3 NSGA-G AND OPTIMIZING DICOM DATA
MANAGEMENT

NSGA-G [25] is used to improve both diversity and convergence
while having an efficient computation time by reducing the space
of selected good solutions in the truncating process.

At the t th generation of Non-dominated Sorting Algorithms,
Pt represents the parent population with size N andQt is offspring
population with N members created by Pt . Rt = Pt ∪Qt is a group
in which N members will be selected for Pt+1.

3.1 NSGA-G
NSGA-G generates the grid points and classifies the solutions in
groups by the nearest smaller and bigger grid points. For instance,
a two-objective problem and grid points are shown in Figure 2. In
this example, the unit of grid point is 0.25. The closest smaller
point of the solution [0.35, 0.45] is [0.25, 0.5] and the nearest big-
ger point is [0.5, 0.5]. Grid Min Point and Grid Max Point divide
the solutions in a front into various small groups, as shown in
Figure 2. This division aims to avoid comparing and calculating
multiple objective cost values of all solutions in the last front. All
solutions in a group have the same Grid Min Point and Grid Max
Point. To keep the diversity, a group is selected randomly. A solu-
tion is compared with the others in a group to reduce the execution
time. In this way, only solutions in a group need to be calculated
and compared to select the best candidate, instead of all members
in the last front Fl , as shown in Figure 2. Moreover, randomly
choosing groups maintains the diversity of the population in the

Algorithm 2 Filter front in NSGA-G. [25]

1: function FILTER(Fl ,M = N −
∑l−1
j=1 Fj )

2: updateIdealPoint()
3: updateIdealMaxPoint()
4: translateByIdealPoint()
5: normalizeByMinMax()
6: createGroups
7: while | Fl |> M do
8: selectRandomGroup()
9: removeMaxSolutionInGroup()

10: end while
11: return Fl
12: end function

removing process. N −
∑l−1
j=1 Fj solutions in Fl are moved to the

next generation following this strategy, as shown in Algorithm 2
The new origin coordinate is defined in the second line in

Algorithm 2. The maximum objective values are determined in
the third line. All solutions in the space are normalized in range
of [0, 1], as shown in lines 4 and 5. After that, depending on
the grid points, the solutions are divided into different groups.
Randomly selecting a group is the most important characteristic
of the algorithm. This selection helps to avoid comparing and
calculating all solutions in fronts.

Three qualities are used including convergence, diversity and
execution time to estimate the quality of proposed algorithm.

Convergence. The proposed algorithm keeps the convergence
of NSGAs by following the steps of generation process, as shown
in Figure 1. Moreover, the convergence is also improved and
better than the original NSGAs. The experiments of GD [37] and
IGD [4] showing the advantages of the proposed algorithm will
be presented in Session 4.

Diversity. NSGAs keep the next generation solutions distributed
in the space of solutions. The proposed approach also guarantees
the diversity by using Grid Partitioning. Assuming that the prob-
lem has N objectives, N ≥ 4, and the last front needs to remove
k solutions. After normalizing all solutions in the last front in
range of [0, 1], each axis coordinate is divided by n, i.e., the num-
ber of grid, in that range. Thus, the space in that range will have
nN groups. We choose the number of groups in the last front be
nN−1. The diversity of the genetic algorithm is kept by generating
k groups and removing k solutions. The worst solution in each
group is removed by determining the longest distance to the mini-
mum grid point. Hence, the parameter n of the proposed algorithm
is n = ⌈k1/(N−1)⌉, where ⌈.⌉ is a ceiling operator.

Computation. In this paper, the proposed algorithm aims to
reduce the computation of selecting good solution by dividing all
solutions in the last front into small groups. A good solution is
selected in a small group, instead of the last front. The selection
process is accelerated by this division in comparison with other
approaches scanning all solutions.

3.2 Optimizing hybrid data configuration
A workload W = (A,Q,AUM, F ) comprises four elements includ-
ing: a query set Q = {qi | i = 1, ...,m} in workload W executed
over T; an attribute set A = {aj | j = 1, ...,n} of table T; an At-
tribute Usage MatrixAUM with size ofm×n, whereAUM[i, j] = 1



Algorithm 3 Find a data configuration for a table T in cloud
computing.

