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Abstract

Background: Many northern-hemisphere forests are dominated by oaks. These species extend over diverse
environmental conditions and are thus interesting models for studies of plant adaptation and speciation. The genomic
toolbox is an important asset for exploring the functional variation associated with natural selection.

Results: The assembly of previously available and newly developed long and short sequence reads for two
sympatric oak species, Quercus robur and Quercus petraea, generated a comprehensive catalog of transcripts for
oak. The functional annotation of 91 k contigs demonstrated the presence of a large proportion of plant genes in
this unigene set. Comparisons with SwissProt accessions and five plant gene models revealed orthologous relationships,
making it possible to decipher the evolution of the oak genome. In particular, it was possible to align 9.5 thousand oak
coding sequences with the equivalent sequences on peach chromosomes. Finally, RNA-seq data shed new light on the
gene networks underlying vegetative bud dormancy release, a key stage in development allowing plants to adapt their
phenology to the environment.

Conclusion: In addition to providing a vast array of expressed genes, this study generated essential information about
oak genome evolution and the regulation of genes associated with vegetative bud phenology, an important adaptive
traits in trees. This resource contributes to the annotation of the oak genome sequence and will provide support for
forward genetics approaches aiming to link genotypes with adaptive phenotypes.

Keywords: Oak, Transcriptome, de novo assembly, Comparative genomics, RNA-seq, Bud phenology
Background
Many northern-hemisphere forests are dominated by
evergreen and deciduous oaks (Quercus spp.). The genus
Quercus consists of about 400 species extending over a
wide range of environmental conditions, from temperate
to subtropical regions. Some sympatric species (such as
Q. robur, Q. petraea, Q. pyrenaica, Q. faginea, and Q.
pubescens in Europe) occupy different ecological niches
[1] and are therefore interesting models for studies of
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plant adaptation [2] and ecological speciation [3]. An
important question in biological science concerns the re-
sponse of these long-lived organisms to rapid environ-
mental change, their ability to evolve and the mechanisms
involved. The genes and associated structural and expres-
sional variants required for adaptation must be identified
if we are to address these questions. To this end, a number
of genomic tools and resources have been developed for
oaks (reviewed in [4]), including two bacterial artificial
chromosome (BAC) libraries [5], a large number of SSRs
[6] that have been used to generate linkage maps [7] and
expressed sequence tags (ESTs), mostly obtained by
Sanger and Roche 454 sequencing [8,9]. Researchers can
his is an Open Access article distributed under the terms of the Creative
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now use these tools to address concerns about the adapt-
ability of forest trees at the genomic level. However, stud-
ies aiming to address this objective have been hampered
by a lack of genomic resources. Ultra-deep sequencing
methods, in particular, could help to expand the oak tran-
script catalog for studies of the genomic mechanisms
underlying plastic responses and evolutionary adaptation
to environmental change. RNA-seq is a method of choice
for quantifying gene expression [10,11], and for identifying
genes preferentially expressed at specific developmental
stages [11] or in specific physiological conditions [12].
RNA-seq can be used to infer gene regulatory networks
on the basis of enrichment analysis for pathways and gene
ontology groups [13], using established knowledge from
model organisms [14], or with dedicated statistical ap-
proaches [15] for the de novo identification of sets of
co-expressed genes. In this study, RNAseq was used to
identify genes regulated during bud dormancy release,
an important phase of vegetative bud phenology,
known to be strongly affected by temperature and
photoperiod and therefore, likely to be greatly disturbed
by the unprecedented warming associated with climate
change [16]. Low temperatures are essential to over-
come endo-dormancy (chilling requirement), but high
temperatures are also required for bud break (heat re-
quirement). The effect of climate change, with milder
autumns and warmer winters, on the timing of bud
flush and the impact of exposure to late spring frost are
key questions in forestry requiring a detailed understand-
ing of the physiological and molecular mechanisms (and
their genetic variability) involved in dormancy release. We
addressed these questions, by studying the dynamics of
gene expression over this critical period, focusing on
two successive phases of bud dormancy release: i) eco-
dormancy, a dormancy state prevailing in late winter
and spring imposed by environmental conditions un-
favorable for growth (i.e. heat requirement not ful-
filled), and ii) swelling bud, which occurs in spring, just
before bud burst, when the heat requirement for bud
break is almost satisfied.
Once established, transcriptome analysis can also be

used in a comparative framework, to reveal some of the
evolutionary features of a genome, through the inference
of whole-genome duplication and speciation events, for
example [17,18]. It has been proposed that modern eudi-
cots have derived from a founder ancestral genome
structured in 21 protochromosomes followed by series
of whole genome duplications (WGD) or polyploidiza-
tions and ancestral chromosome fusions and fissions
[19]. Polyploidization has been proposed as a key evolu-
tionary mechanism in providing new genetic material
leading to morphological and phenotypic innovations
through neo and/or subfunctionalizations of duplicated
gene pairs [19]. To this regards, how the twelve modern
oak chromosomes evolved from the eurosid ancestor
with respect to duplication and chromosome rearrange-
ment patterns is still largely unknown. In this context,
the main objectives of this study were: i) to enlarge the
current oak EST resource through the use of ultrahigh-
throughput sequencing technology and to combine the
data obtained with available sequences expressed in dif-
ferent tissues, at different developmental stages, and in
response to different biotic and abiotic stresses, to gen-
erate the most comprehensive annotated unigene set for
oak, and ii) to use this resource to increase our under-
standing of the structure, function (focusing particularly
on bud dormancy release) and macroevolution of the
oak genome.

