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Abstract

The Fisher information matrix (FIM) is a key quantity in statistics as it is re-
quired for example for evaluating asymptotic precisions of parameter estimates, for
computing test statistics or asymptotic distributions in statistical testing, for eval-
uating post model selection inference results or optimality criteria in experimental
designs. However its exact computation is often not trivial. In particular in many
latent variable models, it is intricated due to the presence of unobserved variables.
Therefore the observed FIM is usually considered in this context to estimate the
FIM. Several methods have been proposed to approximate the observed FIM when
it can not be evaluated analytically. Among the most frequently used approaches are
Monte-Carlo methods or iterative algorithms derived from the missing information
principle. All these methods require to compute second derivatives of the complete
data log-likelihood which leads to some disadvantages from a computational point
of view. In this paper, we present a new approach to estimate the FIM in latent
variable model. The advantage of our method is that only the first derivatives of the
log-likelihood is needed, contrary to other approaches based on the observed FIM.
Indeed we consider the empirical estimate of the covariance matrix of the score. We
prove that this estimate of the Fisher information matrix is unbiased, consistent
and asymptotically Gaussian. Moreover we highlight that none of both estimates
is better than the other in terms of asymptotic covariance matrix. When the pro-
posed estimate can not be directly analytically evaluated, we present a stochastic
approximation estimation algorithm to compute it. This algorithm provides this
estimate of the FIM as a by-product of the parameter estimates. We emphasize
that the proposed algorithm only requires to compute the first derivatives of the
complete data log-likelihood with respect to the parameters. We prove that the
estimation algorithm is consistent and asymptotically Gaussian when the number of
iterations goes to infinity. We evaluate the finite sample size properties of the pro-
posed estimate and of the observed FIM through simulation studies in linear mixed
effects models and mixture models. We also investigate the convergence properties
of the estimation algorithm in non linear mixed effects models. We compare the
performances of the proposed algorithm to those of other existing methods.
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1 Introduction

The Fisher information matrix (FIM) is a key quantity in statistics as it is required
for example for evaluating asymptotic precisions of parameter estimates, for comput-
ing Wald test statistics or asymptotic distributions in statistical testing (van der Vaart
(2000)). It also appears in post model selection inference or in optimality criteria for ex-
perimental designs or as a particular Riemannian metric. However its exact computation
is often not trivial. This is in particular the case in many latent variables models, also
called incomplete data models, due to the presence of the unobserved variables. Though
these models are increasingly used in many fields of application. They especially allow
a better consideration of the different variability sources and when appropriate, a more
precise characterization of the known mechanisms at the origin of the data generation.
Let us quote some examples in pharmacology (Delattre et al. (2012)), in ecophysiol-
ogy (Technow et al. (2015)), in genomic (Picard et al. (2007)) or in ecology (Gloaguen
et al. (2014)). When the FIM can not be exactly computed, people focus on an esti-
mate of the FIM and consider usually the observed FIM. When it can not be directly
computed, several methods have been proposed to approximate it. Among the most fre-
quently used approaches are Monte-Carlo methods or iterative algorithms derived from
the missing information principle (Orchard and Woodbury (1972)). Indeed according
to this principle, the observed Fisher information matrix can be expressed as the differ-
ence between two matrices corresponding to the complete information and the missing
information due to the unobserved variables. It enables the development of alternative
methods to compute the observed FIM: the Louis’s method (Louis (1982)), combined
with a Monte Carlo method or a stochastic approximation algorithm by Delyon et al.
(1999), the Oakes method (Oakes (1999)) or the supplemented Expectation Maximiza-
tion algorithm (Meng and Rubin (1991)). However as the observed FIM involves the
second derivatives of the observed log-likelihood, all these methods require to compute
second derivatives of the complete data log-likelihood which leads to some disadvantages
from a computational point of view. More recently, Meng and Spall (2017) proposed
an accelerated algorithm based on numerical first order derivatives of the conditional
expectation of the log-likelihood.

In this paper, we present a new approach to evaluate the FIM in latent variables
model. The advantage of our method is that only the first derivatives of the complete log-
likelihood is needed. Indeed we consider the empirical estimate of the covariance matrix
of the score. When the proposed estimate can not be directly analytically evaluated, we
propose a stochastic approximation estimation algorithm to compute it, which provides
this estimate of the FIM as a by-product of model parameter estimates.

The paper is organized as follows. In Section 2, we detail both moment estimates of
the Fisher information matrix and establish their asymptotic properties. In Section 3,
we give practical tools for the computation of the proposed estimate of the Fisher infor-
mation matrix in incomplete data models. In particular, we introduce a new stochastic
approximation procedure based on the first derivatives of the complete log-likelihood
only and state its asymptotic properties. In Section 4, we illustrate the finite sample
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size properties of both estimators and the convergence properties of the computation
algorithm through simulations. The paper ends with conclusion and discussion.