1: function BESTDATACONFIGURATION(Q,W,T,S,B)
2: // Find a Pareto data configuration set of table T and

Workload W with weight sum model S and Constraint B
3: α ∈ {0; 1} //weight of similarity
4: β ∈ {0; 1} //clustering threshold
5: θ ∈ {0; 1} //merging threshold
6: λ ∈ {0; 1} //data layout threshold
7: AUM ← AttributeUsaдeMatrix (W )
8: F ← QueryFrequencies (W )
9: I ← DataSpeci f ic (T )

10: P ← NSGA −G (α , β,θ , λ,AUM, I , F )
11: //Return best candidate in P with weight sum model
12: return BestInPareto(P,S,B)
13: end function

Algorithm 4 Select the best data configuration in P for weights
S and constraints B.

1: function BESTINPARETO(P,S,B)
2: PB ← p ∈ P|∀n ≤ |B| : cn (p) ≤ Bn
3: if PB , ∅ then
4: return p ∈ PB |C (p) =min(WeiдhtSum(PB ,S))
5: else
6: return p ∈ P|C (p) =min(WeiдhtSum(P,S))
7: end if
8: end function

if qi accesses to attribute aj , otherwise AUM[i, j] = 0; a frequen-
cies set F = { fk | k = 1, ...,m}, where fk is total frequencies
count of qk in workload W.

Vertical partitioning approaches, including affinity-based algo-
rithm [32], are widely used in the traditional database. Especially,
affinity-based algorithms use Attribute Usage Matrix and Frequen-
cies matrices to optimize data in Distributed Database system.
This approach is also used in the hybrid data store. In particular,
HYRISE [14] and SAP HANA [11] use the Attribute Usage Ma-
trix of a table and Frequency of queries in a workload to optimize
the hybrid data configuration.

However, HYTORMO [29] concerns more about data specific
information, a matrix containing the null values of a table. Data
specific information does not appear in the traditional system.
Besides, HYRISE and SAP HANA do not concern the high vol-
ume and sparsity of DICOM data (the null values). HYTORMO
concerns the high volume and sparsity of DICOM and mixed
OLTP/OLAP workloads in the automatic generating hybrid data
configuration.

The data specific information is a matrix containing the null
values of table T. The hybrid data configuration is formed by four
parameters including weight of similarity α , clustering threshold
β , merging threshold θ and data layout threshold λ. Depending
on these four parameters, HYTORMO automatic creates a data
configuration of hybrid store. However, the authors did not opti-
mize the space of solutions of data configuration. Hence, in the
space of four parameters in [0, 1], we use NSGA-G to look for a
Pareto set of data configuration. Algorithm 3 finds the best data
configuration for a table T. Line 10 generates a Pateto set of data
configuration. After that, the line 12 uses Algorithm 4 to return
the best solution in this set with the weight sum model S and the
constraint B [16].

4 VALIDATION ON DTLZ TEST PROBLEMS
Many studies on Multi-objective Evolutionary Algorithms (MOEAs)
present test problems, but most of them are either simple or not
scalable. Among them, DTLZ test problems [10] are useful in
various research activities on MOEAs, such as testing the perfor-
mance of a new MOEA, comparing different MOEAs and better
understanding of the working principles of MOEAs. The proposed
algorithm is experimented on DTLZ test problems with other fa-
mous NSGAs to show advantages in convergence, diversity and
execution time.

4.1 Environment
For fair comparison and evaluation, the same parameters are
used, such as simulated binary crossover (30), polynomial mu-
tation (20), max evaluations (10000) and populations (100), for
eMOEA[5], NSGA-II, MOEA/D[40], NSGA-III and NSGA-G1.
All algorithms are experimented with the same population size
N = 100 and the maximum evaluation M = 10000. Two types
of problems in DTLZ test problems [10], DTLZ1 and DTLZ3,
with m objectives, m ∈ [5, 10], in MOEA framework [26], are
used with 50 independent runnings. All experiments are run in
Open JDK Java 1.8 and on a machine with following parameters:
Intel(R) core(TM) i7-6600U CPU @ 2.60GHz × 4, 16GB RAM.

4.2 Results
To estimate the qualities of algorithms, GD [37], IGD [4] and
MPFE [38] are applied. GD measures the distance from the
evolved solution to the true Pareto front [39]. The quality mea-
suring both the convergence and diversity is IDG. It estimates
the approximation quality of the Pareto front obtained by MOO
algorithms [1]. The most significant distance between the individ-
uals in Pareto front and the solutions in the approximation front is
showed in MPFE [39]. In three experiments, the better quality is
shown by the lower value.