Results
Sequencing and assembly of the oak transcriptome
Transcriptomes are a valuable genomic resource for
studies in non-model organisms for which genome se-
quences are not available, because they are smaller and
less complex than genomes. The de novo assembly of
transcriptome sequence data from a single sequencing
platform has become a routine task, and a handful of de
novo transcriptome assemblers have been developed
[20], but combining the outputs from multiple sequen-
cing platforms remains challenging [21] and involves the
use of suitable assembler software for different types of
datasets (short/long; single/paired-end reads). In this
study, we used a combination of Sanger, Roche-454 and
Illumina technologies and bioinformatic tools to gener-
ate a catalog of oak transcripts from RNA obtained from
different tissues, developmental stages and in response
to biotic and abiotic stresses (Additional file 1). Long
and short reads were assembled independently, with ro-
bust assemblers (see workflow in Figure 1 and detailed
procedure in Additional file 2) and the resulting assem-
blies were combined to produce a final meta-assembly
(Oak Contig V3.0, OCV3). The main characteristics of
these two pre-assemblies and the final meta-assembly
are summarized in Table 1A.

Long-read pre-assembly
The sequencing of 29 and 36 cDNA libraries with Sanger
and 454 technologies (sets #1, #2A and #4 in Figure 1) re-
sulted in 94,174 and 2,790,004 trimmed reads respectively.
The distribution of trimmed ESTs is shown in Additional
file 3. A total of 6,571 putative FL-cDNA clones (set #3)
sequenced with the Illumina/Solexa GA-II X (PGTB,
Plateforme Génome transcriptome de Bordeaux), yielded
17,196,106 paired end reads. Then, de novo assembly with
Velvet and TGICL software yielded 4,359 contigs. By com-
bining Sanger, Roche-454 and reconstructed FL-cDNA
data, we obtained 2,888,537 long sequences used to con-
struct a long-read pre-assembly with MIRA. We finally



Figure 1 Schematic representation of the bioinformatic analysis.
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obtained 44,272 contigs, with a mean sequence length of
937 bp (standard deviation: 521 bp; N50: 1,118 bp, defined
as the largest entity E such that at least half of the total
size of the entities is contained in entities larger than E;
see the black curve in Additional file 4).

Short-read pre-assembly
A total of 961,151,725 Illumina reads (set #2B and #5),
80.2% corresponding to Illumina sequences generated in
the present study, allowed to generate a short-read pre-
assembly of 230,595 contigs with a mean sequence
length of 877 bp (SD 1,069 bp; N50 1,758 bp, red curve
in Additional file 4).

Meta-assembly
The meta-assembly was generated with MIRA. Using
the 274,867 pre-assembly contigs (44,272 long-read con-
tigs and 230,595 short-read contigs), we obtained a final
assembly (OCV3) consisting of 192,097 contigs, which is
available from the Quercus portal (https://w3.pierroton.
inra.fr/QuercusPortal/index.php?p=est). In total, 1,623
(0.84%) and 2,747 (1.43%) contigs yielded significant hits
with the oak chloroplast and mitochondrial genomes, re-
spectively. The mean contig size for OCV3 was 1,037 bp
(SD 1,150 bp; N50 1,879 bp, green curve in Additional
file 4) which is close to the mean gene length in eukary-
otes (1,346 bp, [23]). By assembling short and long reads
together in a single unigene set, we were able to improve
the first oak transcriptome assembly (OCV1) established
by Ueno et al. 2010 [8] from Sanger and Roche-454
reads (Table 1B). Simultaneously, we improved OCV2
recently established for a single Q. robur genotype
(Table 1B, [22]). It is difficult to compare the size of the
meta-assembly (about 192 thousand contigs) with those
of other projects with similar aims and approaches, be-
cause it is influenced by genome and transcriptome sizes,
the diversity of tissues/developmental stages/environmen-
tal conditions, the number of cDNA sequences produced,
and the assembly method used. However, if we consider
recent studies on forest trees, the OCV3 meta-assembly is

https://w3.pierroton.inra.fr/QuercusPortal/index.php?p=est
https://w3.pierroton.inra.fr/QuercusPortal/index.php?p=est


Table 1 Description of oak transcriptomic assemblies

A/ Assembly Long-reads Short-reads OCV3

Number of trimmed sequences considered in the assembly 2,888,537 417,337,626 /

Number of trimmed sequences incorporated in the assembly 2,003,295 417,337,626 274,867

