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Abstract

The localization of the Atrial flutter (AFL) is of great in-
terest for ablation planification. Regardless the direction
of rotation of the corresponding reentry loop, its left or
right atrium origin needs to be known beforehand. This lo-
calization is usually performed by using visual inspection
of the 12-leads standard ECG that could be computerized.
The aim of the study is to automatically classify the cor-
responding averaged F-waves by using one to five simple
features. The averaged F-wave is computed by introducing
a new multi-lead extension of a SVD based method for the
wave resynchronization.

A dataset of ECG recorded from 56 subjects and com-
prising 25 left AFL and 31 right AFL will train the clas-
sifier. It is shown that the single lead SVD based wave
synchronization is efficiently extended to 12 leads by com-
puting the SVD of each group of waves for each lead and
optimally combining the corresponding first singular val-
ues. From the subsequent averaged 12 leads F-wave, 3
groups (Gi) of features were extracted: Gl-(min, max),
G2-(integral of the negative, of the positive part), G3-
(integral of the wave, integral of the absolute value of the
wave). For each group 24 features are then computed to
feed the learning algorithm. A wrapper approach using an
exhaustive search for feature selection is applied to maxi-
mize the mean classification accuracy computed over one
to five features for each group (Gi) applied to the 12 leads.
The logistic regression (LR) model is used for the super-
vised classifications.

The mean accuracy ranges for the three groups,
without validations, are G1:[0.69-0.83], G2:[0.68-0.81],
G3:[0.68-0.80] for one feature up to five. The maximum
accuracy comes from Gl with five features and is equal
to 93%. The corresponding selected features are [max(I),
max(Ill), max(V3), min(aVL), min(V5)]. In order to check
for the risk of model overfitting, a leave one out cross-
validation (LOOCYV) is performed with these five features
and gives 86% for the accuracy. When using all the 24 fea-

tures simultaneously, the corresponding accuracy without

validation is 93% and 67% for the LOOCV.

1. Introduction

The localization of the source of Atrial Flutter (AFL) is
of great importance for the guidance of the ablation pro-
cedure. Prior knowledge as to which atrium the circuit or
focus is located will thus aid in the planning phase, ef-
fectively reducing operation time. It is well known that
features visually extracted from the continuous ECG leads
help practitioner for this task because they are shown to be
linked to circuit localization [1], [2]. Although V1 is the
most useful lead for distinguishing left from right atrial ori-
gin [2], it doesn’t reach the best performances that could be
obtained by using extended combinations of leads.

It has been shown in [3] that the spatial variability of the
F-waves could unveils from which chamber the AFL orig-
inates. The spatial variability is far from being addressed
by a simple 12-leads ECG visual inspection used by prac-
titioners. One goal of this paper is to refer to the regular
practice to distinguish left from right atrial origin of the
AFL. This practice mostly makes use of extremum values
and polarities of the F-waves, considering simple combina-
tions of multiple leads. In order to reject any source of dis-
turbances that could impede a correct classification, a syn-
chronous averaging is applied to the segmented F-waves
automatically detected by using previous work [4]. The
synchronous averaging is a very well known and efficient
processing to remove noise but needs aligned waveforms.

This alignment, also addressed as a time delay estima-
tion problem, has been considered in [5] as a problem of
eigenvalues maximization in a context of one-dimensional
multiple observations. In the context of 12-leads ECG sys-
tem, the multiple delayed F-waves should be considered
as a 12-dimensional alignment. Then, results from [5] is
easily extended in this work to the N-dimensional space
in order to improve the accuracy of the delays estimation.
The subsequent synchronous averaging provides reduced



noise F-waves where features captured from visual inspec-
tion are in that case computerized. For each averaged F-
wave and for each lead these computed features are : min,
max, integral of the negative/positive parts, global integral,
global integral of the absolute value.

