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Abstract. With the increase of data, traditional methods of data pro-
cessing have become time and power inefficient. As enhancement, we
propose a new accelerated architecture for querying big Databases. This
architecture combines the advantages of the HDFS for the management
of huge amount of data and the fast processing of queries of Spark SQL.
It also benefits of the processing efficiency of the hardware acceleration
of FPGAs and of the semantic caching architecture to process recently
used data stored in the cache.
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1 Introduction

One of the big challenges in the IT sector today is the handling of an ever-
growing size of databases. The annual size of data that is created and stored
worldwide increases by 31% every year and amount of database computations
increases by 21% every year [6].

Processing and analyzing all this data is a big challenge. It requires a mix of
processing techniques, data sources and storage formats. Query executions and
computations must be accelerated by large rate. Furthermore, large storages
must be handled efficiently to manage many read and write operations. This
issue is raised in many applications: the Internet, social network, healthcare,
cyber security, smart cities, etc. In particular, security monitoring, a domain of
cyber security aims to store large amount of logs so as to detect subtile attacks.
This require on one hand large storage and on the other hand efficient processing.

Until now, Generic Purpose Processors (GPPs) are used to compute database
queries. But GPPs now face the near end of Moore’s Law [16], limits in terms
of clock frequency [13] and multi-core processing [9]. Hence, we must think of
further possibilities to accelerate the query executions.

Recent works [1], [2], [12] have shown that we could use distributed file sys-
tems (DFS) and Massively Parallel Processing (MPP) to store and process huge
databases and complex queries. Hadoop Distributed File System (HDFS), the
open source version of the google file system GFS [10], and Spark SQL [2] are re-
spectively popular DFS and MPP used by the big data communities. HDFS and
Spark rely on GPPs and consequently inherit from GPP limitations mentioned



previously. Regarding hardware acceleration, [4], [8], [14], [15], [18] have shown
that Field Programmable Gate Arrays (FPGAs) could be a better alternative
to GPPs in the field of database applications in general and for query-execution
purposes with an increasing data throughput with lower energy effort. But not
all queries can be easily implemented and processed in a FPGA. It is necessary
to have a standard SQL engine to run those non-supported queries. Further-
more, it is reasonable to consider that DFS should be still managed by software.
Anyway, intern memory cells of the FPGAs and dedicated RAM memories on
board should be used as cache memories to store recent data and results. Seman-
tic caching, which is a technique used for optimizing the evaluation of database
queries by caching results of old queries and using them when answering new
ones, shows a lot of promise and can be applied to accelerate database queries
[17].

This paper describes our effort to create an architecture that combines an
accelerated query engine and a semantic cache memory implemented on FPGA,
HDFS and Spark to accelerate query executions. This architecture benefits from
the hardware acceleration of FPGA, the rapid access to memory in the semantic
cache and Big Data capabilities of HDFS and Spark to efficiently execute very
large queries.

The remainder of the article is outlined as follows: Section 2 discusses back-
ground and related work in the field. Section 3 introduces the proposed architec-
ture to accelerate query processing. Finally, a conclusion and some perspectives
are given in the last section.

2 Background

This section provides necessary background on Big Data, hardware acceleration
and semantic caching. Later, we present recent related research and we discuss
their limitations.

2.1 Big Data

According to [5], the term Big Data is used to refer to the huge volume of data
that are too difficult to store, process and analyze through traditional database
technologies like CPU servers in conventional Data Centers within a tolerable
time. Some of the solutions used by the Big Data and database communities to
handle the problems previously mentioned are Spark SQL and HDFS.

HDFS is a self-healing, distributed file system that provides reliable, scalable
and fault tolerant data storage on commodity hardware. HDFS accepts data in
any file format like text, images, videos, database regardless of architecture and
automatically optimizes high bandwidth streaming. HDFS is designed to hold
large amounts of data and provides faster access to data. It is highly scalable
anyway limited to 200 Peta Bytes (PB) of storage [3].