Number of contigs > 100bp, after redundancy reduction 44,272 230,595 192,097

Number of singletons 300,373 40,119,145 /

Consensus (total bp) / / 199,278,344

Average contig size (bp) 937 877 1,037

B/ OCV1 OCV2 OCV3

Number of contigs 69,154 65,712 192,097

Mean length (bp) 705 1,003 1,037

Median (bp) 606 734 597

N50 (bp) 908 1,545 1,879

Consensus (bp) 48,751,826 65,913,455 199,278,344

Nb of annotated contigs in SwissProt 34,614 38,292 63,857

Nb of unique SwissProt ID 13,333 16,429 17,476

C/ Number of contigs > 100bp,
after redundancy reduction

Assembly
(total bp)

Mean contig
size (bp)

Median contig
size (bp)

N50 (bp)

OCV3-91k 90,786 148,088,893 1,631 1,292 2,329

OCV3-101k 101,311 51,187,294 505 328 697

OCV3 192,097 199,278,344 1,037 597 1,879

A Characteristics of the long-reads, short-reads and meta assemblies (OCV3).
B Side-by-side comparison of oak unigene sets (OCV1: assembly from Ueno et al. [8], OCV2: assembly from Tarkka et al. [22], and OCV3: this paper). N50 length is
defined as the length for which the collection of all contigs of that length or longer contains at least half of the total of the lengths of the contigs.
C Comparison between OCV3-91k (Unigenes with BlastX hit) and OCV3-101k (Unigenes without BlastX hit) subsets: assembled sequences (in bp), mean and median
contig sizes, N50.
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of a similar size to those of Pseudotsuga menziesii
(170,859 contigs [24]) and Pinus pinaster (210,513 contigs
[25]), larger than that of Castanea molissima (40,039 con-
tigs [26]), and smaller than of Pinus contorta (303,450
contigs, [27]).

Functional annotation
Sequence similarity to SwissProt accessions and other plant
proteomes
We characterized the oak transcriptome by a similarity-
based approach, using proteomes of closely related plant
species and SwissProt accessions. We used the BlastX al-
gorithm to align the 192,097 OCV3 contigs with these
proteomes, and obtained a significant match for 90,786
oak contigs (referred to hereafter as the OCV3-91 k sub-
set). Similar numbers of hits were obtained with the se-
lected gene models: 77,784 hits in Arabidopsis thaliana
(At), the species most phylogenetically distant from
Table 2 BlastX results for OCV3 contigs against SwissProt dat
Vitis vinifera, Populus trichocarpa, Eucalyptus grandis, Arabido

Prunus Vitis Populu

Nb of oak contigs with a hit 84,852 82,655 81,849

Nb of proteins with a hit 18,587 16,573 23,053

total nb of proteins or accessions 28,701 26,346 45,033
Quercus considered, to 84,852 hits in Prunus persica, the
closest species considered (Table 2). OCV3 contigs
matched a total of 17,476 different SwissProt accessions
and between 16,573 (Vitis vinifera) and 23,053 (Populus
trichocarpa) sequences in plant gene models. The num-
ber of oak contigs displaying similarity in terms of de-
duced amino-acid sequences with the content of at least
one of the databases studied (90,786) was much greater
than the number of genes present in oak (about 30,000,
as estimated from BAC-end sequences, [5]). This over-
estimation may be due to contig redundancy, contig
fragmentation (contig breaks in low-coverage regions),
unassembled alleles, particularly for highly polymorphic
diploid species of this type, with a mean of one SNP or
Indel every 25–30 bp [28], splicing variants, sequencing
errors, or sequence read misattribution between closely
related paralogs due to the presence of recently dupli-
cated genes. We found that the 18,587 Prunus persica
abase and the proteomes of five species: Prunus persica,
psis thaliana

s Eucalyptus Arabidopsis SwissProt All

78,143 77,784 63,857 90,786

22,338 18,661 17,476 /

46,315 35,386 540,732 /
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gene model sequences with a hit in OCV3-91 k matched,
on average, 4.6 oak contigs each, highlighting the redun-
dant nature of OCV3-91 k. However, we also found that
13,536 (i.e. 72.8%) of the matched Prunus gene model se-
quences displayed 75% coverage with a single oak contig
each, indicating that many of the oak genes for which a
closely related gene was present in peach were well assem-
bled. However, paralog assembly may also have contrib-
uted to erroneous gene predictions. In the species with
the closest phylogenetic relationship to Quercus analyzed
here (i.e. Prunus persica) more than 19,000 different genes
were tagged, corresponding to about two thirds of the
protein-coding genes of oak.
The remaining 101,311 contigs without BlastX hits in

