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Optimizing DICOM data management with NSGA-G

 and DICOM hybrid data prove the relevance of the proposed algorithm.

INTRODUCTION

A widely international standard between various vendors to transmit, store, retrieve, print, process and display medical imaging information is Digital Imaging and Communications in Medicine (DICOM). Cloud computing makes it possible to manage a tremendous growth medical data volume. In particular, DICOM data is also deployed in a cloud by traditional (row/column) [START_REF] Boncz | MonetDB/X100: Hyper-Pipelining Query Execution[END_REF][START_REF] Mysql | The SQL Website[END_REF][START_REF]The Oracle Website[END_REF][START_REF] Stonebraker | C-store: A Column-oriented DBMS[END_REF] or hybrid (row-column) [START_REF] Färber | SAP HANA Database: Data Management for Modern Business Applications[END_REF][START_REF] Grund | HYRISE: A Main Memory Hybrid Storage Engine[END_REF][START_REF] Nguyen-Cong | Storing and Querying DICOM Data with HYTORMO[END_REF] data storage technique. The hybrid stores take advantage of both techniques and take into account various kinds of queries, including Online analytical processing (OLAP) and Online transaction processing (OLTP) queries. Some recent works [START_REF] Färber | SAP HANA Database: Data Management for Modern Business Applications[END_REF][START_REF] Grund | HYRISE: A Main Memory Hybrid Storage Engine[END_REF][START_REF] Nguyen | Workload-and Data-based Automated Design for a Hybrid Row-column Storage Model and Bloom Filter-based Query Processing for Large-scale[END_REF][START_REF] Nguyen-Cong | Storing and Querying DICOM Data with HYTORMO[END_REF] have been proposed to optimize the hybrid data configuration. However, HYRISE [START_REF] Grund | HYRISE: A Main Memory Hybrid Storage Engine[END_REF] and SAP HANA [START_REF] Färber | SAP HANA Database: Data Management for Modern Business Applications[END_REF] do not consider the high volume and sparsity of DICOM data. Besides, the pay-as-yougo model of DICOM leads to Multiple Objective Optimization (MOO) problem to find a data configuration according to users preferences regarding storage space, processing response time, monetary cost, quality, etc. Moreover, an automatic approach producing data storage configurations for DICOM data is also presented in [START_REF] Nguyen | Workload-and Data-based Automated Design for a Hybrid Row-column Storage Model and Bloom Filter-based Query Processing for Large-scale[END_REF]. Authors claimed that the space of candidate solutions in MOO is large, but did not give any method to find the optimal hybrid data configurations. The vast space of data configuration candidates in hybrid store system leverages an alternative solution to find a Pareto-optimal. Evolutionary Multiobjective Optimization (EMO) [START_REF] Deb | An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box Constraints[END_REF][START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF][START_REF] Jain | An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach[END_REF][START_REF] Knowles | The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation[END_REF][START_REF] Srinivas | Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[END_REF][START_REF] Zitzler | SPEA2: Improving the strength Pareto evolutionary algorithm[END_REF] based on Pareto dominance techniques is an approximations approach for MOO. Among EMO approaches, Non-dominated Sorting Algorithms (NSGAs) [START_REF] Kalyanmoy | Multi-objective optimization using evolutionary algorithms: an introduction[END_REF][START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF][START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF][START_REF] Zitzler | SPEA2: Improving the strength Pareto evolutionary algorithm[END_REF] are potential solutions. However, the diversity, convergence and computational quality of NSGAs still need to be improved. For example, GeneralInfoTable table of DICOM data is the largest entity table in terms of storage space size for a given medical dataset. GeneralInfoTable, comprising 16,226,762 tuples and 4,845,042 MB, is often processed by a workfload W, as shown in Table 1. The Attribute Usage Matrix of this table is shown in Table 2. The statistic of null value ratios corresponding to the attributes in GeneralInfoTable table is described as follows: GeneralTags (0.0 %), GeneralVRs (0.0 %), GeneralNames (0.0 %), GeneralValues (13.97 %).
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Table 3 shows two original candidates of data configuration of GenealInTable. Besides, many other candidates can decompose this table into sub-tables and can be stored in row or column stores corresponding to four different objective values: null ratio, number of joins, number of scanned data cells and execution time.

To solve the multi-objective problems above, the problems are often solved by turning the problem into a single-objective problem first and then solving that problem. However, singleobjective problems cannot adequately represent multi-objective problems [START_REF] Glaßer | Approximability and Hardness in Multi-objective Optimization[END_REF]. This approach may significantly changes the problem nature. In some cases, the problem becomes harder to solve or certain optimal solutions are not found anymore [START_REF] Glaßer | Approximability and Hardness in Multi-objective Optimization[END_REF]. In general, Multi-Objective Optimization problem is more complex than single-objective optimization problem. Moreover, large space of candidates leads to the necessity of finding a Pareto set of data configurations in MOO. Besides, generating Pareto-optimal front is often infeasible due to high complexity [START_REF] Zitzler | Performance assessment of multiobjective optimizers: an analysis and review[END_REF]. Therefore, in the context of hybrid DICOM data storage in clouds, a challenging problem is how to optimize the hybrid data storage with an efficient algorithm.

Meanwhile, Evolutionary Algorithms, an alternative to the Pareto-optimal, look for approximations (set of solutions close to the optimal front). For example, EMO approaches [START_REF] Deb | An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box Constraints[END_REF][START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF][START_REF] Jain | An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: Handling constraints and extending to an adaptive approach[END_REF][START_REF] Knowles | The Pareto archived evolution strategy: a new baseline algorithm for Pareto multiobjective optimisation[END_REF][START_REF] Srinivas | Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[END_REF][START_REF] Zitzler | SPEA2: Improving the strength Pareto evolutionary algorithm[END_REF] have been developed based on Pareto dominance techniques.