Finally, according to the labeled right (R) or left (L)
AFL cases evaluated during an ablation procedure, a ma-
chine learning algorithm is applied for a supervised clas-
sification with cross-validation performance assessment.
Then, it is shown that with a limited number of features
the prediction of the AFL localization can be performed.

2. Methods

2.1. F-waves alignment

For the one-dimensional case :

xz;(n) = s(n—0;)+v;(n), n=0,...,N=-1; i=1,..., M
ey
where s(n) is an unknown, deterministic signal, with en-
ergy s and energy of its first derivative Fy/, 6; is random,
zero mean, integer valued time delay with variance o3, and
v;(n) is a zero-mean, white noise with variance o2, uncor-
related with 6;. It is shown in [5] that the estimation of the
0;’s can be carried out by maximizing an eigenvalue-based
criteria. The eigenvalues \; are then computed from the
intra-signal correlation matrix. From this work, an easily
interpretable similar criteria is used and defined by :
A1 (6) Es —0jEy + 0y
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Then A(6) is maximized when o is minimized. This
minimization is indirectly performed by an iterative search
of the best individual #; that maximizes (2). This expres-
sion can also be interpreted as the sum of a true function
F(0) added to zero-mean uncertainty B(6) coming from
approximations and other departures from model (1). This
uncertainty impede the correct estimation of 6.

It can be assumed that in 12-leads ECG, each individual
delay 6, is equal across the different leads, even though
s(n) could be different. Then, these multiple observations
of each 6; should lead to a more accurate estimation. In
order to benefit from for this property, it is proposed the
following criteria :

3)
Where A ; () stands for criteria (2) applied to the j'" lead.
Since each A;(0) are bounded by (0,1), so will be the
V(6) values. The rational of this proposition is that since
all the F); are maximum for the true 8 and the averaging

of the uncorrelated B; (@) should tends toward zero as the
number of leads increases, the estimation of (6) will be
more accurate.

It is easy to check that the more one lead is noisy, the
less it will contribute to the optimization. Furthermore,
because E,/ stands for the energy of the signal first deriva-
tive, the lead with the sharpest waveform will contribute
more to the estimation. Finally, the shape changes that
could be observed on given lead, caused by baseline con-
tribution for instance, may also explain a lower contribu-
tion of the corresponding lead because of the spread of the
eigenvalues spectrum and then a lower \; value.

The performances of this approach can be depicted in
Fig. 1 where the A values computed as in (2) are plotted.
The corresponding aligned F-waves are displayed in Fig. 2
through their respective synchronous averages. From Fig.
1 it is clear that the estimation of the delays by maximizing
V in (3) increases each individual A. However, these A
values are lower than the ones computed considering the
leads as independent, providing different delays across the
different leads. This latter result could appear better but is
inconsistent with the underlying physical model.
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Figure 1. A values computed as in (2) over each lead, before (red),
after (green) the proposed alignment and for the 12-leads plotted in Fig.
2. The blue trace corresponds to the A values optimized considering the
leads independently.
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Figure 2. 12-leads averaged F-waves of a patient with left AFL. Traces
from top to bottom correspond to I, II, III, aVR, aVL, aVF, V1, V2, V3,
V4,V5,V6



2.2.  Supervised classification and features
selection

Many features could be extracted from the averaged F-
waves, taking into account all the ECG leads even though
they are correlated. The visual inspection performed by
practitioners shows the efficiency of the knowledge in-
volved in their AFL classification. The visual inspection
combines several salient characteristics such as the nega-
tive or positive peak values and also the isoelectric level for
macro-reentry assessment. It is however difficult to visu-
ally combine these information, more or less exploited in-
dependently when the number of considered leads is large.
The logistic regression classifier is a good candidate be-
cause it linearly combines a set of features, assuming that
the labeling (right or left AFL) is a priori known. Non lin-
ear classifier are rejected in order to limit the overfitting
due to the reduced number of observations.