SwissProt or the selected plant gene models (referred to
hereafter as the OCV3-101 k subset) were then aligned
(using BlastX: e-value 1e−5 -E 2 -W 5) with the nr pro-
tein database and the genome sequence of Prunus per-
sica (using BLAT and EST2 genome software, [29]).
Only 2.4% of these contigs could be aligned with se-
quences in the nr protein database. These contigs also
diverged much more than the OCV3-91 k subset
(Table 3A) from the Prunus persica genome. Matches to
the Prunus persica genome sequence were obtained for
59% of the OCV3-91 k contigs but only 6.2% of the
OCV3-101 k contigs. Moreover, we successfully mapped
64,001 OCV3-91 k and only 8,380 OCV3-101 k contigs
onto 17,038 and 5,265 Prunus persica gene models, re-
spectively (Table 3B). The number of exons per gene
model was three times higher for OCV3-91 k than for
OCV3-101 k. All together, these results indicate that
OCV3-101 k consisted mostly of non-coding RNA. Be-
sides, OCV3-91 k contained 46,415 (51%) contigs sup-
ported by short reads only, whereas OCV3-101 k
contained 86,575 (85%) such contigs. The shorter mean
size of contigs in OCV3-101 k may also have resulted in
Table 3 Mapping results against the Prunus persica genome a

A OCV3

Number of sequences 192,097

Number of mapped sequences 59,851 (31.1%)

Number of matches 64,292

Number of matched exons 209,795

Number of exons/model 3.26

Mean of identity percent 83.99%

Number of monoexonics 29,767

B

Number of sequences

Number of mapped contigs

Number of P. persica gene models

A Mapping results (BLAT software) for OCV3, OCV3-91k (Unigenes with BlastX hit) and
B Mapping results (BlastN) for OCV3-91k and OCV3-101k against the Prunus persica
the presence of less biological meaningful information.
Indeed, mean and median contig sizes were three times
greater in OCV3-91 k than in OCV3-101 k (Table 1C),
consistent with the presence of a larger amount of valu-
able information for functional characterization of the
oak transcriptome in OCV3-91 k. We therefore concen-
trated on OCV3-91 k for subsequent analyses.

Functional annotation and GO classification of oak
transcripts
We assigned functions to the OCV3-91 k contigs with
the Gene Ontology (GO) classification, which provides a
standardized set of terms to describe the genes and gene
products of different species. First, we designated func-
tions for each contigs on the basis of matches with the
Pfam database. A total of 1,112 GO terms to 24,999 con-
tigs (i.e. 27.54%) were identified. A second series of GO
annotation was based on the GOA database. For the
77,784 OCV3-91 k contigs giving significant matches to
A. thaliana proteins, 65,198 (i.e. 71.82%) were annotated
with at least one GO term. We retrieved the functional
categories associated with their best Blast hits in Swis-
sProt, and this yielded 13,355 GO terms for 61,139 con-
tigs. Based on best Blast hit results, we were able to
associate 76,457 contigs with GO terms in this second
round. Overall, at least one GO term was assigned to
77,277 contigs (i.e. 85.12% of OCV3-91 k) (Additional
file 5); 24,180 of these contigs (31.29%) were associated
with GO terms from both series, 819 contigs (1.06%)
were associated with GO terms from the first series, and
52,278 contigs (67.65%) were associated with GO terms
from the second series. For the 77,277 contigs associated
with at least one GO term, 72,558 were associated with
1,820 GO terms (70%) for Biological Processes (BP) ,
72,235 were associated with 267 GO terms (10%) for
Cellular Components (CC) and 71,458 were associated
nd gene models

(OCV3-91k) (OCV3-101k)

90,786 101,311

53,600(59%) 6,251 (6.2%)

54,954 9,338

200,252 9,543

3.64 1.02

82.75% 91.26%

20,591 9,176

(OCV3-91k) (OCV3-101k)

90,786 101,311

64,001 (70.5%) 8,380 (8.27%)

17,038 (59.4%) 5,265 (18.3%)

OCV3-101k (unigenes without BlastX hit) against the Prunus persica genome.
gene models.
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with 515 GO terms (20%) for Molecular Functions (MF)
, accounting for a total of 2,602 GO terms (Additional
file 6). These proportions are similar to those in the
GOA database: 25,725 (66%), 3,474 (9%) and 9,685
(25%) GO terms for BP, CC and MF, respectively. Setting
the Gene Ontology graph level to 2 decreased the num-
ber of GO terms considerably, to 18 for BP, 11 for CC
and 12 for MF (Figure 2). The most abundant GO Slim
terms were cellular process (GO: 0009987; 56,132 con-
tigs), binding (GO:0005488; 48,227 contigs) and cell
(GO:0005623; 66,082 contigs), for BP, MF and CC, re-
spectively. Comparing the ranking of the main GO terms
with those for other phylogenetically related species
(e.g. Castanea dentata) and more distantly related
species (e.g. Eucalyptus grandis, which is also a euro-
sids, and Pseudotsuga menziesii, from the Pinaceae), a
remarkable match was found for the GO category Mo-
lecular Functions, for which sufficient comparable
data were available for the four species (Additional file
7). These results suggest that a large proportion of the
plant’s genes were present in OCV3-91 k. Finally, it
would be tempting to highlight the differences in func-
tional classes between the OCV3-91 K sequences associ-
ated with GO terms and At GO annotations. However, we
believe that such an analysis would be misleading, given
Figure 2 Gene ontology classification of OCV3-91 k contigs. GO Slim t
Red: Biological process. Green: Cellular component. Blue: Molecular functio
the complex nature of any transcript catalog. We will
wait until the generation of an oak gene model before
carrying out such analyses, to avoid making erroneous
predictions [30].