Among EMO approaches, [START_REF] Kalyanmoy | Multi-objective optimization using evolutionary algorithms: an introduction[END_REF][START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] proposed Non-dominated Sorting Algorithms (NSGAs) to decrease the computational complexity while maintaining the diversity among solutions. The crowding distance operators are used to maintain the diversity in NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] and SPEA-II [START_REF] Zitzler | SPEA2: Improving the strength Pareto evolutionary algorithm[END_REF]. However, the crowding distance operators need to be replaced because of high complexity and not unsuitability for the problems of more than two objectives [START_REF] Khare | Performance Scaling of Multi-objective Evolutionary Algorithms[END_REF]. Furthermore, MOEA/D maintains the diversity with more than three objectives problem [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF]. This algorithm uses an approach based on decomposition to divide a multiple objectives problem into various single objective optimization sub-problems. Nevertheless, MOEA/D can only solves up to four objectives [START_REF] Seada | Towards a Better Balance of Diversity and Convergence in NSGA-III: First Results[END_REF]. Meanwhile, Deb and Jain [START_REF] Deb | An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box Constraints[END_REF] proposed a set of reference directions to guide the search process in NSGA-III. In spite of good quality, NSGA-III has the highest computational complexity among NSGAs.

This paper presents Non-dominated Sorting Algorithm based on Grid Partitioning (NSGA-G) [START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] to improve both quality and computational efficiency of NSGAs, and also provides an alternative Pareto-optimal for MOO problem of DICOM hybrid store. NSGA-G maintains the convergence by keeping the original generation process and the diversity by randomly selecting solutions in a Pareto set in sub-groups. A solution is selected by comparing members in a group, which is created by a Grid Partitioning in the space of solutions, instead of all members in the space. NSGA-G improves both quality and computation time to solve MOO, while inheriting the superior characteristics of NSGAs in terms of computational complexity. NSGA-G is validated through experiments on DTLZ problems [START_REF] Deb | Scalable Test Problems for Evolutionary Multiobjective Optimization[END_REF] in Generational Distance (GD) [START_REF] Van Veldhuizen | Evolutionary Computation and Convergence to a Pareto Front[END_REF], Inverted Generational Distance (IDG) and Maximum Pareto Front Error (MPFE) statistic [START_REF] Van Veldhuizen | Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations[END_REF], comparing with other NSGAs, such as, NSGA-II, NSGA-III, etc. Furthermore, NSGA-G is also experimented in finding the Pareto-optimal of DICOM hybrid data configuration.

The remaining of this paper is organized as follows. Section 2 presents the background of our research. NSGA-G is presented in Section 3, while Sections 4 and 5 present experiments to validate NSGA-G to DTLZ problems and hybrid DICOM data storage, respectively. Finally, conclusions and perspectives are presented in Section 6.

BACKGROUND 2.1 DICOM

The international standard of medical data, DICOM, to transfer, store and display medical imaging information was firstly released in 1980 to make inter-operable between different manufacturers.

Besides characteristic of BigData, such as volume, variety and velocity [START_REF] Laney | 3D Data Management: Controlling Data Volume, Velocity, and Variety[END_REF], DICOM has been accessed by various OLAP, OLTP and mixed workloads. Row stores data associated with a row together has the advantage of adding/modifying a row and efficiently reading many columns of a single row at the same moment. This strategy is suitable for OLTP workload, but wastes I/O costs for a query which requires few attributes of a table [START_REF] Harizopoulos | Performance Tradeoffs in Read-Optimized Databases[END_REF]. In contrast, column stores (e.g. MonetDB [START_REF] Boncz | MonetDB/X100: Hyper-Pipelining Query Execution[END_REF] and C-Store [START_REF] Stonebraker | C-store: A Column-oriented DBMS[END_REF]) organize data by column. A column contains data for a single attribute of a tuple and stores sequentially on disk. The column stores allow to read only relevant attributes and efficiently aggregating over many rows, but only for a few attributes. Although, the column stores are suitable for read-intensive (OLAP) workloads, their tuple reconstruction cost in OLTP workloads is higher than row stores. To improve performance of storing and querying in OLAP, OLTP and mixed workloads, DICOM data needs to be stored in a row-column store, called hybrid data storage.

Hybrid data configuration

Hybrid stores (e.g., HYRISE [START_REF] Grund | HYRISE: A Main Memory Hybrid Storage Engine[END_REF], SAP HANA [START_REF] Färber | SAP HANA Database: Data Management for Modern Business Applications[END_REF], HYTORMO [START_REF] Nguyen | Workload-and Data-based Automated Design for a Hybrid Row-column Storage Model and Bloom Filter-based Query Processing for Large-scale[END_REF]) are proposed to optimize the performance of both OLAP and OLTP workloads. The hybrid store has two processes in optimizing storage and query.

Data Storage Strategy. The first strategy aims to optimize query performance and storage space over a mixed OLTP and OLAP workload by extracting, organizing and storing data in a manner to reduce space, tuple construction and I/O cost. The data are organized into entity tables. The tables are decomposed into multiple sub-tables, which are stored in row or column stores of the hybrid store. A group of attributes classified as frequentlyaccessed-together attributes can be stored in a row table. Other groups are classified as optional attributes and stored in a column store. Each attribute belongs to one group except that it is used to join the tables together. This strategy removes the null rows in tables.

Query Processing Strategy. In order to improve performance of query processing in a distributed file system of a cloud environment, the hybrid store needs to modify sub-tables to reduce the left-outer joins and irrelevant tuples in the input tables of join operations. When a query needs attributes from many sub-tables, the hybrid store should change data configuration to have efficient query processing in joining operators between sub-tables. The query performance is negatively impacted if the query execution needs attributes by joining many tables. The hybrid store needs to reconstruct result tuples and the storage space will increase to store surrogate attributes.

In general, based on a given workload and data specific information, a large number of candidates of data storage configuration can be created for a given table . The number of candidates depends on the attributes, null values in tables, the number of database engines, etc.

Non-dominated Sorting Genetic Algorithms

NSGAs are often used with low computational complexity of nondominated sorting. At the beginning, a population P 0 consisting of N solutions is initialized. In hybrid data optimization problem, a population represents a set of candidates of hybrid data configuration. The space of all candidates is larger than the size of P 0 . Each solution belongs to only one non-dominated level (there is no candidate dominating any solution in level 1, each candidate in level 2 is dominated by at least one solution in level 1 and so on).