Once the alignment process is achieved the averaged
synchronous 12 leads F-waves are computed (see Fig. 2
and Fig. 3 for respective left and right AFL examples).
For each lead and subject 3 groups (Gi) of features were
extracted: G1-(min, max), G2-(integral of the negative, of
the positive part), G3-(integral of the wave, integral of the
absolute value of the wave). For each group Gi, 24 features
are then computed to feed the learning algorithm. Combi-
nations of features from different groups is not discussed in
this study. A wrapper approach using an exhaustive search
for feature selection is applied to maximize the mean clas-
sification accuracy computed over one to five features for
each group (Gi) applied to the 12 leads. The maximum
number of features is also considered in the study. In or-
der to assess the generalization ability of the best features
combination a leave-one-out cross-validation (LOOCYV) is
also performed for comparison.
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Figure 3. 12-leads averaged ECG of a patient with right AFL. Traces
from top to bottom correspond to I, IL, III, aVR, aVL, aVF, V1, V2, V3,
V4,V5, V6

3. Material

A dataset of ECGs recorded from 56 subjects and com-
prising 25 left AFL and 31 right AFL will train the clas-
sifier. ECGs are acquired during catheter ablation opera-
tions at Centre Hospitalier Princesse Grace, Monaco. All
signals were recorded at f; = 2000Hz. A finite-impulse
response notch filter at SO0Hz was applied to these signals
to remove powerline interference, and were then filtered
at [0.5; 70]Hz using type II Chebyshev high- and low-
pass filters to remove baseline wander and high-frequency
noises. Records with missing leads, low F-wave ampli-
tudes, low atrioventricular block ratio (< 2 : 1) were ex-
cluded from the study. F-waves from each recording were
detected and segmented, using a technique described in
[4]. Only F-waves not overlapped within T waves were
considered. The averaged number of segmented F-waves
per subject is 64 with an average length of 360 samples.
These segmented 12-leads F-waves are finally accurately
aligned using the proposed method. It should be noticed
that since the technique in [4] performs very well and the
profiles of the F-waves are smooth, the impact of the align-
ment method proposed in this paper over the features is
very weak.

4. Results

It is given in Fig. 4 the performances in term of ac-
curacy of the classifier and for a variable number of fea-
tures. It can be noticed that regardless the number of fea-
tures the group G1 (min,max) exhibits the best classifica-
tion and that the larger the number of features is the higher
is the performance. However, the highest increase of per-
formance is from one feature to two features. The best G1
combinations and the respective classification accuracies
(%) without or with LOOCY, for an increasing number of
features is: [min(III)] (84, 80), [max(I), min(V5)] (89,85),
[max(I), min(V3), min(V5)] (91,85), [max(I), max(aVL),
min(V4), min(V5)] (93,82), [max(I), max(IIl), max(V3),
min(aVL), min(V5)] (93,86) Also, for the full set of 24 fea-
tures, the accuracy without validation is 93% and 67% for
the LOOCV. It can be observed that max(I) and min(V5)
play a key role in the classification since they appear in al-
most all the best combinations. In addition, the result of
the supervised classification is depicted in Fig. 5 where
the result of the linear combination performed by the lo-
gistic regression is given. It can be observed that the two
populations are well separated by the optimal threshold.

5. Discussion and conclusion

A new multi-leads method that extends a single lead
alignement technique has been proposed with a high po-
tential for applications in the field of ECG analysis. It has
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Figure 5. Output of the logistic regression for the best five features
combination. The 56 subjects are depicted in red (right AFL) and blue
(left AFL) colored circles. The black line stands for the optimal threshold
separating the two classes.

been applied to F-waves recorded from right and left AFL
subjects. It has been shown that based on a simple fea-
tures extraction the classification of right and left AFL can
be performed with high accuracy. The increase of the fea-
tures number above two does not provide a real improve-
ment with a risk of lack of generalization due to overfit-
ting. These results need to be confronted to the expertise
of practitioners even though the selected features are simi-
lar to those involved in visual inspection.
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