Comparative genomics and the detection of conserved
orthologous sequences common to peach
The rosids comprise two major clades of orders [31]: the
fabids (i.e. eurosids I) and the malvids (i.e. eurosids II).
Quercus species are fabids and are relatively closely re-
lated to Prunus (Figure 3A). BlastX alignment of the
OCV3-91 k contigs with the malvid (Arabidopsis, Euca-
lyptus), fabid (peach, poplar) and basal rosid (grape)
gene models (Table 2) demonstrated that evolutionary
relationships (based on the Ks metric, see the Methods
section) between oak and fabid representatives (red dis-
tribution in Figure 3B) were stronger than those be-
tween oak and malvid representatives (blue distribution
in Figure 3B). In particular, 62,593 OCV-91 k contigs
yielded BlastX hits with Prunus persica (closely related
to oak) model genes, 9,549 of which (corresponding to
60,189 oak contigs) were located on eight major scaf-
folds corresponding to the eight chromosomes of the
peach genome. These 9,549 orthologous sequences
(listed in Additional file 8) delivered the following
erms contributing to the annotation of the 77,277 OCV3_91k contigs.
n.



A

C

B

Figure 3 Oak genome orthologous relationships. A. Simplified phylogenic tree placing oaks among sequenced malvid (Arabidopsis, eucalyptus),
fabids (peach, poplar) and basal rosid (grape) genomes. B. Distribution of Ks values (x-axis) for orthologous gene pairs between oak and malvids
(Arabidopsis, eucalyptus: in blue), between oak and fabids (peach, poplar: in red) and between oak and grape (in green). Grape is considered to be the
modern representative of the ancestral eudicot genome. C. Distribution of peach gene models (blue curve) and 9,549 orthologous gene pairs with oak
(red curve) along the 8 peach chromosomes. Peach chromosomes are illustrated as a mosaic of 7 colours highlighting the features of the ancestral
eudicot chromosome (A1, A4, A7, A10, A13, A16, A19) as in [19].
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chromosomal relationship density: chromosome #1: 5,910
peach genes (blue curve in Figure 3C)/2,104 oak ortho-
logs (red curve), chromosome #2: 3,162/1,096, chromo-
somes #3: 2,932/1,001, chromosome #4: 3,373/1,128,
chromosome #5: 2,469/883, chromosome #6: 3,685/
1304, chromosome #7: 2,884/1,054, chromosome #8:
2,841/979.
This similarity in genome organization between oak
and peach was used as an input to highlight the collin-
earity between the oak and peach genomes and to in-
vestigate whether genetic information from one species
can be transferred to another, particularly as concerns
phenology-related QTLs. In particular, further genetic
mapping of the 9,549 characterized COS markers
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between oak and peach will immediately illuminate the
synteny relationships with the malvids and fabids and
ultimately evolutionary history of the 12 oak chromo-
somes from the eudicot ancestral genome reported as
structured in 7 protochromosomes. Finally the deliv-
ered heterologous oak/peach map offer the opportunity
to select oak genes either covering the entire peach
genome or specifically located in a peach locus of inter-
est related to a specific agronomic trait.

Expression pattern for oak transcripts
This analysis was based on the high-throughput sequen-
cing (Illumina technology) of six cDNA libraries (listed
in Additional file 1): ecodB, eco-dormant bud; swB,
swelling bud; XY, secondary differentiating xylem; RO,
root; LE, leaf and CA, in vitro dedifferentiated callus.
Two approaches were used to determine the tissue-
related expression of oak contigs. First, the contigs were
classified according to the tissue of origin of their reads,
and the tissues were clustered on the basis of their ex-
pression profiles. Second, statistical tests were used to
identify genes displaying significant differential expression
between pairs of tissues. For biological interpretation, we
focused on the comparison between two developmental
stages of vegetative bud dormancy release: eco-dormancy
(ecodB) and swelling bud before bud break (swB) (Table 4).
The reference for this analysis was the OCV3-91 k subset.

Identification of transcripts differentially expressed across a
panel of tissues
An inventory of the numbers of contigs present in sev-
eral oak tissues or specific to a given tissue revealed that
RO (roots harvested from six-month-old seedlings after
exposure to cold, heat, high CO2 concentration, water
stress and hypoxia) made the greatest contribution to the
OCV3-91 k contigs, with 78,502 (86.47%) matching con-
tigs (Additional file 9). Adding a second tissue (endodB)
to the RO dataset further increased the number of contigs
by 6.7% (6,084 new contigs). Successive additional inclu-
sions of LE, CA, swB and XY increased the number of
contigs by 2.43% (2,202 contigs), 1.01% (919 contigs),
0.57% (521 contigs) and 0.31% (283 contigs), respectively.
We found that 56,672 contigs (62.42%) contained reads
from all six tissues. These 56,672 contigs were particularly
long, with a mean length of 2,025 bp. We also found that
66,885, 73,305, 78,480 and 83,601 contigs contained reads
from at least 5, 4, 3, and 2 tissues, respectively. Finally, in
total, 4,910 contigs were associated with a single tissue
type: 1,756 were specific to RO, 1,039 to ecoDB, 977 to
LE, 514 to CA, 341 to swB and 283 to XY). The mean
length of these contigs was 684 bp (Additional file 10). As
expected, a large part of the transcriptome is shared by all
tissues. Nevertheless, sequencing of diverse tissues allowed
to identify transcripts specific to each of them and was
required for comparing expression level of genes involved
in dormancy. The list of “tissue-specific” transcripts, with
annotations, is provided in Additional file 11. These “tis-
sue-specific” transcriptomes yielded valuable and specific
additive information for inclusion in the catalog of oak
transcripts, which can be accessed by interested scientists.
Normalized read counts are provided for OCV3-91 K and
OCV3-101 K in Additional file 12.
Tissues were then clustered according to their tran-