2 Moment estimates of the Fisher information matrix

Let us consider a random variable Y and denote by g the density of Y . Assume that the
log-likelihood function log g is parametric depending on some parameter θ taking values
in Θ, differentiable on Θ and that ‖∂θ log g(y; θ)(∂θ log g(y; θ))t‖ is integrable. Then, by
definition, the Fisher information matrix is given for all θ ∈ Θ by:

I(θ) = Eθ
[
∂θ log g(Y ; θ)(∂θ log g(Y ; θ))t

]
. (1)

Moreover if the log-likelihood function log g is twice differentiable on Θ, the following
relation also holds for all θ ∈ Θ:

I(θ) = −Eθ
[
∂2θ log g(Y ; θ)

]
. (2)

When none of these expressions can be analytically evaluated, people are interested in
computing an estimate of the Fisher information matrix.

2.1 Definitions of the estimators

Considering the two expressions given in equations (1) and (2), we can derive two mo-
ment estimators for the Fisher information matrix based on a n-sample (y1, . . . , yn) of
observations. Indeed both estimators, denoted by In,sco(θ) and In,obs(θ), are defined as
empirical estimates of the Fisher information matrix based on the expressions involving
respectively the score function and the Hessian as follows:

In,sco(θ) =
1

n

n∑
i=1

∂θ log g(yi; θ)(∂θ log g(yi; θ))
t

In,obs(θ) = − 1

n

n∑
i=1

∂2θ log g(yi; θ)

Note that the estimator In,obs(θ) is usually called the observed Fisher information matrix.
We emphasize that the estimator In,sco(θ) is defined as soon as the Fisher information
matrix is whereas the estimator In,obs(θ) requires additional regularity assumptions to
be defined. Moreover evaluating the estimator In,sco(θ) requires only to calculate the
first derivatives of the log-likelihood whereas evaluating the estimator In,obs(θ) requires
also to calculate the second ones.

2.2 Properties of the estimators

Both estimators are moment estimates and therefore unbiased. We now establish the
asymptotic properties of both estimators.
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Proposition 2.1 Assume that Y1, . . . , Yn are independent identically distributed ran-
dom variables from some parametric probability density function g depending on some
parameter θ in an open subset Θ of Rp. Assume also that log g is differentiable in θ on
Θ and that for all θ ∈ Θ, ∂θ log g(y; θ)(∂θ log g(y; θ))t is integrable. Then, for all θ ∈ Θ,
the estimator In,sco(θ) is defined, consistent for I(θ) and asymptotically normal.

Moreover, assuming additionaly that log g is twice differentiable in θ on Θ, the esti-
mator In,obs(θ) is defined, consistent for I(θ) and asymptotically normal.

Proof The results follow by applying the law of large numbers and the central limit
theorem. �

Remark 2.2 Regarding the variance, none of both estimators is better than the other
one. This can be highlighted through the following examples. First consider a Gaussian
sample with unknown expectation and fixed variance. Then, the variance of the estima-
tor In,obs(θ) is zero whereas the variance of the estimator In,sco(θ) is positive. Second
consider a centered Gaussian sample with unknown variance. Then, the variance of
In,sco(θ) is smaller than the variance of In,obs(θ). Therefore, none of both estimators is
more suitable than the other in general.

Since the above result does not apply if the variables Y1, . . . , Yn are not identically
distributed, for example if they depend on some individual covariates which is often the
case, we state the following result under the assumption of independent non identically
distributed random variables.

Proposition 2.3 Assume that Y1, . . . , Yn are independent non identically distributed
random variables each having a parametric probability density function gi depending on
some common parameter θ in an open subset Θ of Rp. Assume also that for all i the func-
tion log gi is differentiable in θ on Θ and that for all θ ∈ Θ, ∂θ log gi(y; θ)(∂θ log gi(y; θ))t

is integrable. Moreover assume that for all θ in Θ, lim 1
n

∑n
i=1Eθ(∂θ log gi(y; θ)(∂θ log gi(y; θ))t)

exists and denotes it by ν(θ). Then, for all θ ∈ Θ, the estimator In,sco(θ) is defined,
converges almost surely toward ν(θ) and is asymptotically normal. Moreover, assuming
additionaly that log gi is twice differentiable in θ on Θ, the estimator In,obs(θ) is defined,
converges almost surely toward ν(θ) and is asymptotically normal.

Proof We prove the consistency by applying the law of large numbers for non iden-
tically distributed variables. We establish the normality result by using characteristic
functions. By recentering the terms Eθ(∂θ log gi(y; θ)(∂θ log gi(y; θ))t), we can assume
that ν(θ) equals zero. Let us denote by φZ the characteristic function for a random
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variable Z. We have for all real t in a neighborhood of zero that:

‖φIn,sco(θ)/√n(t)− 1‖ = ‖
n∏
i=1

(φ∂θ log gi(y;θ)(∂θ log gi(y;θ))t(t/n)− 1)‖

≤
n∏
i=1

‖φ∂θ log gi(y;θ)(∂θ log gi(y;θ))t(t/n)− 1‖

Computing a limited expansion in t around zero, we get the result.
Noting that for all 1 ≤ i ≤ n, Eθ(∂θ log gi(y; θ)(∂θ log gi(y; θ))t) = −Eθ(∂2θ log gi(y; θ)),

we get the corresponding results for the estimator In,obs(θ). �

Remark 2.4 The additional assumptions required when considering non identically dis-
tributed random variables are in the same spirit as those usually used in the literature.
Let us quote for example Nie (2006), Silvapulle and Sen (2011), Baey et al. (2019).