Spark is a general-purpose cluster computing engine with libraries for stream-
ing, graph processing, machine learning and SQL. Spark SQL provides a Data



Frame API that can perform relational operations on both external data sources
and Spark’s built-in distributed collections. This API evaluates operations lazily
so that it can perform relational optimizations. Also, to support the wide range
of data sources and algorithms in Big Data, Spark SQL introduces a novel ex-
tensible optimizer [2]. Spark SQL is also a part of Hadoop Ecosystem and can
be deployed directly on HDFS so that resources can be statically allocated on
some of the machines of an Hadoop cluster.

2.2 Hardware Acceleration

As we reached the end of Moore’s law [16], we are experiencing a growing interest
in new solutions to boost performance.

The combination of different hardware accelerators, as Graphic Processing
Units (GPUs), FPGAs and Application Specific Integrated Circuits (ASICs)
along with GPPs, provides a wide panel of solutions from which to choose the
most suitable architecture for a specific task. Among these architectures, FPGA
provides an excellent acceleration platform. Inherent parallelism, access to local
memories as Block Random Access Memories (BRAMs) and the ability to be
partially and dynamically reconfigured are interesting characteristics we need to
efficiently exploit.

2.3 Semantic Caching

Caching consists in a resource element to accelerate computing processes. Data
stored in a cache might be the result of an previous request or a duplicate of
recently used data stored elsewhere. Traditional cache architectures are based
on page and tuple caching where possible data relationships are not handled
efficiently. Semantic caching has been proposed to overcome these drawbacks.

The cache is managed as a collection of semantic regions which are groups
of semantically related data. Access and cache replacement are managed at a
unit of semantic region. Semantic caching is based on three key features. First, a
description of the data stored in the cache is maintained in the form of a compact
specification. Requests for missing data in the cache are thus faster fetching to
the cache. Secondly, replacement policies are flexible and could be different for
each semantic regions, which are associated with collections of tuples. This is to
avoid the high overheads of tuple caching and, unlike page caching, is insensitive
to bad clustering. Third, maintaining a semantic description of cached data
enables the use of sophisticated value functions that incorporate semantic notions
of locality, not just Least Recently Used (LRU) or Most Recently Used (MRU)
policies in case of cache replacement [7].

Queries in a semantic cache are split in two parts: a remainder and a probe
query. The probe query retrieves the portion of the result already available in
the cache. A remainder query fetches any missing data in the cache.

For example, figure 1 represents a semantic cache storing log data. The se-
mantic regions are arranged according to the time and IP addresses of the logs.



Fig. 1. Example of semantic cache regions

V1 (equation 1) represents the result of previous queries (Qn−1 (equation 2) and
Qn−2 (equation 3) already stored in the cache.

V 1 = (Time < 12H ∨ (IPAddress > 192.168.1.0

∧ IPAddress < 192.168.1.255))
(1)

Qn−1 = (Time < 12H) (2)

Qn−2 = (IPAddress > 192.168.1.0 ∧ IPAddress < 192.168.1.255) (3)



Q1 = ((Time < 8H ∧ Time > 18H)∧
(IPAddress > 192.168.0.0 ∧ IPAddress < 192.168.255.255))

(4)

A new query Q1 (equation 4) would be compared to V1 (V1∧ Q1) to fetch
the probe query in the cache (P (Q1, V1) as depicted figure 1). The remainder
query (R (Q1, V1)) is then executed to get the missing data. The results of
remainder and the probe queries are combined and sent to the user. The result
of the remainder query is stored in the cache for future queries.

2.4 Motivation

Static approaches which use FPGAs for query processing [4], [8], [18] succeeded
in implementing query engines capable of doing SQL based processing (select,
project join, etc.) with a very high throughput. Some recent research proposes
a hybrid architecture (FPGA + CPU) to process LIKE queries [14].

Although some of these existing solutions handled queries for large volumes
of data (100 TB in [18]), to the best of our knowledge, the proposed FPGA
architectures cannot process huge data stored in multiple servers by the use of a
distributed file system. The architecture that we propose, using the Distributed
File Systems HDFS, massively parallel processing on Spark SQL, hardware ac-
celeration and semantic caching in FPGA could be the solution to the problem
of executing queries in Big Data in a relatively short time.