Non-dominated Sorting

Filter Front 

P t Q t F 1 F 2 F 3 F 4 F 3 P t+1 R t
S t = 0, i = 1 3: Q t = Recombineat ion + Mut at ion (P t ) 4: R t = P t ∪ Q t 5: F 1 , F 2 , ... = N on -diminat ed -sor t (R t ) 6: while | S t | ≤ N do 7: S t = S t ∪ F i 8: i + + 9: end while 10: Last front is F l 11: if | S t |= N then 12: P t +1 = S t 13: break 14: else 15: select N - j=l -1 j=1 | F j | solutions in F l 16:
end if The binary tournament selection and mutation operators [START_REF] Deb | Simulated Binary Crossover for Continuous Search Space[END_REF] generate N solutions for the offspring population Q 0 . After that, 2N solutions in R 0 = P 0 ∪ Q 0 are selected to multiple sub populations with different rank or non-dominated level. The next generation P 1 includes N candidates from R 0 . The first domination principle is based on non-dominated sorting [START_REF] Chankong | Multiobjective decision making: theory and methodology[END_REF]. A population R 0 is classified into different non-domination ranks (F 1 , F 2 and so on). As a consequence, N solutions in R 0 from rank 1 to k are selected to prepare the parent population for next-generation P 1 and so on.

Algorithm 1 shows the population generation in NSGA-II [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF] and NSGA-III [START_REF] Deb | An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box Constraints[END_REF]. At the t t h generation, a population R t = P t ∪ Q t is formed by a parent P t and offspring R t population. Then, 2N solution in R t are sorted in ranks F 1 , F 2 , etc. The non-dominated F 1 is the best front for the next generation P t +1 . All solutions in F 1 are moved to P t +1 if the size of the first front F 1 is smaller than N . Thus, all candidates in the next front F 2 are moved if the size of the second front is smaller than N -| F 1 | and so on. At level l, if front F l cannot be fitted in P t +1 , the process selects

N -l -1 j=1 | F j | remaining solutions in F l .
The procedure is illustrated in Figure 1.

The difference among NSGA-II, NSGA-III and other NSGAs is the way to select members in the last level F l . The crowding distance operator [START_REF] Deb | A fast and elitist multiobjective genetic algorithm: NSGA-II[END_REF][START_REF] Zitzler | SPEA2: Improving the strength Pareto evolutionary algorithm[END_REF] is used to select solutions in last front. However, the crowding distance operator should be replaced for better performance [START_REF] Ishibuchi | Sensitivity of performance evaluation results by inverted generational distance to reference points[END_REF][START_REF] Köppen | Substitute Distance Assignments in NSGA-II for Handling Many-objective Optimization Problems[END_REF] in MOO problems. In particular, NSGA-II prefers selecting the solutions in low-density area and rejecting the candidates in high-density area. For example, when the number of solutions needs to be selected for the next generation is 10, NSGA-II focuses on rejecting solutions in the square near (1.0, 0.0), as shown in Figure 2.

In a different way, MOEA/D [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF] generates various scalar optimization subproblems, instead of solving a multiple objectives problem. The diversity of solutions depends on the way to choose the scalar objectives. However, the number of neighborhoods should be defined at the beginning. Furthermore, authors do not mention the way to estimate good neighborhoods. The diversity is considered as the selected solution associated with these different sub-problems. Various versions of MOEA/D approaches are presented in [START_REF] Deb | An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box Constraints[END_REF]. However, they fail to maintain the diversity of solutions.

To keep the diversity, an Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-Dominated Sorting Approach [START_REF] Deb | An Evolutionary Many-Objective Optimization Algorithm Using Reference-point Based Non-dominated Sorting Approach, Part I: Solving Problems with Box Constraints[END_REF] (NSGA-III) uses various directions. The crowding distance operator is replaced by comparing solutions. NSGA-III generates multiple reference points and each solution is associated with one of them. However, comparing solutions and building reference points impact the execution time. NSGA-III has the better diversity, but the execution time is longer than other NSGAs. For example, in the problem of two objectives and two divisions, NSGA-II creates three reference points, (0.0,1.0), (1.0,0.0) and (0.5,0.5), as shown in Figure 2. After the selection process, the selected solutions are closed to these three reference points. The diversity of the population is improved by this approach. However, comparing all solutions associated with reference points leads to the high execution time of this algorithm.

Furthermore, all approaches compare all candidates in F l to move good candidates to the next generation P t +1 . Hence, the execution time for calculating and comparing becomes significant when the number of solutions in the last front is huge.

Motivation

Optimizing data configuration based on queries has been addressed by systems like HYRISE [START_REF] Grund | HYRISE: A Main Memory Hybrid Storage Engine[END_REF] and SAP HANA [START_REF] Färber | SAP HANA Database: Data Management for Modern Business Applications[END_REF]. In particular, HYRISE can be applied to Customer Relationship Management (CRM) and SAP HANA uses TPC-H [START_REF]The TPC-H Website[END_REF] to experiment the approach. However, they do not consider the high volume and sparsity of DICOM data. Besides, HYTORMO [START_REF] Nguyen-Cong | Storing and Querying DICOM Data with HYTORMO[END_REF] uses data storage strategy (α, β ∈ [0, 1]) and query processing strategy (θ, λ ∈ [0, 1]) to automatically generate a data configuration corresponding to these parameters, but do not provide the optimal algorithm to choose the best hybrid model or a Pareto data configuration set.

In the problem of the hybrid data configuration, HYTORMO concerns at least four objectives. In some cases, some objectives are homogeneous. In the reason of the homogeneity between the multi-objectives functions, removing an objective do not affect to the final results of MOO problem. In other cases, the objectives may be contradictory. For example, the monetary is proportional to the execution time in the same virtual machine configuration in a cloud. However, cloud providers usually leases computing resources that are typically charged based on a per time quantum pricing scheme [START_REF] Kllapi | Schedule optimization for data processing flows on the cloud[END_REF]. The solutions represent the trade-offs between time and money. Hence, the execution time and the monetary cost cannot be homogeneous. As a consequence, the multiobjective problem cannot be reduced to a mono-objective problem. Moreover, if we want to reduce the MOO to a mono-objective optimization, we should have a policy to group all objectives by the Weighted Sum Model (WSM) [START_REF] Helff | Weighted Sum Model for Multi-Objective Query Optimization for Mobile-Cloud Database Environments[END_REF]. However, estimating the weights corresponding to different objectives in this model is also a multi-objective problem.