The advantage of NSGA-G, comparing to other NSGAs in
both diversity and convergence, is shown by dividing the space of
solutions into multiple partitions and selecting groups randomly.
The advantages of NSGA-G are presented not only on the diversity
and convergence in GD and IGD, as shown in Tables 4, 6, but
also on the distance between the individuals in Pareto front and
the solutions in the approximated front experiment, i.e., MPFE, as
presented in Table 8. The convergence and diversity of NSGA-G
are often the most or second quality in the tests.

In high computational problems, NSGA-G outperforms in
forms of the computation time. It is explained by the compar-
ison among solutions in a group, instead of in the whole space. It
can be seen that NSGA-G has shorter computation time than the
others in the large objective experiments, as shown in Tables 5, 7
and 9.

5 VALIDATION WITH DICOM DATA
In this session, the proposed algorithm is applied to DICOM
dataset to look for a Pareto data configuration set. The dataset
containing the DICOM files in the white paper by Oracle [31] is
created by six different digital imaging modalities. Its total size is
about 2 terabytes, including 2.4 million images of 20,080 studies.
In particular, DICOM text files are used in [28], as shown in
Table 11. They are extracted from real DICOM dataset, as shown

1https://github.com/dungltr/MOEA

https://github.com/dungltr/MOEA


Table 4: Generational Distance. [25]

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.675e-02 4.949e+01 1.129e-01 2.494e+00 2.721e-03
DTLZ3 5 1.030e-01 4.418e+00 1.951e-01 7.214e-01 6.342e-03
DTLZ1 6 1.600e-01 9.637e+01 3.138e-01 1.049e+00 3.850e-02
DTLZ3 6 1.306e+01 1.289e+02 5.265e+00 9.577e+00 9.921e-01
DTLZ1 7 1.390e-01 5.283e+01 1.515e-01 4.515e-01 1.542e-02
DTLZ3 7 3.793e-01 3.714e+00 2.251e-02 1.600e-01 2.379e-03
DTLZ1 8 6.817e-01 1.175e+02 2.608e-01 1.949e+00 8.223e-02
DTLZ3 8 1.419e+01 1.667e+02 5.320e+00 1.351e+01 9.146e-01
DTLZ1 9 4.451e-01 4.808e+01 1.101e-01 1.917e+00 1.040e-02
DTLZ3 9 6.843e-02 1.620e+00 5.237e-03 1.280e-01 1.325e-03
DTLZ1 10 3.431e-01 4.340e+01 1.432e-01 2.115e+00 0.000e+00
DTLZ3 10 8.458e-02 1.593e+00 6.763e-03 1.627e-01 1.815e-03

Table 5: Average computation time (seconds) in Generational
Distance experiment. [25]

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 5.904e+01 1.063e+02 2.264e+02 4.786e+02 1.261e+02
DTLZ3 5 1.005e+02 1.111e+02 2.358e+02 5.040e+02 1.233e+02
DTLZ1 6 9.024e+01 1.089e+02 2.320e+02 3.509e+02 1.083e+02
DTLZ3 6 1.602e+02 1.243e+02 2.520e+02 3.653e+02 1.209e+02
DTLZ1 7 1.038e+02 1.200e+02 2.839e+02 3.986e+02 1.244e+02
DTLZ3 7 2.946e+02 1.381e+02 2.820e+02 3.565e+02 1.342e+02
DTLZ1 8 1.463e+02 1.313e+02 2.896e+02 4.926e+02 1.249e+02
DTLZ3 8 5.575e+02 1.541e+02 3.458e+02 5.633e+02 1.399e+02
DTLZ1 9 1.573e+02 1.428e+02 3.242e+02 6.823e+02 1.496e+02
DTLZ3 9 8.147e+02 1.988e+02 3.721e+02 8.136e+02 1.640e+02
DTLZ1 10 1.436e+02 1.611e+02 3.745e+02 9.589e+02 1.370e+02
DTLZ3 10 9.151e+02 1.801e+02 3.907e+02 9.805e+02 1.577e+02

Table 6: Inverted Generational Distance. [25]