3 Toward FPGA-Based Semantic Caching for
Accelerating Big Data Analysis with Spark and HDFS

In this section, we describe the preliminary building blocks for a FPGA-based
semantic caching for Big Data analysis’s architecture. First, details of our hard-
ware and software architecture is presented followed by some description of the
SQL queries execution. To start with, the system will consider SQL queries with
conjunctions only.

In a second part, the FPGA architecture implementation is given. In the
following, we detail the management of semantic regions, in particular reads
and writes in the FPGA. Analysis and evaluation on the cache entries will be
addressed in future works and are out of the scope of this paper.

3.1 Overview

The FPGA-based semantic caching for Big Data analysis’s architecture that we
propose (figure 2) is a hardware software implementation system with a PCI
Express interface for inter communication.

The FPGA contains the semantic cache and an accelerated query engine. The
software part contains the Query analyzer and Spark. HDFS is the file system
where the database is stored.



Fig. 2. Architecture of FPGA-based semantic caching for Big Data analysis

The Query analyzer contains a catalogue of recent queries and their respective
data stored in the semantic cache which is basically the first key idea in semantic
caching.

When a user starts a request, the Query analyzer figures out if the requested
data is fully stored in the semantic cache (cache hit), partially in the cache or
completely missing in the cache (cache miss). The Query analyzer also checks if
the Query engine implemented in the FPGA integrates the query operations to
accelerate.

If we have a cache miss or if the query engine cannot process the query (grey
arrow in figure 2), the query is processed by the Spark query engine. This is
the standard, non-accelerated Spark process based on libraries capable of doing
complex queries. Spark fetches the data requested in HDFS and executes the
query. The data and the results of the query are then sent to the query analyzer.
Afterwards, the query analyzer sends the result to the user and proof check if
the data and the results can fit in the cache. If they can fit in the cache, the
query analyser sends them to the FPGA. When the cache update is done, the
FPGA sends cache details to the query analyzer to update the cache catalogue:
address of the last data sent and validity of the data cached.

If we have a cache hit and the query engine can process the query (black
arrow in figure 2), the query is sent to the FPGA. The query engine executes
the request and sends the result to the user and the query analyzer. Finally, if
the data requested is partially in the cache, the query is parallelized into two
or more queries to be executed by Spark and the query engine in FPGA. For
example, referring to the example given section 2.3, the query Q1 is divided into
a probe query and remainder query. The remainder query is executed by the
Spark SQL and the probe query is sent to the FPGA to fetch the data from the
semantic cache. Then all the results are sent to the user and remainder query’s
result are updated in the cache.



3.2 FPGA structure

Fig. 3. FPGA structure

The structure in the FPGA (figure 3) is composed by three main components:
The "Write in Cache", the "Semantic cache" and the "Query engine".

The write in cache is responsible of writing the data to the cache according
to the replacement policy chosen. Furthermore, it provides the cache changes
to the catalogue stored in the query analyzer. Finally, it is also responsible for
managing the semantic regions.

The semantic cache memory is a combination of BRAMs linked together to
constitute a beta version of a cache memory. In some large FPGAs, the total
storage capacity of the BRAMS combined is up to 30 MB. In the future, we
plane to extend the cache memory plan to external RAMs to create a second
level of functional cache memory.

The query engine reads the query, fetches the necessary data from the cache,
executes the query and sends the results to the query analyzer. The query en-
gine must be capable of executing as much different queries as possible, reading
and storing different formats of databases which is a real challenge for FPGA
acceleration.

4 Experiments

In this section, we introduce the implementation details of the FPGA prototype.
Then, we provide some performance results of the prototype and compare them
to non accelerated standard Spark SQL.