In addition, MOO problems could be solved by MOO algorithms or WSM [START_REF] Helff | Weighted Sum Model for Multi-Objective Query Optimization for Mobile-Cloud Database Environments[END_REF]. However, MOO algorithms are selected thanks to their advantages when comparing with WSM. The optimal solution of WSM could be unacceptable, because of an inappropriate setting of the coefficients [START_REF] Fonseca | An Overview of Evolutionary Algorithms in Multiobjective Optimization[END_REF]. Furthermore, the research in [START_REF] Khan | Iterative non-deterministic algorithms in on-shore wind farm design: A brief survey[END_REF] proves that a small change in weights may result in significant changes in the objective vectors and significantly different weights may produce nearly similar objective vectors. Moreover, if WSM changes, a new optimization process will be required. Hence, our system applies a Multi-objective Optimization algorithm to find a Pareto-optimal solution.

As consequence, this paper proposes an approach to find a Pareto data configuration set of hybrid store for DICOM using Non-dominated Sorting Genetic Algorithm based on Grid Partitioning [START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF].

NSGA-G AND OPTIMIZING DICOM DATA MANAGEMENT

NSGA-G [START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] is used to improve both diversity and convergence while having an efficient computation time by reducing the space of selected good solutions in the truncating process. At the t t h generation of Non-dominated Sorting Algorithms, P t represents the parent population with size N and Q t is offspring population with N members created by P t . R t = P t ∪Q t is a group in which N members will be selected for P t +1 .

NSGA-G

NSGA-G generates the grid points and classifies the solutions in groups by the nearest smaller and bigger grid points. For instance, a two-objective problem and grid points are shown in Figure 2. In this example, the unit of grid point is 0.25. The closest smaller point of the solution [0.35, 0.45] is [0.25, 0.5] and the nearest bigger point is [0.5, 0.5]. Grid Min Point and Grid Max Point divide the solutions in a front into various small groups, as shown in Figure 2. This division aims to avoid comparing and calculating multiple objective cost values of all solutions in the last front. All solutions in a group have the same Grid Min Point and Grid Max Point. To keep the diversity, a group is selected randomly. A solution is compared with the others in a group to reduce the execution time. In this way, only solutions in a group need to be calculated and compared to select the best candidate, instead of all members in the last front F l , as shown in Figure 2. Moreover, randomly choosing groups maintains the diversity of the population in the Algorithm 2 Filter front in NSGA-G. [START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] 1

: function FILTER(F l , M = N -l -1 j=1 F j ) 2:
updateIdealPoint() return F l 12: end function removing process. Nl -1 j=1 F j solutions in F l are moved to the next generation following this strategy, as shown in Algorithm 2

The new origin coordinate is defined in the second line in Algorithm 2. The maximum objective values are determined in the third line. All solutions in the space are normalized in range of [0, 1], as shown in lines 4 and 5. After that, depending on the grid points, the solutions are divided into different groups. Randomly selecting a group is the most important characteristic of the algorithm. This selection helps to avoid comparing and calculating all solutions in fronts.

Three qualities are used including convergence, diversity and execution time to estimate the quality of proposed algorithm.

Convergence. The proposed algorithm keeps the convergence of NSGAs by following the steps of generation process, as shown in Figure 1. Moreover, the convergence is also improved and better than the original NSGAs. The experiments of GD [START_REF] Van Veldhuizen | Evolutionary Computation and Convergence to a Pareto Front[END_REF] and IGD [START_REF] Coello | Solving Multiobjective Optimization Problems Using an Artificial Immune System[END_REF] showing the advantages of the proposed algorithm will be presented in Session 4.

Diversity. NSGAs keep the next generation solutions distributed in the space of solutions. The proposed approach also guarantees the diversity by using Grid Partitioning. Assuming that the problem has N objectives, N ≥ 4, and the last front needs to remove k solutions. After normalizing all solutions in the last front in range of [0, 1], each axis coordinate is divided by n, i.e., the number of grid, in that range. Thus, the space in that range will have n N groups. We choose the number of groups in the last front be n N -1 . The diversity of the genetic algorithm is kept by generating k groups and removing k solutions. The worst solution in each group is removed by determining the longest distance to the minimum grid point. Hence, the parameter n of the proposed algorithm is n = ⌈k 1/(N -1) ⌉, where ⌈.⌉ is a ceiling operator.

Computation. In this paper, the proposed algorithm aims to reduce the computation of selecting good solution by dividing all solutions in the last front into small groups. A good solution is selected in a small group, instead of the last front. The selection process is accelerated by this division in comparison with other approaches scanning all solutions.

Optimizing hybrid data configuration

A workload W = (A, Q, AU M, F ) comprises four elements including: a query set Q = {q i | i = 1, ..., m} in workload W executed over T; an attribute set A = {a j | j = 1, ..., n} of table T; an Attribute Usage Matrix AU M with size of m×n, where AU M[i, j] = 1 Algorithm 3 Find a data configuration for a table T in cloud computing. end if 8: end function if q i accesses to attribute a j , otherwise AU M[i, j] = 0; a frequencies set F = { f k | k = 1, ..., m}, where f k is total frequencies count of q k in workload W.

Vertical partitioning approaches, including affinity-based algorithm [START_REF] Özsu | Principles of distributed database systems[END_REF], are widely used in the traditional database. Especially, affinity-based algorithms use Attribute Usage Matrix and Frequencies matrices to optimize data in Distributed Database system. This approach is also used in the hybrid data store. In particular, HYRISE [START_REF] Grund | HYRISE: A Main Memory Hybrid Storage Engine[END_REF] and SAP HANA [START_REF] Färber | SAP HANA Database: Data Management for Modern Business Applications[END_REF] use the Attribute Usage Matrix of a table and Frequency of queries in a workload to optimize the hybrid data configuration.

However, HYTORMO [START_REF] Nguyen-Cong | Storing and Querying DICOM Data with HYTORMO[END_REF] concerns more about data specific information, a matrix containing the null values of a table. Data specific information does not appear in the traditional system. Besides, HYRISE and SAP HANA do not concern the high volume and sparsity of DICOM data (the null values). HYTORMO concerns the high volume and sparsity of DICOM and mixed OLTP/OLAP workloads in the automatic generating hybrid data configuration.