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 4.070e-01 8.247e+01 3.434e-01 2.796e+00 3.314e-01
DTLZ3 5 1.656e-01 6.364e+00 3.335e-01 1.383e+00 1.922e-01
DTLZ1 6 7.981e-01 1.786e+02 9.150e-01 3.040e+00 7.034e-01
DTLZ3 6 4.429e+01 4.526e+02 1.164e+01 3.103e+01 8.100e+00
DTLZ1 7 4.188e-01 2.203e+01 3.280e-01 5.024e-01 3.715e-01
DTLZ3 7 9.630e-01 9.286e+00 1.929e-01 3.901e-01 1.667e-01
DTLZ1 8 1.417e+00 2.691e+02 1.023e+00 4.195e+00 9.540e-01
DTLZ3 8 1.023e+02 6.471e+02 1.167e+01 4.194e+01 7.513e+00
DTLZ1 9 4.432e-01 2.396e+01 3.019e-01 6.685e-01 3.147e-01
DTLZ3 9 3.737e-01 3.368e+00 1.381e-01 2.516e-01 1.331e-01
DTLZ1 10 5.912e-01 1.723e+01 3.737e-01 8.963e-01 3.613e-01
DTLZ3 10 6.287e-01 6.049e+00 1.296e-01 5.049e-01 1.521e-01

Table 7: Average computation time (seconds) in Inverted Gen-
erational Distance experiment. [25]

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 6.780e+01 9.430e+01 2.292e+02 4.564e+02 9.646e+01
DTLZ3 5 9.976e+01 1.156e+02 2.564e+02 5.036e+02 1.166e+02
DTLZ1 6 7.696e+01 1.078e+02 2.451e+02 3.471e+02 1.178e+02
DTLZ3 6 1.549e+02 1.300e+02 2.527e+02 3.714e+02 1.986e+02
DTLZ1 7 1.021e+02 1.286e+02 2.732e+02 3.271e+02 1.297e+02
DTLZ3 7 3.522e+02 1.942e+02 3.794e+02 3.582e+02 1.523e+02
DTLZ1 8 1.170e+02 1.292e+02 3.222e+02 4.677e+02 1.212e+02
DTLZ3 8 5.333e+02 1.526e+02 3.140e+02 5.190e+02 1.431e+02
DTLZ1 9 1.435e+02 1.812e+02 3.120e+02 7.548e+02 1.544e+02
DTLZ3 9 7.445e+02 2.171e+02 3.533e+02 7.884e+02 1.485e+02
DTLZ1 10 2.104e+02 1.786e+02 3.942e+02 1.532e+03 2.182e+02
DTLZ3 10 1.195e+03 2.526e+02 5.766e+02 1.302e+03 2.131e+02

Table 8: Maximum Pareto Front Error. [25]

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 7.363e-01 8.969e+02 2.556e+00 2.260e+02 1.024e-01
DTLZ3 5 9.455e+00 1.015e+02 3.692e+00 4.002e+01 1.957e-01
DTLZ1 6 4.699e+00 1.584e+03 8.950e+00 7.488e+01 3.375e-01
DTLZ3 6 5.112e+02 1.862e+03 9.387e+01 4.340e+02 1.244e+01
DTLZ1 7 9.524e+00 1.012e+03 3.074e+00 1.802e+01 1.695e-01
DTLZ3 7 1.458e+01 3.163e+01 2.035e-01 3.116e+00 2.708e-02
DTLZ1 8 3.186e+01 2.041e+03 5.685e+00 2.127e+02 5.532e-01
DTLZ3 8 1.170e+03 2.247e+03 9.867e+01 5.268e+02 1.145e+01
DTLZ1 9 1.111e+01 1.036e+03 2.075e+00 1.496e+02 3.106e-01
DTLZ3 9 1.320e+01 4.065e+01 1.354e-01 8.366e+00 3.195e-02
DTLZ1 10 2.641e+01 1.026e+03 2.793e+00 2.293e+02 0.000e+00
DTLZ3 10 1.492e+01 4.185e+01 1.368e-01 1.079e+01 2.744e-02