4.1 Implementation

The prototype is composed by a server for software processing and an FPGA
board for hardware processing. The intercommunication between both is man-
aged by RIFFA [11]. RIFFA is a simple framework for communicating data from
a host Central Processing Unit (CPU) to a FPGA via a PCIe. RIFFA communi-
cates data using direct memory access (DMA) transfers and interrupt signalling.
This achieves high bandwidth over the PCIe. Our implementation relies on an
XpressV7-LP HE design board based on a Xilinx Virtex-7 FPGA XC7VX690T.
The server used for the evaluation is based on an Intel R Xeon R CPU E5-1620
able to run at 3.60GHz with 16GB of RAM. The operating system is a Linux
Ubuntu 16.04.4 Long Term Support distribution based on kernel 4.4.0-119-low-
latency.

Resource Utilisation Available Utilisation %
LUT 21825 433200 5.04
LUTRAM 322 174200 0.18
FF 26741 866400 3.09
BRAM 186.5 1470 12.69
IO 7 600 1.17
GT 8 20 40
BUFG 4 32 12.5
MMCM 1 20 5
PCIe 1 3 33.33

Table 1. FPGA resource utilization

Table 1 shows that the prototype is well optimized with limited resources
footprint (5% of Look Up Tables (LUTs), 3% of Flip Flops (FFs) and 12% of
Block Random Access Memories (BRAMs)).

4.2 Results

To test the prototype, we tested the upload speed and the download speed.
Then we tested different queries and compared them to standard non-accelerated
Spark.

To test the upload speed, we sent four times different sizes of data to the
FPGA (from 16 Bytes to 384 KB) and got the average to have a more reliable
result. Figure 4 presents the results on upload throughputs. The speed of upload
which can be achieved is above 1 GB/s when the size of the data is more than
256 KB.

To test the download speed, we sent four times read queries to read different
sizes of data from the FPGA (from 16 Bytes to 384 KB) and got the average to
have a more reliable result. Figure 5 presents the results on download through-
puts. The speed of download which can be achieved is above 1 GB/s when the
size of the data is more than 256 KB.



Fig. 4. Upload Speed Test

To test the query speed, we sent four times different queries for different
sizes of data stored in the FPGA caches (from 16 Bytes to 384 KB) and got the
average time to have a more reliable result. The different queries are:

– Simple "where" query "SELECT * FROM tableName WHERE condition
where the condition is valid for all the data (returns all).

– Simple "where" query "SELECT * FROM tableName WHERE condition"
where the condition is not valid for all the data (returns ∅).

– Simple "where" query "SELECT * FROM tableName WHERE condition1
and condition 2 and condition 3 and condition 4" where the conditions are
valid for all the data (returns all).

– Simple "where" query "SELECT * FROM tableName WHERE condition1
and condition 2 and condition 3 and condition 4" where the conditions are
not valid for all the data (returns ∅).

Figure 6 shows that the fastest query to execute is the simplest query with
no valid condition while the slowest is the complex query which returns all data.
This can be explained by two reasons. The first is that Query Analyzer takes
more time to analyze a complex Query (between 170 µs and 140 µs) than a
simple query (between 100 µs and 120 µs). The second reason is that the FPGA
takes time to send Data back to the software layer when Data are present in the
FPGA cache. The same figure also provides a range of throughput results for
Data sizes above 256 KB.

Figure 7 presents the results of throughput comparison between Spark and
the prototype. First, we did a comparison between the slowest queries and com-
plex queries that returns all data requested. We can notice that the prototype
is about 10 times faster on average than Spark.



Fig. 5. Download Speed Test

5 Conclusion

In this paper, we proposed an FPGA-based architecture for the acceleration of
Big Databases SQL querying. The hardware section is composed of FPGA based
query engine and semantic caching. While the software section is composed of a
Query analyzer, Spark SQL and the Hadoop Distributed File System (HDFS).
This architecture could be later improved by introducing partial reconfiguration
to the FPGA architecture to have the ability to do as much queries as possible
by the query engine like what was done in [8], [18]. This architecture could
also be improved by adding more than one FPGA in the architecture to have
different FPGAs executing different queries at the same time. In addition, future
works include extending the proposed architecture to increase parallelism and
distribution. In particular two cases will be considered: (1) edge computing and
(2) cloud federations.
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