The data specific information is a matrix containing the null values of table T. The hybrid data configuration is formed by four parameters including weight of similarity α, clustering threshold β, merging threshold θ and data layout threshold λ. Depending on these four parameters, HYTORMO automatic creates a data configuration of hybrid store. However, the authors did not optimize the space of solutions of data configuration. Hence, in the space of four parameters in [0, 1], we use NSGA-G to look for a Pareto set of data configuration. Algorithm 3 finds the best data configuration for a table T. Line 10 generates a Pateto set of data configuration. After that, the line 12 uses Algorithm 4 to return the best solution in this set with the weight sum model S and the constraint B [START_REF] Helff | Weighted Sum Model for Multi-Objective Query Optimization for Mobile-Cloud Database Environments[END_REF].

VALIDATION ON DTLZ TEST PROBLEMS

Many studies on Multi-objective Evolutionary Algorithms (MOEAs) present test problems, but most of them are either simple or not scalable. Among them, DTLZ test problems [START_REF] Deb | Scalable Test Problems for Evolutionary Multiobjective Optimization[END_REF] are useful in various research activities on MOEAs, such as testing the performance of a new MOEA, comparing different MOEAs and better understanding of the working principles of MOEAs. The proposed algorithm is experimented on DTLZ test problems with other famous NSGAs to show advantages in convergence, diversity and execution time.

Environment

For fair comparison and evaluation, the same parameters are used, such as simulated binary crossover [START_REF]The Oracle Website[END_REF], polynomial mutation [START_REF] Khare | Performance Scaling of Multi-objective Evolutionary Algorithms[END_REF], max evaluations (10000) and populations (100), for eMOEA [START_REF] Coello | Evolutionary Algorithms for Solving Multi-Objective Problems[END_REF], NSGA-II, MOEA/D [START_REF] Zhang | MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition[END_REF], NSGA-III and NSGA-G 1 . All algorithms are experimented with the same population size N = 100 and the maximum evaluation M = 10000. Two types of problems in DTLZ test problems [START_REF] Deb | Scalable Test Problems for Evolutionary Multiobjective Optimization[END_REF], DTLZ1 and DTLZ3, with m objectives, m ∈ [START_REF] Coello | Evolutionary Algorithms for Solving Multi-Objective Problems[END_REF][START_REF] Deb | Scalable Test Problems for Evolutionary Multiobjective Optimization[END_REF], in MOEA framework [START_REF] Moea | The MOEA Website[END_REF], are used with 50 independent runnings. All experiments are run in Open JDK Java 1.8 and on a machine with following parameters: Intel(R) core(TM) i7-6600U CPU @ 2.60GHz × 4, 16GB RAM.

Results

To estimate the qualities of algorithms, GD [START_REF] Van Veldhuizen | Evolutionary Computation and Convergence to a Pareto Front[END_REF], IGD [START_REF] Coello | Solving Multiobjective Optimization Problems Using an Artificial Immune System[END_REF] and MPFE [START_REF] Van Veldhuizen | Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations[END_REF] are applied. GD measures the distance from the evolved solution to the true Pareto front [START_REF] Yen | Performance Metrics Ensemble for Multiobjective Evolutionary Algorithms[END_REF]. The quality measuring both the convergence and diversity is IDG. It estimates the approximation quality of the Pareto front obtained by MOO algorithms [START_REF] Leonardo | An Empirical Assessment of the Properties of Inverted Generational Distance on Multi-and Many-Objective Optimization[END_REF]. The most significant distance between the individuals in Pareto front and the solutions in the approximation front is showed in MPFE [START_REF] Yen | Performance Metrics Ensemble for Multiobjective Evolutionary Algorithms[END_REF]. In three experiments, the better quality is shown by the lower value.

The advantage of NSGA-G, comparing to other NSGAs in both diversity and convergence, is shown by dividing the space of solutions into multiple partitions and selecting groups randomly. The advantages of NSGA-G are presented not only on the diversity and convergence in GD and IGD, as shown in Tables 4,6, but also on the distance between the individuals in Pareto front and the solutions in the approximated front experiment, i.e., MPFE, as presented in Table 8. The convergence and diversity of NSGA-G are often the most or second quality in the tests.

In high computational problems, NSGA-G outperforms in forms of the computation time. It is explained by the comparison among solutions in a group, instead of in the whole space. It can be seen that NSGA-G has shorter computation time than the others in the large objective experiments, as shown in Tables 5, 7 and 9.

VALIDATION WITH DICOM DATA

In this session, the proposed algorithm is applied to DICOM dataset to look for a Pareto data configuration set. The dataset containing the DICOM files in the white paper by Oracle [START_REF]Performance Evaluation of Storage and Retrieval of DICOM Image Content in Oracle Database 11g Using HP Blade Servers and Intel Processors[END_REF] is created by six different digital imaging modalities. Its total size is about 2 terabytes, including 2.4 million images of 20,080 studies. In particular, DICOM text files are used in [START_REF] Nguyen | Workload-and Data-based Automated Design for a Hybrid Row-column Storage Model and Bloom Filter-based Query Processing for Large-scale[END_REF], as shown in Table 11. They are extracted from real DICOM dataset, as shown • GeneralTags: 0.0%,

Attributes Q 1 Q 2 Q 3 Q 4 Q 5 Q 6 Q s 2 SELECT StudyInstanceUID,
Attributes Q s 1 Q s 2 Q s 3 Q s 4 Q s 5 Q s 6 StudyInstanceUID 1 1 0 1 1 1 StudyDate 1 1 0 1 1 1 StudyTime 1 1 0 1 1 1 ReferringPhysicianName 1 1 0 1 0 1 StudyID 1 1 0 1 1 1 AccessionNumber 1 0 0 1 0 0 StudyDescription 0 0 0 0 0 1 PatientAge 0 0 1 0 0 1 PatientWeight 0 0 1 
• GeneralVRs: 0.0%,

• GeneralNames: 0.0%, • GeneralValues: 13.97%.

SequenceAttributes table is extracted from DICOM data. The workload and Attribute Usage Matrix related to SequenceAttributes table are shown in [START_REF] Nguyen | Workload-and Data-based Automated Design for a Hybrid Row-column Storage Model and Bloom Filter-based Query Processing for Large-scale[END_REF]. SequenceAttributes has four attributes with the null ratios of the attributes as follows:

• SequenceTags: 0.0%, • SequenceVRs: 0.0%, • SequenceNames: 0.0%, • SequenceValues: 0.34%.