3 Computing the estimator In,sco(θ) in latent variable model

Let us consider independent random variables Y1, . . . , Yn. Assume in the sequel that
there exist independent random variables Z1, . . . , Zn such that for each 1 ≤ i ≤ n, the
random vector (Yi, Zi) admits a parametric probability density function denoted by f
parametrized by θ ∈ Θ. We present in this section dedicated tools to compute the
estimator In,sco(θ) in latent variable model when it can not be evaluated analytically.

3.1 Analytical expressions in latent variable models

In latent variable models, the estimator In,sco(θ) can be expressed using the conditional
expectation as stated in the following proposition.

Proposition 3.1 Assume that for all θ ∈ Θ the function log g(·; θ) is integrable, that
for all y the function log g(y; ·) is differentiable on Θ and that there exists an integrable
function h1 such that for all θ ∈ Θ, ‖ ∂θ log g(y; θ)‖ ≤ h1(y). Then for all θ ∈ Θ and all
n ∈ N∗:

In,sco(θ) =
1

n

n∑
i=1

EZi|Yi;θ(∂θ log f(Yi, Zi; θ))EZi|Yi;θ(∂θ log f(Yi, Zi; θ))
t

where EZ|Y ;θ denotes the expectation under the law of Z conditionally to Y .

Proof Applying the Leibniz integral rule, we get that for all θ ∈ Θ:

∂θ log g(Y ; θ) = EZ|Y ;θ(∂θ log f(Y, Z; θ))

This equality allows to express explicitely the first derivatives of the logarithm of the
marginal density of Y as the expectation of the first derivatives of the logarithm of the
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complete likelihood with respect to the conditional distribution of the latent variables.
This statement is indeed in the same spirit as the well-known Louis formulae for the
observed Fisher information matrix estimate. �

Remark 3.2 In some specific cases the conditional expectations involved in the previous
proposition admit exact analytical expressions for example in mixture models which are
developed in Section 4 in some simulation studies.

3.2 Computing In,sco(θ) using stochastic approximation algorithm

When exact computation of the estimator In,sco(θ) is not possible, we propose to evaluate
its value by using a stochastic algorithm which provides the estimate In,sco(θ) as a by-
product of the parameter estimates of θ.

3.2.1 Description of the algorithm in curved exponential family model

We consider an extension of the stochastic approximation Expectation Maximization
algorithm proposed by Delyon et al. (1999) which allows to compute the maximum
likelihood estimate in general latent variables model. We assume that the complete log-
likelihood belongs to the curved exponential family for stating the theoretical results.
However our algorithm can be easily extended to general latent variables models (see
Section 3.2.3). As our estimate involves individual conditional expectations, we have to
consider an extended form of sufficient statistics for the model. Therefore we introduce
the following notations and assumptions.

The individual complete data likelihood function is given for all 1 ≤ i ≤ n by:

fi(zi; θ) = exp (−ψi(θ) + 〈Si(zi), φi(θ)〉) ,

where 〈·, ·〉 denotes the scalar product, Si is a function on Rdi taking its values in a
subset Si of Rmi .

Let us denote for all 1 ≤ i ≤ n by Li the function defined on Si × Θ by Li(si; θ) ,
−ψi(θ) + 〈si, φi(θ)〉 and by L : S ×Θ→ R the function defined as L(s, θ) =

∑
i Li(si; θ)

with S =
∏
i Si and s = (s1, . . . , sn). For sake of simplicity, we omitted here all de-

pendency on the observations (yi)1≤i≤n since the considered stochasticity relies on the
latent variables.

Finally let us denote by (γk)k≥1 a sequence of positive step sizes.

Moreover we assume that there exists a function θ̂ : S → Θ, such that ∀s ∈ S, ∀θ ∈
Θ, L(s; θ̂(s)) ≥ L(s; θ).

• Initialization step: Initialize arbitrarily for all 1 ≤ i ≤ n s0i and θ0.

• Repeat until convergence the three following steps:

◦ Simulation step: for 1 ≤ i ≤ n simulate a realization Zki from the condi-
tional distribution denoted by pi using the current parameter value θk−1.
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◦ Stochastic approximation step: compute the quantities for all 1 ≤ i ≤ n

ski = (1− γk)sk−1i + γkSi(Z
k
i )

where (γk) is a sequence of positive step sizes satisfaying
∑
γk = ∞ and∑

γ2k <∞.

◦ Maximisation step: update of the parameter estimator according to:

θk = argmax
θ

n∑
i=1

(
−ψi(θ) +

〈
ski , φi(θ)

〉)
= θ̂(sk)

• When convergence is reached, say at iteration K of the algorithm,
evaluate the FIM estimator according to:

IKn,sco =
1

n

n∑
i=1

∆̂i

(
θ̂
(
sK
))

∆̂i

(
θ̂
(
sK
))t

where ∆̂i(θ̂(s)) = −∂ψi(θ̂(s)) +
〈
si, ∂φi(θ̂(s))

〉
for all s.

Remark 3.3 In the cases where the latent variables can not be simulated from the con-
ditional distribution, one can apply the extension coupling the stochastic algorithm with
a Monte Carlo Markov Chain procedure as presented in Kuhn and Lavielle (2004). All
the following results can be extended to this case.