Table 9: Average computation time (seconds) in Maximum
Pareto Front Error experiment. [25]

m eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 7.454e+01 1.214e+02 2.742e+02 5.796e+02 1.221e+02
DTLZ3 5 1.231e+02 1.437e+02 3.118e+02 6.035e+02 1.286e+02
DTLZ1 6 1.040e+02 1.318e+02 2.848e+02 4.258e+02 1.276e+02
DTLZ3 6 2.166e+02 1.673e+02 3.462e+02 5.014e+02 1.575e+02
DTLZ1 7 1.276e+02 1.638e+02 3.230e+02 4.314e+02 1.424e+02
DTLZ3 7 4.594e+02 1.959e+02 4.188e+02 5.557e+02 1.774e+02
DTLZ1 8 1.637e+02 1.609e+02 3.832e+02 5.952e+02 1.466e+02
DTLZ3 8 5.940e+02 1.963e+02 3.640e+02 6.025e+02 1.453e+02
DTLZ1 9 1.369e+02 1.474e+02 3.148e+02 7.728e+02 1.559e+02
DTLZ3 9 6.596e+02 1.982e+02 3.984e+02 8.069e+02 1.516e+02
DTLZ1 10 1.546e+02 1.540e+02 3.555e+02 9.331e+02 1.400e+02
DTLZ3 10 8.219e+02 1.841e+02 3.601e+02 9.677e+02 1.619e+02

Table 10: Example of real DICOM data set.

Datasets DICOM files AttributiesTuples Metadata Total size
CTColonography 98,737 86 7.76 GB 48.6 GB
Dclunie 541 86 86.0 MB 45.7 GB
Idoimaging 1,111 86 53.9 MB 369 MB
LungCancer 174,316 86 1.17 GB 76.0 GB
MIDAS 2,454 86 63.4 MB 620 MB
CIAD 3,763,894 86 61.5 GB 1.61 TB

Table 11: Example of extracted DICOM data set.

Table Number of Tuples Size
Patient 120,306 20.788 MB
Study 120,306 19.183 MB
GeneralInfoTable 16,226,762 4,845,042 MB
SequenceAttributes 4,149,395 389.433 MB

in Table 10. The extracted DICOM dataset [28] comprises four
tables: GeneralInfoTable, SequenceAttributes, Patient, Study.

5.1 Patient table
Patient table extracted from DICOM data has 120,306 tuples and
20.788 MB. It is often processed by a workfloadWP , as shown in
Table 12. The Attribute Usage Matrix of Patient table is shown
in Table 13. The null ratios of the attributes of the entity Patient
table are:

• PatientName: 0.0%,
• PatientID: 0.0%,
• PatientBirthDate: 83.55%,
• PatientSex: 1.48%,
• EthnicGroup: 100%,
• IssuerOfPatientID: 100%,
• PatientBirthTime: 96.32%,
• PatientInsurancePlanCodeSequence: 100%,
• PatientPrimaryLanguageCodeSequence: 100%,
• PatientPrimaryLanguageModifierCodeSequence: 100%,
• OtherPatientIDs: 100%,
• OtherPatientNames: 100%,
• PatientBirthNames: 100%,
• PatientTelephoneNumbers: 100%,
• SmokingStatus: 97.48%,
• PregnancyStatus: 90.01%,
• LastMenstrualDate: 97.72%,
• PatientReligiousPreference: 100%,
• PatientComments: 99.64%,
• PatientAddress: 100%,
• PatientMotherBirthName: 100%,
• InsurancePlanIdentification: 100%.



Table 12: Frequency of Queries in Workload WP.

Queries Detail Freq
Qp1 SELECT UID, PatientName, PatientID, PatientBirthDate, Patient-

TelephoneNumbers, PatientSex, PatientBirthName, SmokingSta-
tus, PatientComments, PatientMotherBirthName FROM Patient
WHERE PatientID = ’P30013’

300

Qp2 SELECT UID, PatientName, PatientID, PatientBirthDate, Patient-
Sex, EthnicGroup, IssuerOfPatientID, OtherPatientNames, Pa-
tientMotherBirthName, InsurancePlanIdentification FROM Pa-
tient

100

Qp3 SELECT UID, PatientID, PatientName, PatientBirthDate, Patient-
Sex, EthnicGroup, SmokingStatus FROM Patient WHERE Pa-
tientSex = ’M’ AND SmokingStatus = ’NO’

100

Qp4 SELECT UID, PatientName, PatientID, PatientBirthDate, Eth-
nicGroup, PatientPrimaryLanguageModifierCodeSequence, Oth-
erPatientIDs, PatientAddress FROM Patient

100

Qp5 SELECT UID, PatientName, PatientID, PatientBirthDate, Pa-
tientBirthTime, PatientInsurancePlanCodeSequence, PregnancyS-
tatus, LastMenstrualDate, PatientReligiousPreference FROM Pa-
tient

100

Qp6 SELECT UID, PatientName, PatientID, PatientBirthDate, Ethnic-
Group, PregnancyStatus, LastMenstrualDate FROM Patient

100

Table 13: Attribute Usage Matrix of Patient table.