scriptomic distances, based on the 91 k annotated con-
tigs. Two major groups were identified on the resulting
dendrogram, shown in Additional file 13. The first clus-
ter included tissues resulting from primary (bud) and
secondary (xylem) meristem activities. Interestingly,
encodB clustered more closely with XY than swB, sug-
gesting that very different regulatory networks control
these two phenological phases of bud dormancy release.
In the second cluster the two highly specialized tissues,
RO and LE, clustered closer to each other than to CA,
probably due to the very specific nature of the totipotent
state of the in vitro dedifferentiated callus tissue.
We used three methods to identify contigs displaying

differential expression between each pair of tissues: R
statistics, EdgeR, and DESeq (see the Methods section).
RO and XY were ranked first in terms of the number of
contigs with expression levels different from those in
other tissues (Figure 4), whereas ecodB showed the low-
est level of differential expression, particularly when
compared with swB and XY, consistent with the cluster-
ing result. The results for in vitro callus tissue (toti-
potent state) were not consistent with our initial
expectations, i.e. the expression of a much larger array
of “specific” genes than the more specialized tissues,
such as root, leaf or xylem.

Identification of candidate genes for differential expression
during bud dormancy release
The mapping of the 59,050,722 ecodB and 63,191,029
swB paired-reads onto the OCV3 assembly was success-
ful for 21,137,289 ecodB reads and 23,699,876 swB
reads. The ecodB and swB reads were integrated into
153,783 OCV3 contigs. The ecodB and swB reads were
distributed between 136,441 and 134,875 contigs, respect-
ively. Reads from both libraries were simultaneously de-
tected in 117,533 contigs, whereas 18,908 contigs
contained reads from ecodB only and 17,342 contigs
contained reads from swB only. Analysis of the 153,783
integrated contigs with R statistics (see the Methods
section) identified 6,004 (3.13%) contigs displaying dif-
ferential expression (R > 8), whereas the DESeq and
EdgeR R Bioconductor packages detected 823 (0.43%)
and 1,632 (0.85%) differentially expressed contigs, re-
spectively (FDR 5%). Only 23 contigs were identified by
all three methods (Additional file 14) and 862 contigs



Table 4 Subset of genes differentially expressed between Ecodormancy and Swelling buds stages

Biological process Gene function Ath
accession
number

Fold change ratio
(Ecodormant
bud /Swelling buds)

position in the functional
gene network

Genes up-regulated in Ecodormant buds

Ribosome biogenesis T13C7.4 (60S ribosomal
protein L14)

AT2G20450 >100

Ribosome biogenesis F12L6.5 (ribosomal protein
L23A)

AT2G39460 >100

Ribosome biogenesis T9J14.13 (ribosomal protei
S24e)

AT3G04920 >100

Ribosome biogenesis Ribosomal protein L232A AT3G55280 >100

Ribosome biogenesis T25K17.40 (ribosomal protein
L31e)

AT4G26230 >100

Ribosome biogenesis K16F13.2 (40S ribosomal
protein S27-3)

AT5G47930 >100

Ribosome biogenesis MUP24.13 (60S ribosomal
protein L12)

AT5G60670 >100

Ribosome biogenesis F10K1.22 (60S ribosomal
protein L35a)

AT1G07070 >100

Ribosome biogenesis T2P11.7 (60S ribosomal
protein L34)

AT1G26880 >100

Ribosome biogenesis F19K6.12 (60S ribosomal
protein L37)

AT1G52300 >100

Ribosome biogenesis STV1 (ribosomal protein L24) AT3G53020 >100

Ribosome biogenesis Zinc-binding ribosomal
protein

AT3G60245 >100

Ribosome biogenesis PRPL11 (plastid ribosomal
proteinL11)

AT1G32990 >100

Ubiquitin dependent
rotein catabolic process

UBC28 (ubiquitin conjugating
enzyme 28)

AT1G64230 >100 Neighbors of sbi-miR169r-3p_
agpf_35

Ubiquitin dependent
protein catabolic process

FKF1 (flavin-binding kelch
repeat F box 1)