3.2.2 Theoretical convergence properties

In addition to the exponential family assumption for each individual likelihood, we also
make the same type of regularity assumptions as those presented in Delyon et al. (1999)
at each individual level. These assumptions are detailed in the appendix section.

Theorem 3.4 Assume that assumptions (M1′) and (M2′), (M3) to (M5) and (SAEM1)
to (SAEM4) are fulfilled. Assume also that with probability 1 clos({sk}k≥1) is a compact
subset of S. Let us define L = {θ ∈ Θ, ∂θl(y; θ) = 0} the set of stationary points of the
observed log-likelihood l. Then, for all θ0 ∈ Θ, for fixed n ∈ N∗, we get: limk d(θk,L) = 0
and limk d(Ikn,sco, I) = 0 where I = {I(θ), θ ∈ L}.

Proof Let us denote by S(Z) = (S1(Z1), . . . , Sn(Zn)) the sufficient statistics of the
model we consider in our approach. Note as recall in (Delyon et al., 1999), these are
not unique. Let us also define H(Z, s) = S(Z) − s and h(s) = EZ|Y ;θ(S(Z)) − s. Our
assumptions (M1′) and (M2′) imply that assumptions (M1) and (M2) of Theorem 5
of Delyon et al. (1999) are fulfilled. Indeed our assumptions focus on expressions and
regularity properties of the individual likelihood functions and the corresponding suf-
ficient statistics for each indice i ∈ {1, . . . , n}. Then by linearity of the log-likelihood
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function and of the stochastic approximation and applying Theorem 5 of Delyon et al.
(1999), we get that limk d(θk,L) = 0. Moreover we get that for 1 ≤ i ≤ n, each sequence
(ski ) converges almost surely toward EZi|Yi;θ(Si(Zi)). Since assumption (M2′) ensures
that for all 1 ≤ i ≤ n the functions ψi and φi are twice continuously differentiable and
assumption (M5) ensures that the function θ̂ is continuously differentiable, the function
Φn defined by Φn(sk) = 1

n

∑n
i=1 ∆̂i(θ̂(s

k))∆̂i(θ̂(s
k)) is continuous. Therefore we get that

limk d(Ikn,sco, I) = 0. �

We now establish the asymptotic normality of the estimate Īkn,sco defined as Īkn,sco =

Φn(s̄k) with s̄k =
∑k

l=1 s
l/k using the results stated by Delyon et al. (1999). Let us

denote by V ect(A) the vector composed of the elements of the triangular superior part
of matrix A ordered by columns.

Theorem 3.5 Assume that assumptions (M1′) and (M2′), (M3) to (M5), (SAEM1′),
(SAEM2), (SAEM3), (SAEM4′) and (LOC1) to (LOC3) are fulfilled. Then, there
exists a regular stable stationary point θ∗ ∈ Θ such that limk θk = θ∗ a.s. Moreover
the sequence (

√
k(V ect(Īkn,sco)−V ect(Īn,sco(θ∗))))1lim ‖θk−θ∗‖=0 converges in distribution

toward a centered Gaussian random vector when k goes to infinity. The asymptotic
covariance matrix is characterised.

Proof The proof follows the lines of this of Theorem 7 of Delyon et al. (1999). As-
sumptions (LOC1) to (LOC3) are those of Delyon et al. (1999) and ensures the existence
of a regular stable stationary point s∗ for h and therefore of θ∗ = θ̂(s∗) for the observed
log-likelihood l. Then applying Theorem 4 of Delyon et al. (1999), we get that:

√
k(s̄k − s∗)1lim ‖sk−s∗‖=0

L→ N (0, J(s∗)−1Γ(s∗)J(s∗)−1)1lim ‖sk−s∗‖=0

where the function Γ defined in assumption (SAEM4′) and J is the Jacobian matrix of
the function h. Applying the Delta method, we get that:

√
k(V ect(Φn(s̄k))− V ect(Φn(s∗)))1lim ‖sk−s∗‖=0

L→W1lim ‖sk−s∗‖=0

where W ∼ N (0, ∂V ect(Φn(s∗))J(s∗)−1Γ(s∗)J(s∗)−1∂V ect(Φn(s∗))t) which leads to the
result. �

Note that as usually in stochastic approximation results, the rate
√
k is achieved

when considering an average estimator (see Theorem 7 of Delyon et al. (1999) e.g).

3.2.3 Description of the algorithm for general latent variables models

In general settings, the SAEM algorithm can yet be applied to approximate numerically
the maximum likelihood estimate of the model parameter. Nevertheless there are no
more theoretical guarantees of convergence for the algorithm. However we propose an
extended version of our algorithm which allows to get an estimate of the Fisher infor-
mation matrix as a by-product of the estimation algorithm.

8



• Initialization step: Initialize arbitrarily ∆0
i for all 1 ≤ i ≤ n, Q0 and θ0.

• Repeat until convergence the three following steps:

◦ Simulation step: for 1 ≤ i ≤ n simulate a realization Zki from the condi-
tional distribution pi using the current parameter θk−1.