Results

The number of attributes in ralInfoTable and SequenceAttibutes is four and the null ratios of them often equal to 0.0%. Hence, the number of data configuration candidates is not too big. The experiments give the same results in GD and IDG quality tests with these two tables.

On the other hand, the information of Patient and Study tables are more complicated than the others in DICOM. NSGA-G and other NSGAs are experimented with Patient and Study tables in GD and IGD quality tests. These algorithms use the same population of size N = 100 and the maximum evaluation M = 100, while the default values in MOEA framework are used, such as Simulated binary crossover [START_REF]The Oracle Website[END_REF] and Polynomial mutation [START_REF] Khare | Performance Scaling of Multi-objective Evolutionary Algorithms[END_REF]. Tables 16 and17 show the qualities of diversity and convergence of five algorithms. The best algorithm is NSGA-III and the second one is NSGA-G. These results can be explained that the DICOM data configuration is less complicated than the DTLZ problems. Moreover, Table 18 shows the advantage of NSGA-G among five NSGAs in execution times. Finally, to select the optimal data configuration, the weighted sum model [START_REF] Helff | Weighted Sum Model for Multi-Objective Query Optimization for Mobile-Cloud Database Environments[END_REF] can also be applied to Pareto data configuration set.

In conclusion, despite the best quality algorithm in the case of DICOM hybrid store, the computation time of NSGA-III is too long. In contrast, in spite of the second good algorithm, the execution time of NSGA-G is shorter than the others.

CONCLUSION

This paper introduced our solution to optimize the storage and query processing of DICOM files in a hybrid (row-column) store. Our proposed algorithm, NSGA-G, finds an approximation of Pareto-optimal with a good trade-off between diversity and performance. Experiments on DTLZ test problems show the advantages of NSGA-G. Preliminary experiments on DICOM files in a hybrid store prove that NSGA-G also provides the best processing time with interesting results in both diversity and convergence.

In future work, our approach will be experimented on other datasets, such as CRM, TPC-H benchmark, etc., to evaluate the suitability of the proposed algorithm to all kinds of data stored in row-column store. The solution will also be extended so as to address medical data management in a cloud federation, with various cloud providers.
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 11 Figure 1: NSGA-II and NSGA-III procedure [8, 9].
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 2 Figure 2: Grid points and Groups.

1 :P

 1 function BESTDATACONFIGURATION(Q, W, T, S, B) 2: // Find a Pareto data configuration set of table T and Workload W with weight sum model S and Constraint B ← N SGA -G (α, β, θ, λ, AU M, I, F ) 11: //Return best candidate in P with weight sum model 12: return BestInPareto(P, S, B) 13: end function Algorithm 4 Select the best data configuration in P for weights S and constraints B.

1 : 6 :

 16 function BESTINPARETO(P, S, B) 2: P B ← p ∈ P |∀n ≤ |B| : c n (p) ≤ B n 3: if P B ∅ then 4: return p ∈ P B |C (p) = min(W eiдhtSum(P B , S)) return p ∈ P |C (p) = min(W eiдhtSum(P, S)) 7:

  PatientName, PatientID, PatientBirthDate, Patient-Sex, EthnicGroup, IssuerOfPatientID, OtherPatientNames, Pa-tientMotherBirthName, InsurancePlanIdentification FROM Patient 100 Q p3 SELECT UID, PatientID, PatientName, PatientBirthDate, Patient-Sex, EthnicGroup, SmokingStatus FROM Patient WHERE Pa-tientSex = 'M' AND SmokingStatus = 'NO' 100 Q p4 SELECT UID, PatientName, PatientID, PatientBirthDate, Eth-nicGroup, PatientPrimaryLanguageModifierCodeSequence, Oth-erPatientIDs, PatientAddress FROM Patient 100 Q p5 SELECT UID, PatientName, PatientID, PatientBirthDate, Pa-tientBirthTime, PatientInsurancePlanCodeSequence, PregnancyStatus, LastMenstrualDate, PatientReligiousPreference FROM Patient 100 Q p6 SELECT UID, PatientName, PatientID, PatientBirthDate, Ethnic-Group, PregnancyStatus, LastMenstrualDate FROM Patient 100

Table 1 :

 1 Frequency of Queries in Workload W.

	Queries	Detail	Freq
	Q 1	SELECT UID, GeneralTags, GeneralVRs, GeneralNames, Gener-	100
		alValues FROM GeneralInfoTable	
	Q 2	SELECT GeneralTags, count(GeneralValues) FROM GeneralIn-	100
		foTable GROUP BY GeneralTags	
	Q 3	SELECT UID, GeneralNames FROM GeneralInfoTable WHERE	100
		GeneralNames = 'Modality'	
	Q 4	SELECT UID, GeneralVRs FROM GeneralInfoTable WHERE	100
		GeneralVRs = 'DA'	

Table 2 :

 2 Attribute Usage Matrix of GeneralInfoTable.

	Queries	GeneralTags (a 1 )	GeneralVRs (a 2 )	GeneralNames (a 3 )	GeneralValues (a 4 )	Freq
	Q 1	1	1	1	1	100
	Q 2	1	0	0	1	100

Table 3 :

 3 Data configuration candidate of GeneralInfoTable.

	Conf	Typical	candidate	No. of stored	Null	No.	No. of scanned	Exec.
		data storage configu-	data cells	ratio	of	data cells	time
		ration				joins		(sec)
	C1	{UID, a1, a2 , a3, a4}	81,135,145	3.49%	0	32,454,058,000	15,180
		=> row store					
	C2	{UID, a1, a2 , a3, a4}	81,135,145	3.49%	0	19,472,434,800	13,790
		=> column store					

Table 4 :