AT1G68050 >100 Neighbors of ELF3, Neighbors
of GI

Ubiquitin dependent
protein catabolic process

UBQ11 (ubiquitin 11) AT4G05050 >100 Neighbors of heat shock

Ubiquitin dependent
protein catabolic process

ASK2 (Arabidopsis SKP-Like2) AT5G42190 >100

Ubiquitin dependent
protein catabolic process

ATUBA1 (ubiquitin activating
enzyme 1)

AT2G30110 >100

Response to cold DREB1A (DREB subfamily A-1) AT4G25480 >100 Neighbors of cold stress, DREB
and CBF

Response to cold CBF1 (C repeat/DRE binding
factor 1)

AT4G25490 >100 Neighbors of cold stress, DREB
and CBF

Response to cold 1 (low expression of
osmotically responsive gene

AT1G56070 >100 Neighbors of cold stress

Response to cold LTI30 (Low temperature
induce temperature)

AT3G50970 >30 Neighbors of cold stres, ABA
and CBF

Response to cold RCI3 (rare cold inducible
gene 3)

AT1G05260 >100 Neighbors of cold stress

Response to cold Fib (Fibbrilin 1A) AT4G04020 >50 Neighbors of ABA

Response to water
deprivation

ATBI-1 (Bax inhibitor 1) AT5G47120 >100 Neighbors of drought and COLI

Response to water
deprivation

SIP3 (CBL interacting protein
kinase 6)

AT4G30960 >100

Lesur et al. BMC Genomics  (2015) 16:112 Page 9 of 22



Table 4 Subset of genes differentially expressed between Ecodormancy and Swelling buds stages (Continued)

Response to water
deprivation

CBL9 (calcineurin B like
protein 9)

AT5G47100 >100 Neighbors of ABA, drought
and cold

Response to gibberelin
stimulus

Gasa1 (GAST1 protein
homolg1)

AT1G75750 >100

Response to gibberelin
stimulus

Gasa2 (GAST1 protein
homolg2)

AT4G09610 >100

Response to gibberelin
stimulus

AGL20 (Agamous like 20) AT2G45660 >100 Neighbors of AP1

Response to high light
intensity

Bag6 (Bcl-2-associated
athanogene 6)

AT2G46240 >100 Neighbors of heat shock

Genes up-regulated in swelling buds

DNA dependent DNA
replication initiation

MCM6 AT5G44635 >3

DNA dependent DNA
replication initiation

MCM3 AT5G46280 >3

DNA dependent DNA
replication initiation

PRL (prolifera) AT4G02060 >2 Neighbors of cell cycle , DNA
replication

DNA dependent DNA
replication initiation

CDC45 (cell division cycle 45) AT3G25100 >6 Neighbors of mitosis , DNA
replication

DNA dependent DNA
replication initiation

T12C22.19 (MCM2) AT1G44900 >2

Regulation of cell cycle
and cell division

CYCB 1;4 (cyclin dependent
protein kinase)

AT2G26760 >10

Regulation of cell cycle
and cell division

CYCD1;1 (cyclin D-type
protein)

AT1G70210 >10 Neighbors of CYCD1;1 and CYCD1;3

Regulation of cell cycle and cell division CYCD5;1 (cyclin D-type
protein)

AT4G37630 >100 Neighbors of cell cycle

Regulation of cell cycle
and cell division

CYCA3;2 (cyclin D-type
protein)

AT1G47210 >2 Neighbors of morphogenesis and
cell differenciation

Regulation of cell cycle
and cell division

CYCD3;1 (cyclin D-type
protein)

AT4G34160 >7 Neighbors of CYCD1;1 and CYCD1;3

Response to auxin OBP1 (OBF binding protein) AT3G50410 >3 Neighbors of cell cycle

Response to auxin Aux1 (auxin influx
transporter)

AT2G38120 >6 Neighbors of primordium elongation
s and cell differenciation

Response to gibberellin Gasa4 (Gast1 protein
homolog 4)

AT5G15230 >10 Neighbors of heat shock and flower
development

Response to gibberellin Myb26 (MYB domain
protein 26)

AT3G13890 >100 Neighbors of cell development

Response to
brassinosteroid

Bas1 (cythochrom P450) AT2G26710 >7 Neighbors of leaf development and
hormone

response to brassinosteroid T5I8.2 (hercule receptor
protein kinase 2)

AT1G30570 >40 Neighbors of brassinolide

Response to sucrose
stimulation

GBF6 (leucine zipper11) AT4G34590 >2

Response to sucrose
stimulation

GASA6 (GA stimulated
arabidopsis 6)