◦ Stochastic approximation step: compute the quantities for all 1 ≤ i ≤ n

Qk(θ) = (1− γk)Qk−1(θ) + γk

n∑
i=1

log f(yi, Z
k
i ; θ)

∆k
i = (1− γk)∆k−1

i + γk∂θ log f(yi, Z
k
i ; θk−1)

◦ Maximisation step: update of the parameter estimator according to:

θk = argmax
θ

Qk(θ).

• When convergence is reached, say at iteration K of the algorithm,
evaluate the FIM estimator according to:

IKn,sco =
1

n

n∑
i=1

∆K
i (∆K

i )t.

We illustrate through simulations in a nonlinear mixed effects model the performance
of this algorithm in Section 4.2.

4 Simulation study

In this section, we investigate both the properties of the estimators In,sco(θ) and In,obs(θ)
when the sample size n grows and the properties of the proposed algorithm when the
number of iterations grows.

4.1 Asymptotic properties of the estimators In,sco(θ) and In,obs(θ)

4.1.1 Simulation setting

First we consider the following linear mixed effects model yij = β+zi+εij , where yij ∈ R
denotes the jth observation of individual i, 1 ≤ i ≤ n, 1 ≤ j ≤ J , zi ∈ R the unobserved
random effect of individual i and εij ∈ R the residual term. The random effects (zi) are
assumed independent and identically distributed such that zi ∼

i.i.d.
N (0, η2), the residuals

(εij) are assumed independent and identically distributed such that εij ∼
i.i.d.

N (0, σ2)

and the sequences (zi) and (εij) are assumed mutually independent. Here, the model
parameters are given by θ = (β, η2, σ2). We set β = 3, η2 = 2, σ2 = 5 and J = 12.

Second we consider the following Poisson mixture model where the distribution of
each observation yi (1 ≤ i ≤ n) depends on a state variable zi which is latent leading
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to yi|zi = k ∼ P(λk) with P (zi = k) = αk and
∑K

k=1 αk = 1. The model parameters
are θ = (λ1, . . . , λK , α1, . . . , αK−1). For the simulation study, we consider a mixture of
K = 3 components, and the following values for the parameters λ1 = 2, λ2 = 5, λ3 = 9,
α1 = 0.3 and α2 = 0.5.

4.1.2 Results

For each model, we generateM = 500 datasets for different sample sizes n ∈ {20, 100, 500}.
We do not aim at estimating the model parameters. We assume them to be known, and
in the following we denote by θ? the true parameter value. For each value of n and for

each 1 ≤ m ≤ M , we derive I
(m)
n,sco(θ?) and I

(m)
n,obs(θ

?). We compute the empirical bias
and the root mean squared deviation of each component (`, `′) of the estimated matrix
as:

1

M

M∑
m=1

I
(m)
n,sco,`,`′(θ

?)− I`,`′(θ?) and

√√√√ 1

M

M∑
m=1

(
I
(m)
n,sco,`,`′(θ

?)− I`,`′(θ?)
)2
.

In the previous quantities, I(θ?) is explicit in the linear mixed effects model and
approximated by a Monte-Carlo estimation based on a large sample size in the Poisson
mixture model. The results are presented in Tables 1 and 2 for the linear mixed effects
model and in Tables 3 and 4 for the mixture model. We observe that whatever the model
and whatever the components of In,sco(θ

?) and In,obs(θ
?), the bias is very small even for

small values of n. Note that in this particular model the second derivatives with respect
to parameter β is deterministic, which explains why the bias and the dispersion of the
estimations In,obs(θ

?) are zero for every value of n. The bias and the standard deviation
decrease as n increases overall, which illustrates the consistency of both M-estimators.
We also represent in Figures 1 and 2 the distributions of the normalized estimations
√
n
(
I
(m)
n,sco(θ?)− I(θ?)

)
and

√
n
(
I
(m)
n,obs(θ

?)− I(θ?)
)

for n = 500 for some components

of the matrices. The empirical distributions have the shape of Gaussian distributions
and illustrate the asymptotic normality of the two estimators. The numerical results
highlight that neither In,sco(θ

?) nor In,obs(θ
?) is systematically better than the other one

in terms of bias and asymptotic covariance matrix.

4.2 Properties of the stochastic approximation algorithm

4.2.1 Curved exponential family model

We consider the following nonlinear mixed effects model which is widely used in phar-
macokinetics for describing the evolution of drug concentration over time.

yij =
dikai

Vikai − Cli

[
e
−Cli
Vi
tij − e−kaitij

]
+ εij , (3)

where kai, Cli and Vi are individual random parameters such that log kai = log(ka)+zi,1,
logCli = log(Cl) + zi,2, log Vi = log(V ) + zi,3. For all 1 ≤ i ≤ n, 1 ≤ j ≤ J , yij de-
notes the measure of drug concentration on individual i at time tij , di the dose of drug

10



Table 1: Linear mixed effects model. Empirical bias and squared deviation to the Fisher
Information matrix (in brackets) of In,sco for different values of n.

n In,sco(β, β) In,sco(η
2, η2) In,sco(σ

2, σ2) In,sco(β, η
2) In,sco(β, σ

2) In,sco(η
2, σ2)

20 0.015 0.007 -0.007 0.002 -0.004 -3.10−4

(0.141) (0.009) (0.085) (0.102) (0.068) (0.032)