 4 Generational Distance.[START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] 

		m	eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	DTLZ1	5	3.675e-02	4.949e+01	1.129e-01	2.494e+00	2.721e-03
	DTLZ3	5	1.030e-01	4.418e+00	1.951e-01	7.214e-01	6.342e-03
	DTLZ1	6	1.600e-01	9.637e+01	3.138e-01	1.049e+00	3.850e-02
	DTLZ3	6	1.306e+01	1.289e+02	5.265e+00	9.577e+00	9.921e-01
	DTLZ1	7	1.390e-01	5.283e+01	1.515e-01	4.515e-01	1.542e-02
	DTLZ3	7	3.793e-01	3.714e+00	2.251e-02	1.600e-01	2.379e-03
	DTLZ1	8	6.817e-01	1.175e+02	2.608e-01	1.949e+00	8.223e-02
	DTLZ3	8	1.419e+01	1.667e+02	5.320e+00	1.351e+01	9.146e-01
	DTLZ1	9	4.451e-01	4.808e+01	1.101e-01	1.917e+00	1.040e-02
	DTLZ3	9	6.843e-02	1.620e+00	5.237e-03	1.280e-01	1.325e-03
	DTLZ1	10	3.431e-01	4.340e+01	1.432e-01	2.115e+00	0.000e+00
	DTLZ3	10	8.458e-02	1.593e+00	6.763e-03	1.627e-01	1.815e-03

Table 5 :

 5 Average computation time (seconds) in Generational Distance experiment.[START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] 

		m	eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	DTLZ1	5	5.904e+01	1.063e+02	2.264e+02	4.786e+02	1.261e+02
	DTLZ3	5	1.005e+02	1.111e+02	2.358e+02	5.040e+02	1.233e+02
	DTLZ1	6	9.024e+01	1.089e+02	2.320e+02	3.509e+02	1.083e+02
	DTLZ3	6	1.602e+02	1.243e+02	2.520e+02	3.653e+02	1.209e+02
	DTLZ1	7	1.038e+02	1.200e+02	2.839e+02	3.986e+02	1.244e+02
	DTLZ3	7	2.946e+02	1.381e+02	2.820e+02	3.565e+02	1.342e+02
	DTLZ1	8	1.463e+02	1.313e+02	2.896e+02	4.926e+02	1.249e+02
	DTLZ3	8	5.575e+02	1.541e+02	3.458e+02	5.633e+02	1.399e+02
	DTLZ1	9	1.573e+02	1.428e+02	3.242e+02	6.823e+02	1.496e+02
	DTLZ3	9	8.147e+02	1.988e+02	3.721e+02	8.136e+02	1.640e+02
	DTLZ1	10	1.436e+02	1.611e+02	3.745e+02	9.589e+02	1.370e+02
	DTLZ3	10	9.151e+02	1.801e+02	3.907e+02	9.805e+02	1.577e+02

Table 6 :

 6 Inverted Generational Distance.[START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] 

		m	eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	DTLZ1	5	4.070e-01	8.247e+01	3.434e-01	2.796e+00	3.314e-01
	DTLZ3	5	1.656e-01	6.364e+00	3.335e-01	1.383e+00	1.922e-01
	DTLZ1	6	7.981e-01	1.786e+02	9.150e-01	3.040e+00	7.034e-01
	DTLZ3	6	4.429e+01	4.526e+02	1.164e+01	3.103e+01	8.100e+00
	DTLZ1	7	4.188e-01	2.203e+01	3.280e-01	5.024e-01	3.715e-01
	DTLZ3	7	9.630e-01	9.286e+00	1.929e-01	3.901e-01	1.667e-01
	DTLZ1	8	1.417e+00	2.691e+02	1.023e+00	4.195e+00	9.540e-01
	DTLZ3	8	1.023e+02	6.471e+02	1.167e+01	4.194e+01	7.513e+00
	DTLZ1	9	4.432e-01	2.396e+01	3.019e-01	6.685e-01	3.147e-01
	DTLZ3	9	3.737e-01	3.368e+00	1.381e-01	2.516e-01	1.331e-01
	DTLZ1	10	5.912e-01	1.723e+01	3.737e-01	8.963e-01	3.613e-01
	DTLZ3	10	6.287e-01	6.049e+00	1.296e-01	5.049e-01	1.521e-01

Table 7 :

 7 Average computation time (seconds) in Inverted Generational Distance experiment.[START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] 

		m	eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	DTLZ1	5	6.780e+01	9.430e+01	2.292e+02	4.564e+02	9.646e+01
	DTLZ3	5	9.976e+01	1.156e+02	2.564e+02	5.036e+02	1.166e+02
	DTLZ1	6	7.696e+01	1.078e+02	2.451e+02	3.471e+02	1.178e+02
	DTLZ3	6	1.549e+02	1.300e+02	2.527e+02	3.714e+02	1.986e+02
	DTLZ1	7	1.021e+02	1.286e+02	2.732e+02	3.271e+02	1.297e+02
	DTLZ3	7	3.522e+02	1.942e+02	3.794e+02	3.582e+02	1.523e+02
	DTLZ1	8	1.170e+02	1.292e+02	3.222e+02	4.677e+02	1.212e+02
	DTLZ3	8	5.333e+02	1.526e+02	3.140e+02	5.190e+02	1.431e+02
	DTLZ1	9	1.435e+02	1.812e+02	3.120e+02	7.548e+02	1.544e+02
	DTLZ3	9	7.445e+02	2.171e+02	3.533e+02	7.884e+02	1.485e+02
	DTLZ1	10	2.104e+02	1.786e+02	3.942e+02	1.532e+03	2.182e+02
	DTLZ3	10	1.195e+03	2.526e+02	5.766e+02	1.302e+03	2.131e+02

Table 8 :

 8 Maximum Pareto Front Error.[START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] 

		m	eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	DTLZ1	5	7.363e-01	8.969e+02	2.556e+00	2.260e+02	1.024e-01
	DTLZ3	5	9.455e+00	1.015e+02	3.692e+00	4.002e+01	1.957e-01
	DTLZ1	6	4.699e+00	1.584e+03	8.950e+00	7.488e+01	3.375e-01
	DTLZ3	6	5.112e+02	1.862e+03	9.387e+01	4.340e+02	1.244e+01
	DTLZ1	7	9.524e+00	1.012e+03	3.074e+00	1.802e+01	1.695e-01
	DTLZ3	7	1.458e+01	3.163e+01	2.035e-01	3.116e+00	2.708e-02
	DTLZ1	8	3.186e+01	2.041e+03	5.685e+00	2.127e+02	5.532e-01
	DTLZ3	8	1.170e+03	2.247e+03	9.867e+01	5.268e+02	1.145e+01
	DTLZ1	9	1.111e+01	1.036e+03	2.075e+00	1.496e+02	3.106e-01
	DTLZ3	9	1.320e+01	4.065e+01	1.354e-01	8.366e+00	3.195e-02
	DTLZ1	10	2.641e+01	1.026e+03	2.793e+00	2.293e+02	0.000e+00
	DTLZ3	10	1.492e+01	4.185e+01	1.368e-01	1.079e+01	2.744e-02