Attributes Q1 Q2 Q3 Q4 Q5 Q6
PatientName 1 1 1 1 1 1

PatientID 1 1 1 1 1 1
PatientBirthDate 1 1 1 1 1 1

PatientSex 1 1 1 0 1 0
EthnicGroup 0 1 1 1 0 1

IssuerOfPatientID 0 1 0 0 0 0
PatientBirthTime 0 0 0 0 1 0

PatientInsurancePlanCodeSequence 0 0 0 0 1 0
PatientPrimaryLanguageCodeSequence 0 0 1 0 0 0

PatientPrimaryLanguageModifierCodeSequence 0 0 0 1 0 0
OtherPatientIDs 0 0 0 1 0 0

OtherPatientNames 0 1 0 0 0 0
PatientBirthNames 1 0 0 0 0 0

PatientTelephoneNumbers 1 0 0 0 0 0
SmokingStatus 1 0 1 0 0 0

PregnancyStatus 0 0 0 0 1 1
LastMenstrualDate 0 0 0 0 1 1

PatientReligiousPreference 0 0 0 0 1 0
PatientComments 1 0 0 0 0 0

PatientAddress 0 0 0 1 0 0
PatientMotherBirthName 1 1 0 0 0 0

InsurancePlanIdentification 0 1 0 0 0 0

5.2 Study table
Study table extracted from DICOM data has 120,306 tuples and
19.183 MB. Workload WS accessing Study table is shown in
Table 14. The Attribute Usage Matrix of Study table is shown in
Table 15. The null ratios of the attributes of the entity Study table
are:
• StudyInstanceUID: 0.0%,
• StudyDate: 0.07%,
• StudyTime: 0.07%,
• ReferringPhysicianName: 16.44%,
• StudyID: 15.65%,
• AccessionNumber: 93.93%,
• StudyDescription: 0.48%,
• PatientAge: 11.23%,
• PatientWeight: 14.18%,
• PatientSize: 90.34%,
• Occupation: 99.63%,
• AdditionalPatientHistory: 71.64%,
• MedicalRecordLocator: 100%,
• MedicalAlerts: 100%.

5.3 GeneralInfoTalbe and SequenceAttributes
GeneralInfoTable table is extracted from DICOM data. It is often
processed by a workload W, as shown in Table 1. The Attribute
Usage Matrix of GeneralInfoTable table is shown in Table 2.
GeneralInfoTable has four attributes with the null ratios of the
attributes, given by:

Table 14: Frequency of Queries in Workload WS.

Queries Detail Freq
Qs1 SELECT StudyInstanceUID, StudyDate, StudyTime, Refer-

ringPhysicianName, StudyID, AccessionNumber, MedicalAlerts
FROM Study WHERE StudyDate >= ’20000101’ AND Study-
Date <= ’20150101’

300

Qs2 SELECT StudyInstanceUID, StudyDate, StudyTime, Referring-
PhysicianName, StudyID, MedicalRecordLocator FROM Study
WHERE StudyID = ’20050920’

100

Qs3 SELECT PatientAge, PatientWeight, PatientSize FROM Study
WHERE PatientAge >= 90 Q4,4s

100

Qs4 SELECT UID, StudyInstanceUID, StudyDate, StudyTime, Refer-
ringPhysicianName, StudyID, AccessionNumber, PatientWeight,
AdditionalPatientHistory FROM Study

100

Qs5 SELECT StudyInstanceUID, StudyDate, StudyTime, StudyID,
PatientSize, Occupation FROM Study

100

Qs6 SELECT StudyInstanceUID, StudyDate, StudyTime, Referring-
PhysicianName, StudyID, StudyDescription, PatientAge FROM
Study WHERE StudyDate >= ’20000101’ AND StudyDate <=
’20150101’

100

Table 15: Attribute Usage Matrix of Study table.

Attributes Qs1 Qs2 Qs3 Qs4 Qs5 Qs6
StudyInstanceUID 1 1 0 1 1 1

StudyDate 1 1 0 1 1 1
StudyTime 1 1 0 1 1 1

ReferringPhysicianName 1 1 0 1 0 1
StudyID 1 1 0 1 1 1

AccessionNumber 1 0 0 1 0 0
StudyDescription 0 0 0 0 0 1

PatientAge 0 0 1 0 0 1
PatientWeight 0 0 1 1 0 0

PatientSize 0 0 0 0 1 0
Occupation 0 0 0 0 1 0

AdditionalPatientHistory 0 0 0 1 0 0
MedicalRecordLocator 0 1 0 0 0 0

MedicalAlerts 1 0 0 0 0 0

• GeneralTags: 0.0%,
• GeneralVRs: 0.0%,
• GeneralNames: 0.0%,
• GeneralValues: 13.97%.

SequenceAttributes table is extracted from DICOM data. The
workload and Attribute Usage Matrix related to SequenceAt-
tributes table are shown in [28]. SequenceAttributes has four
attributes with the null ratios of the attributes as follows:

• SequenceTags: 0.0%,
• SequenceVRs: 0.0%,
• SequenceNames: 0.0%,
• SequenceValues: 0.34%.

5.4 Results
The number of attributes in ralInfoTable and SequenceAttibutes
is four and the null ratios of them often equal to 0.0%. Hence,
the number of data configuration candidates is not too big. The
experiments give the same results in GD and IDG quality tests
with these two tables.

On the other hand, the information of Patient and Study tables
are more complicated than the others in DICOM. NSGA-G and
other NSGAs are experimented with Patient and Study tables
in GD and IGD quality tests. These algorithms use the same
population of size N = 100 and the maximum evaluation M = 100,
while the default values in MOEA framework are used, such as
Simulated binary crossover (30) and Polynomial mutation (20).
Tables 16 and 17 show the qualities of diversity and convergence
of five algorithms. The best algorithm is NSGA-III and the second
one is NSGA-G. These results can be explained that the DICOM
data configuration is less complicated than the DTLZ problems.
Moreover, Table 18 shows the advantage of NSGA-G among five
NSGAs in execution times.



Table 16: Generational Distance.

eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
Patient 1.997e-02 2.156e-02 2.289e-02 1.604e-02 1.853e-02
Study 6.495e-02 6.166e-02 6.210e-02 5.559e-02 7.476e-02

Table 17: Inverted Generational Distance.

eMOEA NSGA-II MOEA/D NSGA-III NSGA-G
Patient 9.816e-02 1.002e-01 9.922e-02 8.552e-02 9.796e-02
Study 4.636e-02 4.445e-02 6.509e-02 4.249e-02 4.374e-02

Table 18: The execution time of NSGAs with DICOM.

Table eMOEA(s) NSGA-II(s) MOEA/D(s) NSGA-III(s) NSGA-G(s)
Patient 17.804 17.822 17.810 17.907 17.740
Study 7.659 7.720 7.775 7.718 7.706

Finally, to select the optimal data configuration, the weighted
sum model [16] can also be applied to Pareto data configuration
set.

In conclusion, despite the best quality algorithm in the case
of DICOM hybrid store, the computation time of NSGA-III is
too long. In contrast, in spite of the second good algorithm, the
execution time of NSGA-G is shorter than the others.

6 CONCLUSION
This paper introduced our solution to optimize the storage and
query processing of DICOM files in a hybrid (row-column) store.
Our proposed algorithm, NSGA-G, finds an approximation of
Pareto-optimal with a good trade-off between diversity and perfor-
mance. Experiments on DTLZ test problems show the advantages
of NSGA-G. Preliminary experiments on DICOM files in a hybrid
store prove that NSGA-G also provides the best processing time
with interesting results in both diversity and convergence.

In future work, our approach will be experimented on other
datasets, such as CRM, TPC-H benchmark, etc., to evaluate the
suitability of the proposed algorithm to all kinds of data stored
in row-column store. The solution will also be extended so as
to address medical data management in a cloud federation, with
various cloud providers.
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