100 -0.001 -2.10−4 -0.001 0.001 0.002 4.10−4

(0.057) (0.030) (0.039) (0.039) (0.031) (0.014)

500 -0.001 -7.10−4 -1.10−4 5.10−4 -4.10−4 -4.10−5

(0.026) (0.014) (0.017) (0.018) (0.013) (0.006)

Table 2: Linear mixed effects model. Empirical bias and squared deviation to the Fisher
Information matrix (in brackets) of In,obs for different values of n.

n In,obs(β, β) In,obs(η
2, η2) In,obs(σ

2, σ2) In,obs(β, η
2) In,obs(β, σ

2) In,obs(η
2, σ2)

20 0.000 0.007 -0.002 0.001 1.10−4 5.10−4

(0.000) (0.058) (0.042) (0.058) (0.005) (0.005)

100 0.000 -5.10−4 2.10−4 -0.002 -2.10−4 4.10−5

(0.000) (0.023) (0.018) (0.026) (0.002) (0.002)

500 0.000 -5.10−4 -8.10−5 4.10−4 4.10−5 -4.10−5

(0.000) (0.011) (0.009) (0.012) (0.001) (0.001)

Table 3: Mixture model. Empirical bias and squared deviation to the Fisher Information
matrix (in brackets) of some components of In,sco for different values of n.

n In,sco(λ2, λ2) In,sco(λ3, λ3) In,sco(α1, α1) In,sco(α2, α2) In,sco(λ2, λ3) In,sco(λ3, α2)

20 8.10−5 3.10−5 0.060 0.047 9.10−5 -0.002
(0.007) (0.015) (1.202) (1.056) (0.003) (0.110)

100 -3.10−5 -2.10−4 -0.040 -0.041 -7.10−5 0.003
(0.003) (0.007) (0.526) (0.469) (0.001) (0.046)

500 7.10−5 7.10−5 0.019 0.011 2.10−5 -1.10−4

(0.001) (0.003) (0.232) (0.205) (0.001) (0.021)

Table 4: Mixture model. Empirical bias and squared deviation to the Fisher Information
matrix (in brackets) of some components of In,obs for different values of n.

n In,obs(λ2, λ2) In,obs(λ3, λ3) In,obs(α1, α1) In,obs(α2, α2) In,obs(λ2, λ3) In,obs(λ3, α2)

20 -3.10−4 5.10−4 0.060 0.047 9.10−5 9.10−4

(0.022) (0.009) (1.202) (1.055) (0.003) (0.034)

100 2.10−4 -4.10−4 -0.040 -0.041 -7.10−5 -5.10−4

(0.010) (0.004) (0.526) (0.469) (0.001) (0.016)

500 -3.10−4 1.10−4 0.019 0.011 2.10−5 5.10−4

(0.005) (0.002) (0.232) (0.205) (6.10−4) (0.007)

11



Figure 1: Linear mixed effects model. Kernel density estimates of the normalized values
√
n
(
I
(m)
n,sco,`,`′(θ

?)− I`,`′(θ?)
)

and
√
n
(
I
(m)
n,obs,`,`′(θ

?)− I`,`′(θ?)
)

of three components of

the estimated Fisher information matrix computed from the M = 500 simulated datasets
when n = 500.

Figure 2: Mixture model. Kernel density estimates of the normalized values
√
n
(
I
(m)
n,sco,`,`′(θ

?)− I`,`′(θ?)
)

and
√
n
(
I
(m)
n,obs,`,`′(θ

?)− I`,`′(θ?)
)

of three components of

the estimated Fisher information matrix computed from the M = 500 simulated datasets
when n = 500.
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administered to individual i, and Vi, kai and Cli respectively denote the volume of the
central compartment, the drug’s absorption rate constant and the drug’s clearance of
individual i. The terms zi = (zi,1, zi,2, zi,3)

′ ∈ R3 are unobserved random effects which
are assumed independent and identically distributed such that zi ∼

i.i.d.
N (0,Ω), where

Ω = diag(ω2
ka, ω

2
Cl, ω

2
V ), the residuals (εij) are assumed independent and identically dis-

tributed such that εij ∼
i.i.d.
N (0, σ2) and the sequences (zi) and (εij) are assumed mutually

independent. Here, the model parameter is given by θ = (ka, V, Cl, ω2
ka, ω

2
V , ω

2
Cl, σ

2). In
this model, as in a large majority of nonlinear mixed effects models, the likelihood does
not have any analytical expression. As a consequence, neither the Fisher Information
Matrix, nor the estimators In,sco(θ), In,obs(θ) have explicit expressions. However, as the
complete data log-likelihood is explicit, stochastic approximations of In,sco(θ), In,obs(θ)
can be implemented. We take the following values for the parameters V = 31, ka = 1.6,
Cl = 1.8, ω2

V = 0.40, ω2
ka = 0.40, ω2

Cl = 0.40 and σ2 = 0.75. We consider the same dose
di = 320 and the same observation times (in hours): 0.25,0.5, 1, 2, 3.5, 5, 7, 9, 12, 24 for
all the individuals. We simulate one dataset with n = 100 individuals under model (3).
On this simulated dataset, we run the stochastic approximation algorithm described in
section 3.2.1 for computing In,sco(θ̂) together with θ̂ and the algorithm of Delyon et al.