Table 9 :

 9 Average computation time (seconds) in MaximumPareto Front Error experiment.[START_REF] Le | An efficient multi-objective genetic algorithm for cloud computing: NSGA-G[END_REF] 

		m	eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	DTLZ1	5	7.454e+01	1.214e+02	2.742e+02	5.796e+02	1.221e+02
	DTLZ3	5	1.231e+02	1.437e+02	3.118e+02	6.035e+02	1.286e+02
	DTLZ1	6	1.040e+02	1.318e+02	2.848e+02	4.258e+02	1.276e+02
	DTLZ3	6	2.166e+02	1.673e+02	3.462e+02	5.014e+02	1.575e+02
	DTLZ1	7	1.276e+02	1.638e+02	3.230e+02	4.314e+02	1.424e+02
	DTLZ3	7	4.594e+02	1.959e+02	4.188e+02	5.557e+02	1.774e+02
	DTLZ1	8	1.637e+02	1.609e+02	3.832e+02	5.952e+02	1.466e+02
	DTLZ3	8	5.940e+02	1.963e+02	3.640e+02	6.025e+02	1.453e+02
	DTLZ1	9	1.369e+02	1.474e+02	3.148e+02	7.728e+02	1.559e+02
	DTLZ3	9	6.596e+02	1.982e+02	3.984e+02	8.069e+02	1.516e+02
	DTLZ1	10	1.546e+02	1.540e+02	3.555e+02	9.331e+02	1.400e+02
	DTLZ3	10	8.219e+02	1.841e+02	3.601e+02	9.677e+02	1.619e+02

Table 10 :

 10 Example of real DICOM data set.

	Datasets	DICOM files	AttributiesTuples	Metadata	Total size
	CTColonography	98,737	86	7.76 GB	48.6 GB
	Dclunie	541	86	86.0 MB	45.7 GB
	Idoimaging	1,111	86	53.9 MB	369 MB
	LungCancer	174,316	86	1.17 GB	76.0 GB
	MIDAS	2,454	86	63.4 MB	620 MB
	CIAD	3,763,894	86	61.5 GB	1.61 TB

Table 11 :

 11 Example of extracted DICOM data set.

table

  Patient table extracted from DICOM data has 120,306 tuples and 20.788 MB. It is often processed by a workfload W P , as shown in Table 12. The Attribute Usage Matrix of Patient table is shown in Table 13. The null ratios of the attributes of the entity Patient table are:

	Table	Number of Tuples	Size
	Patient	120,306	20.788 MB
	Study	120,306	19.183 MB
	GeneralInfoTable	16,226,762	4,845,042 MB
	SequenceAttributes	4,149,395	389.433 MB
	in Table 10. The extracted DICOM dataset [28] comprises four
	tables: GeneralInfoTable, SequenceAttributes, Patient, Study.
	5.1 Patient • PatientName: 0.0%,		
	• PatientID: 0.0%,		
	• PatientBirthDate: 83.55%,	
	• PatientSex: 1.48%,		
	• EthnicGroup: 100%,		
	• IssuerOfPatientID: 100%,	
	• PatientBirthTime: 96.32%,	
	• PatientInsurancePlanCodeSequence: 100%,
	• PatientPrimaryLanguageCodeSequence: 100%,
	• PatientPrimaryLanguageModifierCodeSequence: 100%,
	• OtherPatientIDs: 100%,	
	• OtherPatientNames: 100%,	
	• PatientBirthNames: 100%,	
	• PatientTelephoneNumbers: 100%,	
	• SmokingStatus: 97.48%,	
	• PregnancyStatus: 90.01%,	
	• LastMenstrualDate: 97.72%,	
	• PatientReligiousPreference: 100%,	
	• PatientComments: 99.64%,	
	• PatientAddress: 100%,	
	• PatientMotherBirthName: 100%,	
	• InsurancePlanIdentification: 100%.	

Table 12 :

 12 Frequency of Queries in Workload W P .

	Queries	Detail	Freq

Table 13 :

 13 Attribute Usage Matrix of Patient table.

Table 15 :

 15 Attribute Usage Matrix of Study table.

		StudyDate, StudyTime, Referring-	100
		PhysicianName, StudyID, MedicalRecordLocator FROM Study	
		WHERE StudyID = '20050920'	
	Q s 3	SELECT PatientAge, PatientWeight, PatientSize FROM Study	100
		WHERE PatientAge >= 90 Q4,4s	
	Q s 4	SELECT UID, StudyInstanceUID, StudyDate, StudyTime, Refer-	100
		ringPhysicianName, StudyID, AccessionNumber, PatientWeight,	
		AdditionalPatientHistory FROM Study	
	Q s 5	SELECT StudyInstanceUID, StudyDate, StudyTime, StudyID,	100
		PatientSize, Occupation FROM Study	
	Q s 6	SELECT StudyInstanceUID, StudyDate, StudyTime, Referring-	100
		PhysicianName, StudyID, StudyDescription, PatientAge FROM	
		Study WHERE StudyDate >= '20000101' AND StudyDate <=	
		'20150101'	

Table 16 :

 16 Generational Distance.

		eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	Patient	1.997e-02	2.156e-02	2.289e-02	1.604e-02	1.853e-02
	Study	6.495e-02	6.166e-02	6.210e-02	5.559e-02	7.476e-02

Table 17 :

 17 Inverted Generational Distance.

		eMOEA	NSGA-II	MOEA/D	NSGA-III	NSGA-G
	Patient	9.816e-02	1.002e-01	9.922e-02	8.552e-02	9.796e-02
	Study	4.636e-02	4.445e-02	6.509e-02	4.249e-02	4.374e-02

Table 18 :

 18 The execution time of NSGAs with DICOM.

https://github.com/dungltr/MOEA
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GeneralInfoTalbe and SequenceAttributes

GeneralInfoTable table is extracted from DICOM data. It is often processed by a workload W, as shown in Table 1. The Attribute Usage Matrix of GeneralInfoTable table is shown in Table 2.

GeneralInfoTable has four attributes with the null ratios of the attributes, given by: