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Abstract4

The large state space of gene genealogies is a major hurdle for inference methods based on5

Kingman’s coalescent. Here, we present a new Bayesian approach for inferring past population6

sizes which relies on a lower resolution coalescent process we refer to as “Tajima’s coalescent”.7

Tajima’s coalescent has a drastically smaller state space, and hence it is a computationally8

more efficient model, than the standard Kingman coalescent. We provide a new algorithm9

for efficient and exact likelihood calculations for data without recombination, which exploits a10

directed acyclic graph and a correspondingly tailored Markov Chain Monte Carlo method. We11

compare the performance of our Bayesian Estimation of population size changes by Sampling12

Tajima’s Trees (BESTT) with a popular implementation of coalescent-based inference in BEAST13

using simulated data and human data. We empirically demonstrate that BESTT can accurately14

infer effective population sizes, and it further provides an efficient alternative to the Kingman’s15

coalescent. The algorithms described here are implemented in the R package phylodyn, which is16

available for download at https://github.com/JuliaPalacios/phylodyn.17

1 Introduction18

Modeling gene genealogies from an alignment of sequences — timed and rooted bifurcating trees19

reflecting the ancestral relationships among sampled sequences — is a key step in coalescent-based20

inference of evolutionary parameters such as effective population sizes. In the neutral coalescent21

model without recombination, observed sequence variation is produced by a stochastic process of22

mutation acting along the branches of the gene genealogy (Kingman, 1982a; Watterson, 1975),23

which is modeled as a realization of the coalescent point process at a neutral non-recombining24

locus. In the coalescent point process, the rate of coalescence (the merging of two lineages into a25

common ancestor at some time in the past) is a function that varies with time, and it is inversely26

proportional to the effective population size at time t, N(t) (Kingman, 1982b; Slatkin and Hudson,27
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1991; Donnelly and Tavaré, 1995). Our goal is to infer (N(t))t≥0 which we will refer to as the28

“effective population size trajectory”.29

Multiple methods have been developed to infer (N(t))t≥0 using the standard coalescent model30

with or without recombination. Some of these methods infer (N(t))t≥0 from summary statistics such31

as the sample frequency spectrum (SFS) (Terhorst et al., 2017; Bhaskar et al., 2015); however, the32

SFS is not a sufficient statistic for inferring (N(t))t≥0 (Sainudiin et al., 2011). Other methods have33

been proposed that directly use molecular sequence alignments at a completely linked locus, i.e.34

without recombination (Griffiths and Tavaré, 1996; Kuhner and Smith, 2007; Minin et al., 2008; Li35

and Durbin, 2011; Drummond et al., 2012; Palacios and Minin, 2013; Gill et al., 2013). Our approach36

is of this type. Still other methods account for recombination across larger genomic segments (Li37

and Durbin, 2011; Sheehan et al., 2013; Schiffels and Durbin, 2014; Palacios et al., 2015). In spite38

of their variety, all these methods must contend with two major challenges: (i) choosing a prior39

distribution or functional form for (N(t))t≥0, and (ii) integrating over the large hidden state space of40

genealogies. For example, several previous approaches have assumed exponential growth (Griffiths41

and Tavaré, 1996; Kuhner et al., 1998; Kuhner and Smith, 2007), in which case the estimation42

of (N(t))t≥0 is reduced to the estimation of one or two parameters. In general, the functional43

form of (N(t))t≥0 is unknown and needs to be inferred. A commonly used naive nonparametric44

prior on (N(t))t≥0 is a piecewise linear or constant function defined on time intervals of constant45

or varying sizes (Heled and Drummond, 2008; Sheehan et al., 2013; Schiffels and Durbin, 2014).46

The specification of change points in such time-discretized effective population size trajectories is47

inherently difficult because it can lead to runaway behavior or large uncertainty in (N̂(t))t≥0 .48

These difficulties can be avoided by the use of Gaussian-process priors in a Bayesian nonparametric49

framework, allowing accurate and precise estimation (Palacios and Minin, 2013; Gill et al., 2013;50

Lan et al., 2015; Palacios et al., 2015). More precisely, the autocorrelation modeled with the51

Gaussian process avoids runaway behavior and large uncertainty in (N̂(t))t≥0.52

The second challenge for coalescent-based inference of (N(t))t≥0 is the integration over the53

hidden state space of genealogies for large sample sizes. Given molecular sequence data Y at a single54

non-recombining locus and a mutation model with vector of parameters µ, current methods rely on55

calculating the marginal likelihood function Pr(Y|(N(t))t≥0,µ) by integrating over all possible56

coalescence and mutation events. Under the infinite-sites mutation model without intra-locus57

recombination (Watterson, 1975), this integration requires a computationally expensive importance58

sampling technique or Markov Chain Monte Carlo (MCMC) techniques (Griffiths and Tavaré,59

1994a; Stephens and Donnelly, 2000; Hobolth et al., 2008; Wu, 2010; Gronau et al., 2011). Moreover,60

a maximum likelihood estimate of (N(t))t≥0 cannot be explicitly obtained; instead, it is obtained61

by exploring a grid of parameter values (Tavaré, 2004). For finite-sites mutation models, current62

methods approximate the marginal likelihood function by integrating over all possible genealogies63

via MCMC methods (Equation (1); Kuhner (2006); Drummond et al. (2012)). In both cases, the64

marginal likelihood may be expressed as65

Pr
(
Y|(N(t))t≥0, µ

)
=

∫
Pr(Y|g, µ)Pr

(
g|(N(t))t≥0

)
dg, (1)

in which Pr(·) is used to denote both the probability of discrete variables and the density of con-66

tinuous variables. The integral above involves an (n− 1)-dimensional integral over n− 1 coalescent67

times and a sum over all possible tree topologies with n leaves. Therefore, these methods require68

a very large number of MCMC samples, and exploration of the posterior space of genealogies con-69
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tinues to be an active area of research (Kuhner et al., 1998; Rannala and Yang, 2003; Drummond70

et al., 2012; Whidden and Matsen, 2015; Aberer et al., 2016).71

Current methods rely on the Kingman n-coalescent process to model the sample’s ancestry.72

However, the state space of genealogical trees grows superexponentially with the number of samples,73

making inference computationally challenging for large sample sizes. In this study, we develop a74

Bayesian nonparametric model that relies on Tajima’s coalescent, a lower resolution coalescent75

process with a drastically smaller state space than that of Kingman’s coalescent. In particular,76

we approximate the posterior distribution Pr((N(t))t≥0,g
T , τ | Y, µ), where gT corresponds to77

the Tajima’s genealogy of the sample (see Figure 1A and Section 2.4), (logN(t))t≥0 has Gaussian78

process prior with precision hyperparameter τ that controls the degree of regularity, and mutations79

occur according to the infinite-sites model of Watterson (1975). This results in a new efficient80

method for inferring (N(t))t≥0 called Bayesian Estimation by Sampling Tajima’s Trees (BESTT),81

with a drastic reduction in the state space of genealogies. We show using simulated data that82

BESTT can accurately infer effective population size trajectories and that it provides a more83

efficient alternative than Kingman’s coalescent models.84

Next, we start with an overview of BESTT, detail our representation of molecular sequence data85

and define the Tajima coalescent process. We then introduce a new augmented representation of86

sequence data as a directed acyclic graph (DAG). This representation allows us to both calculate the87

conditional likelihood under the Tajima coalescent model, and to sample tree topologies compatible88

with the observed data. We then provide an algorithm for likelihood calculations and develop an89

MCMC approach to efficiently explore the state space of unknown parameters. Finally, we compare90

our method to other methods implemented in BEAST (Drummond et al., 2012) and estimate the91

effective population size trajectory from human mtDNA data. We close with a discussion of possible92

extensions and limitations of the proposed model and implementation.93

2 Methods/Theory94

2.1 Overview of BESTT95

Our objective in the implementation of BESTT is to estimate the posterior distribution of model96

parameters by replacing Kingman’s genealogy with Tajima’s genealogy gT . A Tajima’s genealogy97

does not include labels at the tips (Figure 1): we do not order individuals in the sample but label98

only the lineages that are ancestral to at least two individuals (that is, we only label the internal99

nodes of the genealogy). Replacing Kingman’s genealogy by Tajima’s genealogy in our posterior100

distribution exponentially reduces the size of the state space of genealogies (Figure 1B). In order to101

compute Pr(Y|gT , µ), the conditional likelihood of the data conditioned on a Tajima’s genealogy,102

we assume the infinite sites model of mutations and leverage a directed acyclic graph (DAG)103

representation of sequence data and genealogical information. Note that the overall likelihood,104

Eq. (1), will differ only by a combinatorial factor from the corresponding likelihood under the105