(1999) for computing In,obs(θ̂) M = 500 times. We perform K = 3000 iterations in
total for each algorithm by setting γk = 0.95 for 1 ≤ k ≤ 1000 (burn in iterations) and
γk = (k− 1000)−3/5 otherwise. At any iteration, we compute the empirical relative bias
and the empirical relative standard deviation of each component (`, `′) of In,sco defined
respectively as:

1

M

M∑
m=1

̂
I
(k,m)
n,sco,`,`′ − I

?
n,sco,`,`′

I?n,sco,`,`′
and

√√√√√√ 1

M

M∑
m=1

 ̂
I
(k,m)
n,sco,`,`′ − I?n,sco,`,`′

I?n,sco,`,`′


2

where Î
(k,m)
n,sco denote the estimated value of In,sco(θ̂) at iteration k of the mth algorithm.

We compute the same quantities for In,obs. As the true values of I?n,sco = In,sco(θ
?) and

I?n,obs = In,obs(θ
?) are not known, they are estimated by Monte-Carlo integration. The

results are displayed in Figures 3 and 4.
We observe that the bias and the standard deviations of the estimates of the compo-

nents of both matrices decrease over iterations, and that for both estimates the bias is
nearly zero when the convergence of the algorithm is reached. According to these simu-
lation results, there is no evidence that one method is better than the other in terms of
bias or standard deviation.

4.2.2 A general latent variable model

We use model (3) again, but we now consider that individual parameter Vi is fixed, i.e.
Vi ≡ V ∀i = 1, . . . , n. The model is no longer exponential in the sense of equation (3.2.1).
We must therefore use the general version of the stochastic approximation algorithm from
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Figure 3: Non linear mixed effects model. Representation over iterations of the mean
relative biais of the diagonal components of the estimated Fisher information matrix
computed from the M = 500 runs of the stochastic algorithm. Red line corresponds to
In,sco(θ) and blue line corresponds to In,obs(θ). The burn-in iterations of the algorithm
are not depicted.

Figure 4: Non linear mixed effects model. Representation over iterations of the mean
relative standard error of the diagonal components of the estimated Fisher information
matrix computed from the M = 500 runs of the stochastic algorithm. Red line corre-
sponds to In,sco(θ) and blue line corresponds to In,obs(θ). The burn-in iterations of the
algorithme are not depicted.
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section 3.2.3 to compute In,sco(θ̂). We simulate 500 datasets according to this model and

we then estimate In,sco(θ̂) and θ̂ for each one. We then compute the 500 asymptotic con-

fidence intervals of the model parameters [θ̂
(`)
k −q1−α/2 σ̂

(`)
k , θ̂

(`)
k +q1−α/2 σ̂

(`)
k ], ` = 1, . . . , 6

and then deduce from them empirical coverage rates. The σ̂
(`)
k ’s are obtained through the

diagonal terms of the inversed Vn(θ̂k)’s, and q1−α/2 stands for the quantile of order 1−α/2
of a standard Gaussian distribution with zero mean. We obtain for the six parameters
(ka, V, Cl, ω2

ka, ω
2
Cl, σ

2) empirical covering rates of 0.946,0.928,0.962,0.944,0.950,0.942 re-
spectively for a nominal covering rate of 0.95. Although theoretical guarantee is missing
in non exponential models, the stochastic approximation algorithm proposed in section
3.2.3 converges in practice on this example for both the estimation of the model param-
eters and the estimation of the Fisher information matrix as shown by Figures 5 and
6.

Figure 5: Convergence plot for the parameter estimates over iterations of the stochastic
approximation algorithm.

4.3 Comparison with other methods

To the best of our knowledge, although there exists contributions focusing on the esti-
mation of the Fisher information matrix in latent variable models, there is currently no
method based on the first derivatives of the log-likelihood. We compare to Meng and
Spall (2017) who proposed an iterative method based on numerical first order derivatives
of the Q function that is computed at each E-step of the EM algorithm. The model used
by Meng and Spall (2017) in their simulation study is a mixture of two Gaussian distri-
butions with unknown expectations µ1 and µ2, fixed variances equal to 1 and unknown
proportion π. The model parameters are denoted by θ = (µ1, µ2, π).
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Figure 6: Convergence plot for the some diagonal components of In,sco(θ̂) over iterations
of the stochastic approximation algorithm.

We simulate 10000 datasets according to this Gaussian mixture model, using the
same setting as Meng and Spall (2017), i.e. n = 750, π = 2/3, µ1 = 3 and µ2 = 0. For
each dataset k = 1, . . . , 10000, we compute the parameter maximum likelihood estimate
θ̂k = (π̂k, µ̂1k, µ̂2k) with an EM algorithm and then we derive In,sco(θ̂k) directly according
to formula (3) contrary to Meng and Spall (2017) who used an iterative method. We
compute the empirical mean of the 10000 estimated matrices leading to:

1

10000

∑
k

In,sco(θ̂k) =

2685.184 −211.068 −251.808
−211.068 170.927 −61.578
−251.808 −61.578 392.859


Comparison with the results of Meng and Spall (2017) is delicate since their numeri-
cal illustration of their method is based on a single simulated dataset thus potentially
sensitive to sampling variations. However, they provide an estimation of the Fisher
information matrix from this unique dataset

IMeng =

2591.3 −237.9 −231.8
−237.9 155.8 −86.7
−231.8 −86.7 394.5

 .

Our results are coherent with their ones. To check the reliability of our results, we
then compute as above the 10000 asymptotic confidence intervals of the three model
parameters. We obtain for the three parameters (π, µ1, µ2) empirical covering rates of
0.953, 0.949, 0.951 respectively for a nominal covering rate of 0.95.
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5 Conclusion and discussion

In this work, we address the estimation of the Fisher information matrix in general latent
variable models. We consider the moment estimate of the covariance matrix of the score
whereas the observed FIM, equal to the moment estimate based on the expression of
the FIM equal to minus the expectation of the Hessian of the log-likelihood, is usually
used in practice. We detailed the theoretical properties of both estimates. We propose a
stochastic approximation algorithm to compute the proposed estimate of the FIM when
it can not be calculated analytically and establish its theoretical convergence properties.
We carry out a simulation study in mixed effects model and a Poisson mixture model
to compare the performances of both estimates and of the proposed algorithm. We
emphasize that the moment estimate of the covariance matrix of the score requires
less regularity assumptions than the observed FIM, leading in the same time to less
derivative calculus. From a computational point of view, the implementation of the
algorithm for the moment estimate of the covariance matrix of the score only involves
the first derivatives of the log-likelihood, in contrary to the other moment estimate which
involves the second derivatives of the log-likelihood.

The main perspective of this work is to adapt the procedure for statistical models
whose derivatives of the log-likelihood have no tractable expressions, coupling the al-
gorithm with numerical derivative procedures. It would be particularly interesting to
consider mechanistic models such as crop models for example (Technow et al. (2015)).
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6 Appendix

It is assumed that the random variables s0, z1, z2, · · · are defined on the same probability
space (Ω,A, P ). We denote F = {Fk}k≥0 the increasing family of σ-algebras generated
by the random variables s0, z1, z2, · · · , zk. We assume the following conditions:

• (M1’) The parameter space Θ is an open subset of Rp. The individual complete
data likelihood function is given for all i = 1, . . . , n by:

fi(zi; θ) = exp (−ψi(θ) + 〈Si(zi), φi(θ)〉) ,

where 〈·, ·〉 denotes the scalar product, Si is a Borel function on Rdi taking its
values in an open subset Si of Rmi . Moreover, the convex hull of S(R

∑
di) is

included in S and for all θ ∈ Θ
∫
S(z)

∏
pi(zi; θ)µ(dz) <∞

• (M2’) Define for each i Li : Si × Θ → R as Li(si; θ) , −ψi(θ) + 〈si, φi(θ)〉 . The
functions ψi and φi are twice continuously differentiable on Θ.
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• (M3) The function s̄ : Θ→ S defined as s̄(θ) ,
∫
S(z)p(z; θ)µ(dz) is continuously

differentiable on Θ.

• (M4) The function l : Θ → R defined as l(θ) , log g(θ) = log
∫
Rdz f(z; θ)µ(dz) is

continuously differentiable on Θ and ∂θ
∫
f(z; θ)µ(dz) =

∫
∂θf(z; θ)µ(dz).

• (M5) There exists a continuously differentiable function θ̂ : S → Θ, such that:

∀s ∈ S, ∀θ ∈ Θ, L(s; θ̂(s)) ≥ L(s; θ).

In addition, we define:

• (SAEM1) For all k in N, γk ∈ [0, 1],
∑∞

k=1 γk =∞ and
∑∞

k=1 γ
2
k <∞.

• (SAEM2) l : Θ → R and θ̂ : S → Θ are m times differentiable, where m is the
integer such that S is an open subset of Rm.

• (SAEM3) For all positive Borel functions Φ E[Φ(zk+1)|Fk] =
∫

Φ(z)p(z; θk)µ(dz).

• (SAEM4) For all θ ∈ Θ,
∫
‖S(z)‖2p(z; θ)µ(dz) <∞, and the function

Γ(θ) , Covθ[S(z)] ,
∫
S(z)tS(z)p(z; θ)µ(dz)

−
[∫

S(z)p(z; θ)µ(dz)

]t [∫
S(z)p(z; θ)µ(dz)

]
is continuous w.r.t. θ.

We also define assumptions required for the normality result:

• (SAEM1’) For all k in N, γk ∈ [0, 1],
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ
2
k < ∞. There

exists γ∗ such that lim kα/γk = γ∗, and γk/γk+1 = 1 +O(k−1).

• (SAEM4’) For some α > 0, supθ Eθ(‖S(Z)‖2+α) <∞ and Γ is continuous w.r.t. θ.

• (LOC1) The stationary points of l are isolated: any compact subset of Θ contains
only a finite number of such points.

• (LOC2) For every stationary point θ∗, the matrices E∗θ(∂θL(S(Z), θ∗)(∂θL(S(Z), θ∗))t)
and ∂2θL(E∗θ(S(Z)), θ∗) are positive definite.

• (LOC3) The minimum eigenvalue of the covariance matrix R(θ) = Eθ((S(Z) −
s̄(θ))(S(Z)− s̄(θ))t) is bounded away from zero for θ in any compact subset of Θ.
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