Kingman coalescent. Our DAG represents the data with a gene tree (Griffiths and Tavaré, 1994a),106

constructed via a modified version of the perfect phylogeny algorithm of Gusfield (1991). This107

provides an economical representation of the uncertainty and conditional independences induced108

by the model and the observed data.109

Under the infinite-sites mutation model, there is a one-to-one correspondence between observed110

sequence data and the gene tree of the data (Gusfield, 1991) (Sections 2.2-2.3). We further augment111
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Figure 1: For a sample of size n, the
number of Tajima’s genealogies is su-
perexponentially fewer compared to
the number of Kingman’s genealogies.
A: A Kingman’s genealogy and a Tajima’s
genealogy for n = 8. A Kingman’s geneal-
ogy (left) comprises a vector of coalescent
times and the labeled topology; the number
of possible labeled topologies for a sample
of size n is n!(n− 1)!/2n−1. A Tajima’s ge-
nealogy (right) comprises a vector of coales-
cent times and a ranked tree shape. In both
cases, coalescent events are ranked from 2
at time t2 to n at time tn. Coalescent
times are measured from the present (time
0) back into the past. B. The numbers of
labeled topologies and ranked tree shapes
(formulas provided in section 2.4) for dif-
ferent values of the sample size, n.

the gene tree representation with the allocation of the number of observed mutations along the112

Tajima’s genealogy to generate a DAG (Section 2.5). The conditional likelihood Pr(Y | gT , µ) is113

then calculated via a recursive algorithm that exploits the auxiliary variables defined in the DAG114

nodes, marginalizing over all possible mutation allocations (Section 2.6). We approximate the115

joint posterior distribution Pr((N(t))t≥0,g
T , τ | Y, µ) via an MCMC algorithm using Hamiltonian116

Monte Carlo for sampling the continuous parameters of the model and a novel Metropolis-Hastings117

algorithm for sampling the discrete tree space.118

2.2 Summarizing sequence data Y as haplotypes and mutation groups119

Let the data consist of n fully linked haploid sequences or alignments of nucleotides at s segregating120

sites sampled from n individuals at time t = 0 (the present). Note that any labels we afix to the121

individuals are arbitrary in the sense that they will not enter into the calculation of the likelihood.122

We further assume the infinite sites mutation model of Watterson (1975) with mutation parameter123

µ and known ancestral states for each of the sites. Then we can encode the data into a binary124

matrix Y of n rows and s columns with elements yi,j ∈ {0, 1}, where 0 indicates the ancestral allele.125

In order to calculate the Tajima’s conditional likelihood Pr(Y | gT , µ), we first record each126

haplotype’s frequency and group repeated columns to form mutation groups; a mutation group127

corresponds to a shared set of mutations in a subset of the sampled individuals. We record the128

cardinality of each mutation group (i.e., the number of columns that show each mutation group).129

In Figure 2A, there are two columns labeled “b”, corresponding to two segregating sites which130

have the exact same pattern of allelic states across the sample. Further, two individuals carry the131

derived allele of mutation group “b”, so in this case the frequency of haplotype 7 and the cardinality132

of mutation group “b” are both equal to 2. Likewise, haplotype 4 has frequency 1 and carries 5133

mutations that are split into mutation groups “a”, “f” and “g” (the latter is not shown in Figure134
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2A, but appears in Figure 2B) of respective cardinalities 1, 3 and 1. We denote the number of135

haplotypes in the sample as h, the number of mutation groups as m, and the representation of Y136

as haplotypes and mutation groups as Yh×m.137

2.3 Representing Yh×m as a gene tree138

Yh×m (Figure 2A) can alternatively be represented as a gene tree or perfect phylogeny (Gusfield,139

1991; Griffiths and Tavaré, 1994b). This representation relies on our assumption of the infinite sites140

mutation model in which, if a site mutates once in a given lineage, all descendants of that lineage141

also have the mutation and no other individuals carry that mutation. The gene tree is a graphical142

representation of the haplotypes (as tips) arranged by their patterns of shared mutations. The143

haplotype data summarized in Figure 2A corresponds to the gene tree given in Figure 2B. Details144

of the correspondence between haplotype data and gene tree are listed below, and an additional145

example is given in Figure 13 (Appendix E).146

A gene tree for a matrix Yh×m of h haplotypes and m mutation groups is a rooted tree T with147

h leaves and at least m edges, such that (Figure 2B):148

1. Each row of Yh×m corresponds to exactly one leaf of T . The black numbers at leaf nodes in149

Figure 2B are the haplotype frequencies.150

2. Each mutation group of Yh×m is represented by exactly one edge of T , which is labeled151

accordingly (letters in Figures 2A and 2B). The red numbers along edges in Figure 2B give152

the cardinality of each mutation group (i.e. the number of segregating sites in this group; see153

Figure 2A). Some external edges (edges subtending leaves) may not be labeled, indicating154

that they do not carry additional mutations to their parent edge. This happens when the155

other edges emanating from its parent node necessarily correspond to other mutation groups.156

3. Edges are placed in the gene tree in such a way that each path from the root to a leaf fully157

describes a haplotype. Edges corresponding to shared mutations between several haplotypes158

are closest to the root. For example, in Figure 2B, haplotype 4 corresponds to the leaf at which159

one arrives starting from the root and going along edges a, g and f; in contrast, haplotype160

7 corresponds to the leaf at which one arrives going from the root along edge b. Thus, the161

labels and the numbers associated with the edges along the unique path from the root to a162

leaf exactly specify a row of Yh×m.163

Dan Gusfield’s perfect phylogeny algorithm (Gusfield, 1991) transforms the sequence data Yh×m164

into a gene tree and this transformation is one-to-one. We note that the perfect phylogeny T or165

gene tree is not the same as the genealogy g. While a genealogy is a bifurcating tree of individuals166

of the sample, the gene tree is a multifurcating tree of haplotypes.167

2.4 Tajima’s genealogies168

Our method of computing the probability of the recoded data, Yh×m, uses ranked tree shapes rather169

than fully labeled histories. We refer to these ranked tree shapes as Tajima’s genealogies but note170

they have also been called unlabeled rooted trees (Griffiths and Tavaré, 1995) and evolutionary171

relationships (Tajima, 1983). In Tajima’s genealogies, only the internal nodes are labeled and they172

are labeled by their order in time. Tajima’s genealogies encode the minimum information needed173

to compute the probability of data, Yh×m which consists of nested sets of mutations, without any174

5



D    DAG representation

Z0

Z1 Z2 Z3

Z4 Z5 Z6 Z7

Z8 Z9 Z10 Z11

B     Perfect Phylogeny

2 2

2 2

2

2 21 1

2

2

2

3

1

1
1

1

1

1
1

Number of mutations Frequency 

Zj =





(Dj , Xj , Aj) j ∈ VI

(Dj , Aj) j = 0

(Dj , Xj) j ∈ VL

!"#$%&'#( )*(+,(-.' ! " " # $ % % & & & '

( ) ( * * ( * * * * * *

) ) ( * * * ( * * * * *

+ ) ( * * * * ( ( * * *

, ( ( * * * * * * ( ( (

- ) * * * * * * * * * *

. ) * * * * * * * * * *

/ ) * ( ( * * * * * * *

0 ) * * * * * * * * * *

1 ( * * * * * * * * * *

(.

A    Data (Y)

16

10

15
14

1312 11

9

8
7

6
5

4

3

2

C    Tajima’s genealogy (gT )

t16
t15

t7
t6

t5

t4

t3

t2

t14
t13 t12
t11

t10

t9

t8

1

1

a b

c

d

e

g

f

h

i

j

k

l
m

(T )

b5

b17 b18 b24

Figure 2: Data structures employed by our method, BESTT, for calculating the conditional
likelihood of the data. A. Compressed data representation Yh×m of n = 16 sequences and s = 18
(columns, only the first 10 of which are shown), comprised of 9 haplotypes and 13 mutation groups. Rows
correspond to haplotypes and each polymorphic site is labeled by its mutation group {a, b, c, ...,m}. B. Gene
tree representation of the data in panel A. Red numbers indicate the cardinality of each mutation group
(number of columns with the same label in panel A). Black letters indicate the mutation group (column
labels in panel A), and black numbers indicate the frequency of the corresponding haplotype. C. A Tajima’s
genealogy compatible with the gene tree in panel B. Internal nodes are labeled according to order of coalescent
events from the root to the tips. Coalescent event i happens at time ti and branches are labeled bi (see
section 2.5 for details). D. A Directed Acyclic Graph (DAG) representation of the gene tree in panel B
together with allocation of mutation groups along the branches of the Tajima’s genealogy in panel C. VI
denotes the set of internal nodes and VL the set of leaf nodes. A detailed description of the DAG is given in
section 2.5. 6



approximations. In Figure 1A for example, it matters only that mutation group “e” occurs on a175

subgroup of the individuals who carry a mutation group “a” and that this is different than the176

subgroups carrying “c”, “d” and “f”. No other labels matter because individuals are exchangeable177

in the population model we assume.178

This represents a dramatic coarsening of tree space compared to the classical leaf-labeled binary179

trees of Kingman’s coalescent. The number of possible ranked tree shapes for a sample of size n180

corresponds to the n-th term of the sequence A000111 of Euler zig-zag numbers (Disanto and181

Wiehe, 2013) whereas the number of labeled binary tree topologies is n!(n − 1)!/2n−1. As can be182

seen from Figure 1B, this provides a much more efficient way to integrate over the key hidden183

variable, the unknown gene genealogy of the sample, when computing likelihoods.184

We model this hidden variable using the vintaged and sized coalescent (Sainudiin et al., 2015)185

which corresponds exactly to this coarsening of Kingman’s coalescent. As can be seen in Figure186

1A, we assign vintages/labels 2 through n starting at the root of the tree and moving toward the187

present, so that the node created by the final splitting event, which is also the first coalescence188

event looking back in the ancestry of the sample, is labeled n. We write tk for the time of node189

k, measured from the present back into the past. We set tn+1 := 0 to be the present time. Then190

during the interval [tk+1, tk) the sample has exactly k extant ancestors, for k ∈ {2, . . . , n}.191

The coarsening of the tree topology does not change the law of the times between two coalescence192

events. Thus, conditional on the effective population size trajectory (N(t))t≥0 and the time tk+1193

at which the number of ancestors to the sample decreases to k, the distribution of the time during194

which the sample has k ancestors is given by195

Pr
(
tk − tk+1|tk+1, (N(t))t≥0

)
=

Ck
N(tk)

exp

[
−
∫ tk

tk+1

Ck
N(t)

dt

]
(2)

(Slatkin and Hudson, 1991), where Ck =
(
k
2

)
. Writing the density at t = (t2, t3, . . . , tn) of the196

vector of coalescence times as a product of conditional densities, we obtain197

Pr
(
t | (N(t))t≥0

)
=

n∏

k=2

Pr
(
tk − tk+1 | tk+1, (N(t))t≥0

)
. (3)

We use a lower-triangular matrix denoted F to represent Tajima’s genealogies; see Appendix198

A. The probability of a ranked tree shape was derived independently in Sainudiin et al. (2015) and199

Palacios et al. (2015). Specifically, for every ranked tree shape F with n leaves,200

Pr(F) =
2n−c−1

(n− 1)!
, (4)

where c is the number of cherries in F (i.e., nodes subtending two leaves; c = 3 in Figure 10A).201

Note that this probability is independent of the effective population size trajectory since the choice202

of the pair of lineages that coalesce during an event is independent of (N(t))t≥0 (recall that in203

Kingman’s coalescent, the coalescing pair is chosen uniformly at random among all possible pairs).204

Since the distribution of Tajima’s genealogies gT = (F, t) conditional on (N(t))t≥0 can be factored205

as the product of the probability of the ranked tree shape F and the coalescent times density, we206

arrive at207

Pr(gT | (N(t))t≥0) =
2n−c−1

(n− 1)!

n∏

k=2

(
Ck

N(tk)
exp

[
−
∫ tk

tk+1

Ck
N(t)

dt

])
. (5)
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2.5 An augmented data representation using directed acyclic graphs208

A key component of BESTT is the calculation of the conditional likelihood Pr(Y|gT , µ). We209

compute the conditional likelihood recursively over a directed acyclic graph (DAG) D. Our DAG210

exploits the gene tree representation T of the data (Figure 2B), incorporates the branch length211

information of the Tajima’s genealogy gT (Figure 2C) and facilitates the recursive allocation of212

mutations to the branches of gT . Here we detail the construction of the DAG.213

We construct the DAG using three pieces of information: the observed gene tree T , a given214

Tajima’s genealogy gT and a latent “allocation” of mutations along the branches of the Tajima’s215

genealogy (Figure 3). An allocation refers to a possible mapping (compatible with the data)216

of the observed numbers of mutations (red numbers in Figure 2B) to branches in the Tajima’s217

genealogy. Figure 3A shows one possible mapping for the Tajima’s genealogy in Figure 2C; usually218

this mapping is not unique. Our construction of D enables an efficient recursive consideration of all219

possible allocations of mutations along gT when computing the conditional likelihood Pr(Y | gT , µ).220

Constructing the DAG D. The graph structure of our DAG D = {Z, E} (Figure 2D) with221

nodes Z and edges E is constructed from a gene tree T . The number of internal nodes in the DAG222

D is the same as the number of internal nodes in T . However, sister leaf nodes in T with the223

same number of descendants are grouped together in D and leaf nodes descending from edges with224

no mutations are treated as singletons grouped together in D. For example, the leaves in Figure225

2B subtending from edges i and j are grouped into Z6 in Figure 2D, as they both have haplotype226

frequency 2. However, the leaves subtending from the e and f edges are not grouped (and correspond227

to Z8 and Z9 in the DAG Figure 2D) since they have respective haplotype frequencies 2 and 1.228

We label the root node of D as Z0 and increase the index i of each node Zi from top to bottom,229

moving left to right. For i < j, we assign a directed edge Ei,j if the node in T corresponding to Zi230

is connected to the node in T corresponding to Zj . The index set of internal nodes in D is denoted231

by VI and the index set of leaf nodes is denoted by VL.232

Information carried by the nodes in D. Each node in D represents a vector, Zj , which
includes number of descendants, number of mutations and latent allocation of mutations. Although
the number of descendants and number of mutations are part of the observed data, the allocation
of mutations can be seen as a random variable, for ease of exposition, we use capital letters to
denote all three types of information. We define the vector Zj as follows:

Zj =





(Dj , Xj , Aj) j ∈ VI ,
(Dj , Aj) j = 0 (the root node),

(Dj , Xj) j ∈ VL,

where Dj denotes the number of descendants of (i.e., of sampled sequences subtended by) node233

Zj , Xj denotes the number of mutations separating Zj from its parent node, and Aj denotes the234

allocation of mutations along gT (described in detail below). The number of descendants Dj is thus235

the number of individuals/sequences descending from node Zj (this information is part of T ). For236

internal nodes, Xj records the cardinality of a mutation group, represented as a red number along237

the edge Ei,j of T in Figure 2B, where i is the index of the parent node of Zj . Leaf nodes in D238

may correspond to more than one leaf nodes in T , namely any sister nodes with the same number239

of descendants. In this case, Xj is a vector with the cardinalities of the corresponding mutation240

8



groups (see for example node Z6 in Figure 3B). In order to keep the DAG construction simple, we241

only allow groupings of leaf nodes and not of internal nodes with identical descendants carrying242

identical numbers of mutations. We note that, in principle, it would be possible to compress the243

number of internal nodes of the DAG by exploiting all the symmetries observed in the data.244

Allocation of mutation groups along gT . The latent allocation variables {Aj} determine a245

possible correspondence between subtrees in gT and nodes in D: in particular, Aj indicates the246

branches in gT that subtend the subtrees corresponding to nodes {Zk} if {Zk} are child nodes of247

Zj .248

B    DAG corresponding to A
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(Dj , Xj , Aj) j ∈ VI

(Dj , Aj) j = 0

(Dj , Xj) j ∈ VL
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A    Tajima’s genealogy and a possible allocation

of the mutations observed in the data 

1

2
1

1

2 3

2

1

1

1

1

Number of mutations

z0 = (d0 = 16, a0 = (b5, b4, b14))

z3 = (d3 = 2, x3 = 2)

z4 = (d4 = 2, x4 = (1, 1))
z5 = (d5 = 3, x5 = 1, a5 = (b16, b24))

z6 = (d6 = 2, x6 = (1, 2))

z7 = (d7 = 3, x7 = 1, a7 = (b15, b25))
z8 = (d8 = 2, x8 = 2)

z9 = (d9 = 1, x9 = 3)

z10 = (d10 = 2, x10 = 1)
z11 = (d11 = 1, x11 = 1)

Z0

Z1 Z2 Z3

Z4 Z5 Z6 Z7

Z8 Z9 Z10 Z11

b24 b25

z1 = (d1 = 7, x1 = 1, a1 = ((b12, b9), b10))

z2 = (d2 = 7, x2 = 1, a2 = ((b8, b13), b11))

b5 1

1

Figure 3: DAG Construction. A. A Tajima’s genealogy from Figure 2C with added allocation of
mutations shown in red. B. The corresponding augmented DAG with allocation of mutations. At the
root Z0, there are no mutations by convention. Node Z0 has 16 descendants across 3 subtrees of 7, 7
and 2 descendants, corresponding to nodes Z1, Z2, Z3. These three subtrees subtend from b5, b4 and b14,
respectively, in gT (Figure 3A). Node Z1 corresponds to the tree subtending from b5 of size 7 with X1 = 1
mutation along b5 and subtends three subtrees from (b12, b9) and b10. Subtrees subtending from (b12, b9) are
grouped together in leaf node Z4 because they both have 2 descendants and have the same parent node.
When leaf nodes represent more than one trees, such as Z4 in Figure 4B, the random variable Xj is the
vector Xj = (Xj,1, Xj,2, . . . , Xj,sj ) that denotes the number of mutations along the branches that subtends
from the tree node j that have Dj descendants, and sj is the number of edges subtending from Zj .

Allocations of mutations to branches are usually not unique and computation of the conditional249

likelihood Pr(Y | gT , µ) requires summing over all possible allocations. In Figure 3A we show one250

such possible allocation of the mutation groups of the gene tree in Figure 2B along the Tajima’s251

genealogy in Figure 2C. For example, mutation group “a” in Figure 2B with cardinality 1 (number252

in red) is a mutation observed in 7 individuals (sum of black numbers of leaves descending from edge253

marked a). This same mutation group, “a”, is shown as a red number 1 in Figure 3A allocated to254

branch b5. If Zj is an internal node, the number of mutations Xj is denoted as a vector of length 1.255

If Zj is a leaf node, Xj can be a vector of length greater than 1. Details on notation for allocations256

can be found in Appendix B.257
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2.6 Computing the conditional likelihood258

Under the infinite-sites mutation model, mutations are superimposed independently on the branches
of gT as a Poisson process with rate µ. In order to compute Pr(Y | gT , µ) = Pr(T | gT , µ) we
marginalize over the latent allocation information in the directed acyclic graph D; that is, we sum
over all possible mappings of mutations in T to branches in gT as follows:

Pr(Y | gT , µ) =
∑

A0

∑

A1

. . .
∑

AnI

Pr(D | gT , µ)

=
∑

A0

∑

A1

. . .
∑

AnI

Pr(Z0, . . . , ZnI+nL | gT , µ)

=
∑

A0

∑

A1

. . .
∑

AnI

nI+nL∏

i=1

Pr(Zi | Zpa(i),g
T , µ)

where nI = |VI |, nL = |VL|, pa(i) denotes the index of the parent of node i in D and we set
P (Z0 | gT , µ) = 1 because it is assumed that there are no mutations above the root node and the
length of the root branch l2 = 0. Writing L for the tree length of gT (i.e., the sum of the lengths
of all branches of gT ) and factoring out a global factor e−µL (due to the Poisson distribution of
mutations across the genealogy) from each of the above products over i ∈ {1, . . . , nI +nL}, we have

Pr(Zi = zi | zpa(i),g
T , µ)

=





Pr(Xi = xi | apa(i) = bj ,g
T , µ) ∝ (µlj)

xi if |xi| = 1,

Pr
(
Xi = (xi1, . . . , xik) | apa(i) = (bj1 , . . . , bjk),gT , µ

)
∝ ∑

s∈Π(xi,k)

∏k
m=1(µljm)sm if |xi| = k > 1,

where Π(xi, k) is the set of all permutations of xi = {xi1, . . . , xik} divided into mi groups of different259

sizes. The number of different permutations of the k values of xi divided into mi groups of sizes260

k1, . . . , kmi is261

|Π(xi, k)| = k!∏mi
j=1 kj !

(6)

For example, assume that xi = {2, 2, 2, 0, 3, 3} and apa(i) = (b3, b4, b5, b6, b7, b8) with branch lengths262

{l3, l4, l5, l6, l7, l8}. In this case, k1 = 3 because there will be 3 branches with 2 mutations, k2 = 1263

because there will be 1 branch with 0 mutations and k3 = 2 because there will be 2 branches with264

3 mutations. The number of permutations of k = 6 mutations groups divided into mi = 3 groups265

with cardinalities 2, 0, 3 of sizes 3, 1, 2 is 6!/(3!1!2!) = 60.266

The conditional likelihood Pr(Y | gT , µ) is calculated via a backtracking algorithm (Appendix267

C). The algorithm marginalizes the allocations by traversing the DAG from the tips to the root.268

The pseudocode and an example can be found in the Appendix C.269

2.7 The case of unknown ancestral states270

Up to now, we have assumed that the ancestral state was known at every segregating site. The271

representation of the data Y that we use in this case records the cardinalities of each mutation group272

and the genealogical relations between these groups, but does not assign labels to the sequences.273
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Hence, in the terminology of Griffiths and Tavaré (1995), our data corresponds to an unlabeled274

rooted gene tree.275

When the ancestral types are not known, the data (now denoted Y0) may be represented as276

an unlabeled unrooted gene tree. By the remark following Equation (1) in Griffiths and Tavaré277

(1995), if s is the number of segregating sites, then there are at most s+ 1 unlabeled rooted gene278

trees that correspond to the unrooted gene tree of the observed data (R(Y 0)). By the law of total279

probability (see also Equation (10) in Griffiths and Tavaré (1995)), the conditional likelihood of Y0
280

can be written as the sum over all compatible unlabeled rooted gene trees Y (i) of the probability281

of Y (i) conditionally on gT . That is:282

Pr
(
Y0 | gT , µ

)
=

R(Y 0)∑

i=1

P
(
Y(i) | gT , µ

)
, (7)

where each of the Y(i) corresponds to a unique unlabeled rooted gene tree compatible with the283

unrooted gene tree Y0 and R(Y 0) denotes the number of those unlabeled rooted gene trees. In the284

following sections, we shall assume that the ancestral type at each site is known.285

2.8 Bayesian inference of the effective population size trajectory286

Our posterior distribution of interest is287

Pr(γ,gT , τ | Y, µ) ∝ Pr(Y | gT , µ)Pr(gT | γ)Pr(γ | τ)Pr(τ), (8)

where (logN(t))t≥0 = (γ(t))t≥0 ∼ GP(0,C(τ)) has a Gaussian process prior with mean 0 and
covariance function C(τ) (Rasmussen and Williams, 2006). This specification ensures (N(t))t>0 is
non-negative. In our implementation, we assume a regular geometric random walk prior, that is,
γ1 = logN(t∗1), . . . , γB = logN(t∗B) at B regularly spaced time points in [0, T ] with

Cov[γi, γj ] = Cov
[

logN(t∗i ), logN(t∗j )
]

= τ min(t∗i , t
∗
j ).

The parameter τ is a length scale parameter that controls the degree of regularity of the random288

walk. We place a Gamma prior with parameters α = .01 and β = .001 on τ , reflecting our lack of289

prior information in terms of high variance about the smoothness of the logarithm of the effective290

population size trajectory.291

We approximate the posterior distribution of model parameters via a MCMC sampling scheme.292

Model parameters are sampled in blocks within a random scan Metropolis-within-Gibbs framework.293

Our algorithm initializes with the corresponding Tajima genealogy of the UPGMA estimated tree294

implemented in phangorn (Schliep, 2011). Given an initial genealogy, our algorithm initializes Ne295

and τ with the method of (Palacios and Minin, 2012) implemented in phylodyn (Karcher et al.,296

2017). We then proceed to generate (1) a sample of the vector of effective population sizes and297

precision parameter as described in section 2.8.2, (2) a sample of the vector of coalescent times298

as described in 2.8.3 and 2.8.4 where we modify a single coalescent time, and (3) a sample of299

ranked tree shape as described in 2.8.1 in each iteration. To summarize the effective population300

size trajectory, we compute the posterior median and 95% credible intervals pointwise at each grid301

point in [0, T̂ ], were T̂ is the maximum time to the most recent common ancestor sampled.302
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Figure 4: Markov moves for topologies
First row: possible coalescent patterns (Case A
or Case B) for a given topology Fn. Second row:
possible Markov moves in Case A (F ∗

n,1 and F ∗
n,2)

and Case B (F ∗
n,3). k indexes the coalescent in-

terval sampled. Numerical labels at the tips are
added for convenience: conditionally on a given
Fn, tips can be labeled (vintage) or not (single-
ton). Figure is adapted from Figures 2, 3 and 4
of Markovtsova et al. (2000).

2.8.1 Metropolis-Hastings updates for ranked tree shapes303

There is a large literature on local transition proposal distributions for Kingman’s topologies (Kuh-304

ner et al., 1998; Rannala and Yang, 2003; Drummond et al., 2012; Whidden and Matsen, 2015;305

Aberer et al., 2016). In this paper, we adapted the local transition proposal of Markovtsova et al.306

(2000) to Tajima’s topologies. We briefly describe the scheme below and provide a pseudocode307

algorithm in Appendix C (Algorithm 3).308

Given the current state of the chain {γ, τ,gT } = {γ, τ,Fn, t}, we propose a new ranked tree309

shape F∗ in two steps: (1) we first sample a coalescent interval ek = (tk+1, tk) uniformly at random,310

where k ∼ U({3, . . . , n}). Note that we will never select the interval (t3, t2) at the top of the tree311

(see Figure 10A). Given k, we focus solely on the coalescent events at times tk and tk−1. For step312

(2), there are two possible scenarios. Case A: The lineage created at time tk, labeled k, coalesces313

at time tk−1 (first row of Figure 4A). Case B: Lineage k does not coalesce at time tk−1 (Figure 4B).314

In Case A, we choose a new pair of lineages at random to coalesce at time tk from the 3 lineages315

subtending k and k − 1 (excluding k), and we coalesce the remaining lineage with k at tk−1 (F ∗n,1316

and F ∗n,2 in Figure 4). In Case B, we invert the order of the coalescent events; that is, the two317

lineages descending from k are set to coalesce at time tk−1 and lineages descending from k − 1 are318

set to coalesce at time tk. (F ∗n,3 a in Figure 4). Note that the numerical labels 1, 2, 3 are included319

to clarify the picture: lineages subtending both Case A and Case B can be either labeled (if there320

is a vintage subtending that lineage) or not (if there is a singleton). The transition probability321

q(F∗n | Fn) is given by the product of the probabilities of the two steps. The new ranked tree shape322

F∗n is accepted with probability given by the Metropolis-Hastings ratio defined below:323

aFn = min

{
1 ,

Pr(Y | F∗n, t, µ)Pr(F∗n)q(Fn | F∗n)

Pr(Y | Fn, t, µ)Pr(Fn)q(F∗n | Fn)

}
(9)

We note that our proposal can result in the same ranked tree shape. However, we tested alterna-324

tive proposals that precluded this event and we did not find any notable difference in the overall325

performance of the MCMC algorithm.326

2.8.2 Split Hamiltonian Monte Carlo updates of (γ, τ)327

To make efficient joint proposals of γ and τ , we use the Split Hamiltonian Monte Carlo method328

proposed by Lan et al. (2015). Conditioned on gT , the target density becomes π(γ, τ) ∝ Pr(t |329
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γ)Pr(γ | τ)Pr(τ). This is the same target density implemented in Karcher et al. (2017) for fixed330

coalescent times t.331

2.8.3 Hamiltonian Monte Carlo updates of coalescent times332

Given the current state {γ, τ,gT } = {γ,Fn, t, τ}, we propose a new vector of coalescent times with333

target density π(t′) ∝ P (Y | Fn, t′, µ)P (t′ | γ) by numerically simulating a Hamilton system with334

Hamiltonian335

H(log(t′), s) = − log
(
π(log(t′))

)
+

1

2
sTMs, (10)

where s is the momentum vector assumed to be normally distributed. The system evolves according
to:

∂s

∂x
= ∇ log π(log(t′)))

∂t′

∂x
= Ms (11)

We use the leapfrog method (Neal, 2011) with step size ε and a p Poisson with mean 10 distributed
number of steps to simulate the dynamics from time x = 0 to x = pε. Each leapfrog step of size ε
follows the trajectory:

sx+ε/2 = sx +
ε

2
∇ log π(log(t′x)))

t′x+ε = t′x + εMsx+ε/2

sx+ε = sx+ε/2 +
ε

2
∇ log π(log(t′x+ε))) (12)

For our implementation, we set the mass matrix M = I, the identity matrix. We simulate the336

Hamiltonian dynamics of the logarithm of times to avoid proposals with negative values. Solving the337

equations of the Hamilton system requires calculating the gradient of the logarithm of the target338

density with respect to the vector of log coalescent times. The gradient of the log conditional339

likelihood (score function) is calculated at every marginalization step in the algorithm for the340

likelihood calculation.341

At the beginning of Section 2.8, we described how we assume a regular geometric random walk342

prior on (N(t))t≥0 at B regularly spaced time points in [0, T ]. Ideally, the window size T must be343

at least t2, the time to the most recent common ancestor (TMRCA). However, t2 is not known.344

Our initial values of coalescent times t are obtained from the UPGMA implementation in phangorn345

(Schliep, 2011) with times properly rescaled by the mutation rate, and we set T = t2. We initially346

discretize the time interval [0, T ] into B intervals of length T/(B−1). As we generate new samples347

of t, we expand or contract our grid according to the current value of t2 by keeping the grid interval348

length fixed to T/(B − 1), effectively increasing or decreasing the dimension of γ.349

2.8.4 Local updates of coalescent times350

In addition to HMC updates of coalescent times, we propose a move of a single coalescent time (ex-351

cluding the TMRCA t2) chosen uniformly at random and sampled uniformly in the intercoalescent352
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interval; that is, we choose i ∼ U({n, n − 1, . . . , 3}) and t∗i ∼ U(ti+1, ti−1). This is a symmetric353

proposal and the corresponding Metropolis-Hastings acceptance probability is354

at∗ = min

{
1 ,

Pr(Y | Fn, t∗, µ)Pr(t∗ | γ)

Pr(Y | Fn, t, µ)Pr(t | γ)

}
. (13)

While these updates may seem unnecessary in light of the Hamiltonian updates of coalescence355

times (Section 2.8.3), we observed better performance of our MCMC sampler by including this356

additional proposal. One reason may be our choice of M in section 2.8.3 that does not account for357

the geometric structure of the posterior distribution of coalescent times. However, a better choice358

of M comes with higher computational burden than a simple local update of coalescent times.359

2.8.5 Multiple Independent loci360

Thus far, we have assumed our data consist of a single linked locus of s segregating sites. We can361

extend our methodology to l independent loci with si segregating sites for i = 1, . . . , l. In this case,362

our data ~Y = (Y1, . . . ,Yl) consist of l aligned sequences with elements {0, 1}, where 0 indicates363

the ancestral allele as before. We then jointly estimate the Tajima’s genealogies {gTi }li=1, precision364

parameter τ , and vector of log effective population sizes γ through their posterior distribution:365

Pr(γ, {gTi }li=1, τ | ~Y,µ) ∝
{

l∏

i=1

Pr(Yi | gTi , µi)Pr(gTi | γ)

}
Pr(γ | τ)Pr(τ). (14)

In Equation (14), we enforce that all loci follow the same effective population size trajectory but366

every locus can have its own mutation rate µi.367

3 Results368

3.1 The performance of BESTT in applications to simulated data369

We tested our new method, BESTT, on simulated data under four different demographic scenarios.370

Note that in this section, N(t) is rescaled to the coalescent time scale, meaning that 1/N(t) is the371

pairwise rate of coalescence at time t in the past relative to the rate at the present time zero. We372

simulated genealogies under four different population size trajectories:373

1. A period of exponential growth followed by constant size:374

N(t) =

{
1 if t ∈ [0, 0.1),

exp(1− 10t) if t ∈ [0.1,∞).
(15)

2. A trajector with instantaneous growth:375

N(t) =

{
1 if t ∈ [0, 0.05),

0.05 if t ∈ [0.05,∞).
(16)

3. An exponential growth: N(t) = 25e−5t
376
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4. A constant trajectory: N(t) = 1377

Given a genealogy of length L =
∑n

j=2 j(tj − tj+1), where tj − tj+1 is the intercoalescent length378

while there are j lineages, we drew the total number of mutations (segregating sites) s according379

to a Poisson distribution with parameter µL. We then placed the mutations uniformly at random380

along the branches of the genealogy. For each of the s mutations, we assigned the mutant type381

to individuals descending from the branch where the mutation occurred and the ancestral type382

otherwise.383

We summarize our posterior inference N̂(t) by the posterior median and 95% Bayesian credible384

intervals after 200 thousand iterations and thinned every 10 iterations with 100 iterations of burn385

in. Our initial number of change points for N(t) was set to 50 over the time interval (0, t2), where386

t2 is the initialized time to the most recent common ancestor; however, over the course of MCMC387

iterations, this number could increase or decrease according to the posterior distribution of t2.388

We assess accuracy and precision of our estimates using the sum of relative errors (SRE)389

SRE =
k∑

i=1

|N̂(ωi)−N(ωi)|
N(ωi)

, (17)

where N̂(ωi) is the estimated effective population size trajectory at time ωi. Second, we computed390

the mean relative width as391

MRW =
k∑

i=1

|N̂up(ωi)− N̂lo(ωi)|
kN(ωi)

, (18)

where N̂up(ωi) corresponds to the 97.5% upper limit and N̂lo(ωi) corresponds to the 2.5% lower392

limit of the estimated posterior distribution of N(ωi). In addition, we measured how well the 95%393

credible intervals cover the truth and compute the envelope measure, ENV :394

ENV =

∑k
i=1 1(N̂lo(ωi) ≤ N(ωi) ≤ N̂up(ωi))

k
(19)

We first simulated 3 datasets of n = 10 individuals with an average number of 100 segregating395

sites under different types of population size trajectories: constant, exponential growth and instan-396

taneous growth. Results are depicted in the first column of Figure 8. Posterior medians and 95%397

credible intervals are shown as black curves and gray shaded areas respectively. The trajectory used398

to simulate the data is depicted as a dashed line. Figure 8 shows that our BESTT method recovers399

the constant and exponential growth trajectories very well but the instantaneous growth scenario400

is less accurate and with high uncertainty (wide credible intervals). In all three cases, our envelope401

measure is above 95%. Performance measures on all simulations are summarized in Table 1.402

We analyzed the effect of increasing the number of segregating sites, the number of samples and403

the number of independent genealogies on posterior inference with BESTT. In all three cases, we404

expect our method to better recover the truth. Figure 5 shows our results on simulated data under405

a population size trajectory with instantaneous growth (Equation 16) of n = 10 individuals with406

31, 63 and 120 segregating sites. As expected, our method recovers the truth with higher precision407

(MRW) and accuracy (SRE) when we increase the number of segregating sites. Increasing the408

number of segregating sites may result in more constraints in the gene tree. For n = 10, there are409

7936 possible ranked tree shapes, however for the datasets simulated with 31, 63 and 102 segregating410

sites, there are only 2582 ± 32, 2670 ± 34 and 556 ± 7 ranked tree shapes compatible with their411
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Figure 5: Varying the number of segregating sites. Posterior inference from simulated data of n = 10
sequences under a population size trajectory with instantaneous growth (dashed lines). s is the number of
segregating sites. Posterior medians are depicted as solid black lines and 95% Bayesian credible intervals are
depicted by shaded areas.

corresponding gene trees. These numbers were estimated by importance sampling (Cappello and412

Palacios, 2019).413

Table 1: Empirical measures of performance in the simulations described in the text

Simulation % ENV SRE MRW

Instantaneous growth(n=10,s=31) 96 5.87 124352
Instantaneous growth (n=10,s=63) 100 2.15 2296
Instantaneous growth (n=10,s=120) 98 0.53 80
Instantaneous growth (n=25) 90 0.40 3.43
Instantaneous growth (n=35) 92 0.31 3.16
Constant 100 0.30 1.16
Exponential 100 0.35 5.45
Exp. & const. (n=10, 1 locus) 100 4.31 22608
Exp. & const. (n=10, 5 loci) 100 2.37 309.1
Exp. & const. (n=10, 10 loci) 100 0.16 4.19

As another performance assessment, we simulated datasets from a population size trajectory414

with instantaneous growth with varying number of samples. We simulated datasets with n = 10,415

25 and 35 samples with 215 expected number of segregating sites. Our results depicted in Figure416

6 show that our method performs better in terms of SRE and MRE when the number of samples417

increases. Similarly, precision (MRW) and accuracy (SRE) increases when inference is done from418

a larger number of independent datasets. Finally, Figure 7 shows our results from 1, 5 and 10419

datasets simulated from 1, 5 and 10 independent genealogies of 10 individuals with a population420

size trajectory of growth followed by a constant period (Equation 15). As expected, our method’s421
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Figure 6: Varying the number of samples under a population size trajectory with instantaneous
growth. Posterior inference from simulated data of n = 10, 25 and 35 sequences under the population size
trajectory with instantaneous growth. Shaded areas correspond to 95% credible intervals, solid lines to
posterior median and dashed line to the truth.

performance substantially increases by increasing the number of independent datasets.422

3.2 Comparison to other methods423

To our knowledge, there is no other method for inferring (variable) effective population size over424

time from haplotype data that assumes the infinite sites mutation and a nonparametric prior on425

N(t), therefore we cannot have a direct comparison of our method to others. Moreover, our method426

is the only one that explicitly averages over Tajima genealogies instead of Kingman genealogies.427

BEAST (Drummond et al., 2012) is a program for analyzing molecular sequences that uses MCMC428

to average over the Kingman tree space and it is therefore a good reference for comparison to our429

method. We compared our results to the Extended Bayesian Skyline Plot method (EBSP) (Heled430

and Drummond, 2008) and the Skygrid method (Gill et al., 2013) implemented in BEAST.431

Since the infinite sites mutation model is not implemented in BEAST, we first converted our432

simulated sequences of 0s and 1s to sequences of nucleotides by sampling s ancestral nucleotides433

uniformly on {A, T,C,G} and assigning one of the remaining 3 types uniformly at random to be434

the mutant type. This corresponds to a simulation of the Jukes-Cantor mutation model (Jukes and435

Cantor, 1969) that is currently implemented in BEAST.436

We compare the results of BESTT to those of BEAST EBSP and Skygrid (Drummond et al.,437

2005, 2012) in Figure 8. We note that results from BEAST are generated from 10 million iterations438

and thinned every 1000 iterations, while results from BESTT are generated from 200 thousand439

iterations.440

We compared our point estimates N̂(t) from all methods to the ground truth for each simulation441

(Table 2). In two cases, BESTT has better envelope than BEAST. For the exponential growth442

simulation (Figure 8, second row) the BEAST EBSP result has better SRE and MRW, however,443

the credible intervals are uneven with very wide intervals at the ends. In all cases, the BEAST444

Skygrid results have wider credible intervals. For the instantaneous growth simulation (Figure445

8, third row), BEAST EBSP did not generate many simulations beyond the time point 0.06, for446

this reason we recomputed the performance statistics for the overlapping time interval (0, 0.06).447
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Figure 7: Multiple independent datasets. Posterior inference from simulated data of n = 10
sequences under exponential followed by constant trajectory (eq. 15). (A) Inference from a single
simulated dataset, (B) from 5 independently simulated datasets, and (C) from 10 independently
simulated datasets. Shaded areas correspond to 95% credible intervals, solid black lines show
posterior medians and dashed lines show the simulated truth.

In this interval, BESTT outperforms both methods implemented in BEAST in terms of envelope448

and SRE. The last column of Figure 8 shows the posterior distribution of the time to the most449

recent common ancestor (TMRCA). For the case of constant population size, the true value of450

the TMRCA is contained in the 95% BCI estimated with BESTT but it is not contained in the451

95% BCIs estimated with the two methods implemented in BEAST. In the exponential growth452

simulation, the true TMRCA is contained in the 95% BCIs estimated with the three methods453

and the instant growth method, the true TMRCA is not contained in the 95% BCIs of the three454

methods.455

Table 2: Performance comparison between BESTT and BEAST in simulations

% ENV SRE MRW
Simulation BESTT EBSP Skygrid BESTT EBSP Skygrid BESTT EBSP Skygrid

Constant 100 100 100 0.3 0.24 0.24 1.16 1.49 4.41
Exponential 100 97 100 0.35 0.26 0.29 5.45 2.56 46.13
Inst. growth 97 94 100 0.61 2.65 22.6 105.6 14.95 >1000

We note that BEAST Bayesian Skygrid (Gill et al., 2013) is a more comparable method to456

BESTT since it assumes Gaussian process priors on log N(t) like BESTT.457

3.3 Computational performance of BESTT458

BESTT approximates the posterior distribution (a) Pr((N(t))t≥0,g
T , τ | Y, µ), where gT is a459

Tajima’s genealogy instead of (b) Pr((N(t))t≥0,g, τ | Y∗, µ), where g is a Kingman’s genealogy460
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Figure 8: BESTT and BEAST Comparison. Posterior inference from simulated data of n =
10 sequences under constant, exponential and instantaneous growth trajectories (rows) obtained
from our method BESTT (first column), BEAST EBSP (second column) and BEAST Skygrid
(third column). Shaded areas correspond to 95% credible intervals, solid black lines show posterior
medians and dashed lines show the simulated truth. In the fourth column, we show the posterior
density of the time to the most recent common ancestor (TMRCA) from the three methods: BESTT
(black), BEAST EBSP (blue) and BEAST Skygrid (red). The true value of the TMRCA is depicted
as a vertical dashed line.
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and Y∗ is the labeled data, in order to estimate (N(t))t>0. These two posterior distributions461

are the same when every individual of the sample has its own private mutation group and no462

shared mutation groups. Otherwise, the number of Tajima’s trees compatible with observed data463

Y, i.e. Tajima’s trees gT such that Pr(gT | Y) > 0, is smaller than the number of Kingman’s464

trees compatible with observed labeled data Y∗ (Cappello and Palacios, 2019). That is, we are465

required to estimate the posterior of a smaller number of trees. For this reason, we argue that466

Tajima’s coalescent is a more efficient model than Kingman’s coalescent for estimating the posterior467

distribution of (N(t))t≥0. However, a single conditional likelihood calculation Pr(Y | gT , µ) requires468

the sum over all possible allocation of mutation groups to branches of gT . Our algorithm only469

accounts for allocations constrained by the DAG and the ranked tree shape of gT . For the data470

depicted in Figure 2A,B and gT of Figure 2C, there are only 8 different possible allocation “paths”471

of all mutation groups to branches. In Appendix C we detail how our algorithm finds these paths.472

The number of paths depends on the number of subtrees with the same family size path in the473

DAG and in the ranked tree shape. In the best case, our algorithm will find a path in O(no),474

where no is the number of nodes in the gene tree. In general, the number of allocation paths will475

be much smaller than the number of labeled trees compatible with a ranked tree shape. In our476

implementation, we estimate posterior (a) with MCMC. The main difference between our MCMC477

algorithm and the MCMC algorithm implemented in BEAST is the tree topology sampler. While478

our MCMC algorithm explores the space of ranked tree shapes with local move proposals of ranked479

tree shapes, BEAST explores the space of labeled, ranked tree shapes with local move proposals480

of labeled trees. A formal assessment of the efficiency of our MCMC algorithm and its comparison481

to the MCMC implementation in BEAST is beyond the scope of this manuscript and subject of482

future research.483

4 Inferring human population demography from mtDNA484

We selected n = 35 samples of mtDNA at random from 107 Yoruban individuals available from the485

1000 Genomes Project phase 3 (The 1000 Genomes Project Consortium, 2015). We retained the486

coding region: base pairs 576 − 16, 024 according to the rCRS reference of Human Mitochondrial487

DNA (Anderson et al., 1981; Andrews et al., 1999) and removed 38 indels. Of the 260 polymor-488

phic sites, we retained 240 sites compatible with the infinite sites mutation model. The final file489

is available in https://github.com/JuliaPalacios/phylodyn. To encode our data as 0s and 1s,490

we use the inferred root sequence RSRS of Behar et al. (2012) to define the ancestral type at491

each site. To rescale our results in units of years, we assumed a mutation rate per site per year of492

1.3× 10−8 (Rebolledo-Jaramillo et al., 2014). We compare our results with the Extended Bayesian493

Skyline method (Drummond et al., 2012) implemented in BEAST in Figure 9. When applying494

BEAST, we assumed the Jukes-Cantor mutation model. Both methods detect an inflection point495

around 20kya followed by exponential growth. The mean time to the most recent ancestor (TM-496

RCA) inferred for these YRI mtDNA samples with BESTT is around 170kya with a 95% BCI of497

(142868, 207455), while the mean TMRCA inferred with BEAST is around 160kya with a 95% BCI498

of (133239, 196900). In Appendix D, we include two more comparisons of BESTT and BEAST.499
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Figure 9: Posterior inference of female effective population size from 35 mtDNA samples from
Yoruban individuals in the 1000 Genomes Project using our method BESTT (first plot) and the
BEAST Extended Bayesian Skyline Plot (second plot). Posterior median curves are depicted as
solid black lines and 95% credible intervals by shaded regions.

5 Discussion500

The size of emergent sequencing datasets prohibits the use of standard coalescent modeling for in-501

ferring evolutionary parameters. The main computational bottleneck of coalescent-based inference502

of evolutionary histories lies in the large cardinality of the hidden state space of genealogies. In503

the standard Kingman coalescent, a genealogy is a random labeled bifurcating tree that models the504

set of ancestral relationships of the samples. The genealogy accounts for the correlated structure505

induced by the shared past history of organisms and explicit modeling of genealogies is fundamen-506

tal for learning about the past history of organisms. However, the genomic era is producing large507

datasets that require more efficient approaches that efficiently integrate over the hidden state space508

of genealogies.509

In this manuscript we show that a lower resolution coalescent model on genealogies, the “Tajima’s510

coalescent”, can be used as an alternative to the standard Kingman coalescent model. In particu-511

lar, we show that the Tajima coalescent model provides a feasible alternative that integrates over a512

smaller state space than the standard Kingman model. The main advantage in Tajima’s coalescent513

is to model the ranked tree topology as opposed to the fully labeled tree topology as in Kingman’s514

coalescent.515

A priori, the cardinality of the state space of ranked tree shapes is much smaller than the516

cardinality of the state space of labeled trees. However, in this manuscript we show that when the517

Tajima coalescent model is coupled with the infinite sites mutation model, the space of ranked tree518

shapes is constrained by the data and the reduction on the cardinality of the hidden state space of519

Tajima’s trees is even more pronounced than expected.520
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In order to leverage the constraints imposed by the data and the infinite-sites mutation model,521

we apply Dan Gusfield’s perfect phylogeny algorithm (Gusfield, 1991) to represent sequence align-522

ments as a gene tree. We exploit the gene tree representation for conditional likelihood calculations523

and for exploring the state space of ranked tree shapes.524

For the calculation of the likelihood of the data conditioned on a given Tajima’s genealogy, we525

augment the gene tree representation of the data with the Tajima’s genealogy and map observed526

mutations to branches. We define a directed acyclic graph (DAG) with the augmented gene tree.527

This new representation as a DAG allows for calculating the likelihood as a backtracking algorithm528

that transverses the gene tree from the leaves to the root. Our implementation’s computational529

bottleneck lies in the likelihood calculation. Given a Tajima’s genealogy, our likelihood algorithm530

sums over all possible allocation of mutation groups to branches. Although this number is generally531

much smaller than the number of labeled genealogies, our algorithm can be further optimized. In532

future studies, we will explore as sum-product type of algorithm for the likelihood calculation. In533

the present implementation we are able to infer effective population size trajectories from samples534

of size n ≈ 35 in a regular personal laptop computer within few hours.535

Our statistical framework draws on Bayesian nonparametrics. We place a flexible geometric536

random walk process prior on the effective population size that allows us to recover population537

size trajectories with abrupt changes in simulations. The inference procedure proposed in this538

manuscript relies on Markov chain Monte Carlo (MCMC) methods with 3 large Gibbs block updates539

of: coalescent times, effective population size trajectory and ranked tree shape topology. We use540

Hamiltonian Monte Carlo updates for continuous random variables: coalescent times and effective541

population size; and a Metropolis Hastings sampler for exploring the space of ranked tree shapes.542

For exploring the genealogical space, Markovtsova et al. (2000) suggest a joint local proposal for543

both coalescent times and topology. Here we restrict our attention to the topology alone. A future544

line of research includes the development of a joint local proposal of coalescent times and ranked545

tree shapes. We also envision that a joint sampler of coalescent times and effective population size546

trajectories should improve mixing and convergence.547

Our method does not model recombination, population structure or selection. It assumes com-548

pletely linked and neutral segments from individuals from a single population, and the infinite sites549

mutation model. While this model is a good approximation for some human molecular data, it550

is not appropriate for modeling molecular data from other organisms such as pathogens and viral551

populations. Finally, haplotype data of many organisms is usually sparse with few unique haplo-552

types presented at high frequencies. Since our algorithm exploits molecular data at the haplotype553

level, our proposed method is ideally suited for this scenario where the space of ranked tree shapes554

is drastically smaller than the space of labeled topolgies.555
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Appendix A Matrix representation of a ranked tree shape686

Our algorithms exploit the following encoding of a ranked tree shape by a triangular matrix of size687

n× n, which we denote by F (Figure 10). Recall that, by convention, tn+1 = 0 and t1 = +∞.688

First, we declare that Fi,j = 0 if j > i. Next, the number of lineages through time is encoded
on the diagonal of F: Fi,i = i for i in {2, 3, . . . , n}. Finally, for j < i, the entry Fi,j denotes the
number of lineages that do not coalesce in the time interval (ti+1, tj); in particular, Fi,1 = 0 and
for every i in {2, 3, . . . , n}, Fn,i denotes the number of singletons (i.e., external branches that have
not coalesced) in the time interval (ti+1, ti) (Figure 10). Other statistics of the ranked tree shape
can be expressed in terms of the corresponding matrix F. Among them, the number c of cherries
is equal to the number of times that the number of singletons decreases by 2 between lines i and
i− 1, since such an event means that the coalescence separating these two epochs was that of two
external branches. That is,

c =
n∑

i=3

1{Fn,i−Fn,i−1=2}.
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Figure 10: Ranked tree shape Left: Example of a Tajima’s genealogy (redrawn from Figure 1A) with
coalescent events ranked from 2 at time t2 to n at time tn. Right: The corresponding Fn matrix, with n = 8,
that encodes the ranked tree shape information of the Tajima’s genealogy on the left. Fi,j denotes the
number of lineages that do not coalesce in the time interval (ti+1, tj). In particular, Fn,i for i in {2, 3, . . . , n}
denotes the number of singletons (external branches that have not coalesced) in the time interval (ti+1, ti).

Appendix B689

Detailed allocation of mutation groups along gT . The latent allocation random variables690

{Aj} are constrained by the information in the Tajima’s genealogy gT . In a given gT , every subtree691

is labeled by its ranking from past to present (Figure 10). Subtree i is subtended by branch bi with692

length li, for i = 2, . . . , n. We will assume that l2, the length of the root branch, is 0. Let c be693

the number of cherries (nodes with two leaves) in gT ; the two branches of a given cherry share the694

same label bj ∈ {bn+1, . . . , bn+c}. The actual label of external branches is arbitrary but, for ease of695

exposition in our figures, we first label the cherries’ branches from left to right by {bn+1, . . . , bn+c};696

singleton branches are labeled from left to right by bn+c+1, . . . , b2n−c (Figure 2C). As mentioned697

before, the length of Xj is the number of the corresponding sister nodes in T that were grouped698

together in forming node Zj . In this case, Aj = (Aj,1, . . . , Aj,|ch(j)|) denotes a collection of |ch(j)|699

vectors of branch labels in gT subtending the child-node subtrees of node Zj . Aj,1 corresponds to700

the branch subtending from the leftmost child node of Zj on D, Aj,2 corresponds to the branch701

subtending from the next child node of Zj , etc., and Aj,|ch(j)| corresponds to the branch subtending702

from the rightmost child node of Zj on D. Observe that, since we group some of the leaf nodes in703

T into a single node in D, any Aj,k may be a vector of branch labels; for example A1,1 = (b12, b9)704

and A1,2 = b10 in Figure 3B.705

Appendix C706

Algorithms for conditional likelihood calculation. The following two algorithms detail the707

calculation of Pr(Y | gT , µ). Y is encoded in GeneTree, the observed data as a Tree structure.708

Each node in GeneTree has number of descendants (or lineages) and mutation information attached709

to it. Tajima’s genealogy gT is encoded as Fpath that contains the ranked tree shape Fn and times710

that contains the vector of coalescent times t multiplied by the mutation rate µ.711
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Algorithm 1 Calculate Likelihood(Fpath, times,GeneTree) procedure

Input: GeneTree , FPath
Output: Log Likelihood LL

1: Initiate pool to be the set of leave nodes of GeneTree with at least one descendant. Initiate
LL and index to be zero. Initiate current path to be empty.

2: Call CalcLL recursive(LL, index, current path, Fpath, times, Genetree).
3: return LL

Algorithm 2 CalcLL recursive(LL, index, current path, Fpath, times, Genetree) procedure

1: if index = len(path) {When a complete path node is found} then
2: for node in tree do
3: Calculate log likelihood based on times and number of mutations of node in current path.
4: Accumulate to total log likelihood LL
5: end for
6: else
7: for node in pool do
8: Check compatibility of the node, according to the given Fpath.
9: if node is compatible with Fpath then

10: Update node by assigning it to the current step in Fpath
11: Update pool. If a node has been mapped entirely, remove node from pool, update its

parent node, and potentially add parent node to pool if parent node has not been entirely
assigned.

12: Append this node to current path
13: Call CalcLL recursive(LL, index+ 1, current path, Fpath, Genetree)
14: Restore previous node, pool and current path
15: end if
16: end for
17: end if

To illustrate our algorithms 1 and 2, we use our example of Figures 2 and 3. Algorithm 1 initiates712

the pool with nodes Z3, Z4, Z6, Z8, Z10. Then, Algorithm 2 cycles through this list. Assume the713

first node is Z8. This node has d8 = 2 descendants and the ancestry is Z8−Z5−Z1−Z0 with sizes:714

2−3−7−16. On the other hand, the first coalescent event (from present to past) labeled 16 in gT715

(Figure 3A) has ancestry with sizes: 2− 3− 7− 16. Therefore, this node is compatible. The node716

is removed from the pool, its parent node added to the pool and Z8 is assigned to the path. At717

this time current path = Z8 and the pool becomes: Z3, Z4, Z5, Z6, Z10. The algorithm then cycles718

through this list and picks Z10. This node has size ancestry 2− 3− 7− 16. On the other hand the719

second coalescent event labeled 15 has size ancestry: 2 − 3 − 5 − 7 − 9 − 16. Since the node size720

ancestry is contained in the second coalescent event’s size ancestry, this node is compatible. The721

current path becomes current path = Z8 − Z10 and pool becomes Z3, Z4, Z5, Z6, Z7. We continue722

this procedure until we reach the path current path = Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 −723

Z6 − Z1 − Z2 − Z1 − Z2 − Z0.724

Once a path is found, the algorithm back tracks the path until there is one compatible node and725

the path continues to grow. A sequence of back tracking and growing is the following:726
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1. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1 − Z2 − Z1 − Z2 − Z0727

2. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1 − Z2 − Z1 − Z2728

3. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1 − Z2 − Z1729

4. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1 − Z2730

5. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1731

6. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6732

7. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4733

8. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5734

9. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z6735

10. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z6 − Z4736

11. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z6737

12. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5738

13. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4739

14. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6740

15. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1741

16. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1 − Z2742

17. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1 − Z2 − Z1743

18. Z8 − Z10 − Z3 − Z6 − Z4 − Z7 − Z5 − Z4 − Z6 − Z1 − Z2 − Z1 − Z0744

The first sequence of steps 1−8, the path decreases. This happens because there are not alternative745

compatible paths until that point when the sequence starts to grow until step 10. At step 10, the746

algorithm does not find a compatible way to keep growing the path so the algorithm starts to back747

track again until step 12. From steps 12 to 18, the algorithm grows the path until a complete new748

path has been found. A complete path has the correspondence of coalescent events to nodes in gene749

tree. The first element of the path: Z8 corresponds to the coalescent event at time t8, the second750

element of the path Z10 corresponds to the second coalescent event at time t7. The last element of751

the path is Z0 when all sequences coalesce at time t2. In this example, the algorithm finds 8 paths.752

Once the paths are found, the algorithm computes the likelihood and the result is the sum of the753

likelihoods of the 8 paths.754

755

Markovian proposal of ranked tree shapes. The following algorithm generates a new756

ranked tree shape from a Markovian proposal and outputs the corresponding transition probabili-757

ties. This proposal is used in section 2.8.1.758
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Algorithm 3 Transition proposals for ranked tree shapes

Input: Fn Output: F∗n, q(Fn | F∗n), q(F∗n | Fn)

1. Set Fn = F∗n.

2. Sample with uniform discrete probability a coalescent event k from the set {3, . . . , n}. Set
q1 = 1

n−2 .

3. If lineage k coalesces at time tk−1 (Figure 4, Case A)

If the lineages coalescing at time tk are singletons (Figure 4, Case A, lineages 1 and 2
in Fn))

(a) No sampling required to distinguish between two singletons. Set q2 = 1.

(b) Update F∗n: merge one singleton with the lineage coalescing at k− 1 (excluding
lineage k) in Fn, then merge the second singleton at time tk−1 with lineage k.

(c) Compute the probability q′2 of restoring the ordering of F∗n to Fn.

Else

(a) Sample one the lineages coalescing at time tk with uniform discrete probability.
Set q2 = 1

2

(b) Update F∗n: merge the sampled lineage with the one coalescing at time tk−1 in
Fn. At time tk−1, merge the lineage not sampled with the new lineage k.

(c) Compute the probability q′2 of restoring the ordering of F∗n to Fn.

Else (Figure 4, Case B)

Swap the coalescent events. Lineages descending from k are now set to coalesce at time
tk−1 and lineages previously descending from k − 1 are now set to coalesce at time tk. Set
q2 = 1 and q′2 = 1.

4. q(F∗n | Fn) = q1 q2, q(Fn | F∗n) = q1 q
′
2.
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Figure 11: Posterior inference of female effective population size from 35 mtDNA samples from
Yoruban individuals in the 1000 Genomes Project using BEAST EBSP (first plot) from all 15409
sites and the BEAST EBSP (second plot) from the 240 segregating sites retained. In both cases,
the mutation model assumed is Jukes Cantor (JC). Posterior median curves are depicted as solid
black lines and 95% credible intervals by shaded regions.

Appendix D759

We replicated the BEAST EBSP Analysis of the 35 Yoruban individuals from the 1000 Genomes760

Project phase 3 using the whole mtDNA coding region consisting of 15409 sites. In both cases761

we assumed the Jukes-Cantor mutation model (Jukes and Cantor, 1969). Figure 11 shows the762

comparison between EBSP inference from the 240 segregating sites retained in section 4 that are763

compatible with the infinite sites mutation model assumption. In both cases we recover very similar764

trajectories.765

In addition, we compared our results with BEAST Bayesian Skyline Plot (BSP) (Drummond766

and Rodrigo, 2000). For our reduced dataset of 240 segregating sites, we could not generate valid767

inference of N(t) with Metropolis-Hastings acceptance probability greater than 0. Instead we were768

able to generate results with BEAST BSP from the complete dataset of 15409 sites. The comparison769

of our method from 240 segregating sites to BEAST BSP from 15409 sites is depicted in Figure 12.770

Appendix E771

In Figure 13A, we show the data from Figure 2A with an additional haplotype (10) with frequency772

1 and an additional column grouped with mutation group h (not shown in the table). In 13B we773

show the corresponding perfect phylogeny. This new perfect phylogeny has a new tip with black774

label 1 (frequency) subtending from a branch with 0 mutations (red label). The path from the leaf775
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Figure 12: Posterior inference of female effective population size from 35 mtDNA samples from
Yoruban individuals in the 1000 Genomes Project using our BESTT (first plot) from only 240
segregating sites and the BEAST BSP (second plot) from all the 15409 sites. Posterior median
curves are depicted as solid black lines and 95% credible intervals by shaded regions.

to the root shows that this haplotype has a unique mutation corresponding to mutation group a.776

We note that mutation group labels carry no information. We incorporate the labels in the Figure777

for ease of exposition. Since mutation group h has now multiplicity 2, the branch labeled h has778

now a red label 2.779
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Figure 13: Second example of Perfect Phylogeny. A. Compressed data representation Yh×m of
n = 17 sequences and s = 19 (columns, only the first 10 of which are shown), comprised of 10 haplotypes
and 13 mutation groups. This data table has one more haplotype (10) and one more mutation labeled h
than the example of Figure 2. B. Gene tree representation of the data in panel A. Red numbers indicate
the cardinality of each mutation group (number of columns with the same label in panel A). Black letters
indicate the mutation group (column labels in panel A), and black numbers indicate the frequency of the
corresponding haplotype.
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