AT1G74670 >10

The most differentially expressed GO terms identified in the enrichment analysis are indicated in the first column for each dormancy stage.
The localization of the genes in the functional network is indicated in the last column when available.
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were identified by at least two statistical methods (Figure 5
and Additional file 15). In total, 663 of these 862 contigs
belonged to OCV3-91 k. GO term enrichment analysis
was performed for these 663 differentially expressed
contigs, with Pathway Studio software. Both the Gene and
Plant Ontology databases were used.
Among the 663 contigs, 340 were found to be upregu-

lated in ecodormant buds (146 “specifically” at this



Figure 4 OCV3-91 k contigs differentially expressed between six
pairs of tissues (ecodB: ecodormant bud, swB: swelling bud, XY:
differentiating secondary xylem, RO: root, LE: leaf and CA:
dedifferentiated in vitro callus). Number of significantly differentially
expressed contigs identified by three (upper number) and two (lower
number) statistical methods.
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phenological stage and 194 were more strongly expressed
in ecodB than in swB, Additional file 16). For this first set
of genes, enrichment analysis for pathways and groups
(EAPG, p-value < 0.05) yielded 202, 71 and 137 hits for
the biological process (BP), cellular component (CC) and
molecular function (MF) categories of the Gene Ontology
database, respectively (Additional file 16). The five BP
terms displaying the highest level of enrichment corre-
sponded to “ribosome biogenesis”, “translation”, “response
to cold”, “response to water deprivation” and “response to
cadmium ion”. Similar results were reported by Ueno et
Figure 5 Venn diagram showing the number of differentially
expressed genes during bud dormancy release identified by 3
statistical algorithms; 6,004 differentially expressed contigs
were identified by the R statistics method, 823 by DESeq and
1,632 by EdgeR (see Materials and Methods).
al. in 2013 [32] for 454 sequencing on eco-dormant buds.
In this previous investigation, a forcing test was used to
determine the dormancy status of the buds. No such test
was carried out in our study. The similarity in BP terms
between the two studies suggests that the buds analyzed
here were also in the ecodormancy phase. The first five
MF groups related to “structural constituent of ribosome”,
“transmembrane receptor activity”, “calmodulin binding”,
“translation factor activity”, “nucleic acid binding” and
“nucleoside-triphosphate activity”. Finally, 86 significant
hits (EAPG, p < 0.05) were obtained against the Plant
Ontology database, with the ontologies displaying the
highest levels of differential expression corresponding to
“guard cell”, “stamen”, “LP.08 eight leaves visible”, “LP.06
six leaves visible” and “male gametophyte”.
A total of 323 contigs were upregulated in swelling

buds, 44 being “specific” to this phenological stage and
279 being more strongly expressed in swB than in
ecodB (Additional file 16). For this second set of genes,
192, 45 and 148 EAPG hits (p value < 0.05) were ob-
tained with the BP, CC and MF terms of the Gene
Ontology database, respectively. The five BP categories
displaying the highest level of enrichment were “DNA-
dependent DNA replication initiation”, “regulation of
cell cycle”, “DNA unwinding involved in replication”,
“cell cycle and microtubule-based movement activity”.
The MF categories displaying the highest level of en-
richment were “carboxylesterase activity”, “lipid bind-
ing”, “microtubule motor activity”, “DNA-dependent
ATPase activity” and “cyclin-dependent protein kinase
regulator activity”. Finally, 102 significant hits (EAPG;
p < 0.05) were obtained against the Plant Ontology
database, the BP categories displaying the highest level
of enrichment being “IL.00 inflorescence just visible”,
“pedicel”, “F mature embryo stage”, “expanded cotyle-
don stage” and “4 anthesis groups”.
Subnetwork enrichment analysis (FNSE function in

Pathway Studio; p < 0.05) was then performed for this
set of 663 differentially expressed contigs (Additional
file 16). Two distinct subnetworks were constructed
from Arabidopsis homologs of ecodB and swB contigs
with Pathway Studio; they were merged, as presented in
Figure 6. Mean expression values shown in red (more
strongly expressed in ecodB) and blue (more strongly
expressed in swB) highlight the differences in central
hubs and associated partners between these two pheno-
logical stages. EAPG (p < 0.05) on entities of these two
subnetworks clearly supported our view that the gene
expression patterns in eco-dormant and swelling buds
were truly different. Indeed, the central hubs identified
during ecodormancy related mostly to resistance to
cold stress and water deprivation, whereas those identi-
fied in swelling buds related mostly to cell division and
development (see discussion section).



Figure 6 Functional network predicted from the list of genes upregulated in ecodormant bud (in red) or swelling bud (in blue) based
on the subset of 663 differentially expressed OCV3-91 k contigs (listed in Additional file 16). It is possible to zoom on particular parts of
the network in the .tif file.
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Discussion
The unigene set established in this study constitutes the
most comprehensive transcript catalog assembled to date
for the genus Quercus. We have also used this resource to
design a high-density SNP array, and we have validated
the SNPs detected in silico, by evaluated their Mendelian
segregation in four pedigrees and determining their level
of diversity in four white European oak species [33]. We
discuss here the ways in which this resource improves our
understanding of the molecular mechanisms involved in
vegetative bud dormancy release, by comparing the abun-
dance of mRNAs at two phenological stages: ecodormant
buds and swelling buds just before bud break. This section
therefore provides an overview of the molecular mecha-
nisms involved in dormancy release in pedunculate oak in
light of both the ontologies and central hubs identified in
the enrichment analysis (Figure 6). Tissue specificity was
also considered, in an attempt to identify specific markers
of these two phenological stages.

Transcripts upregulated during ecodormancy
In trees, ecodormancy occurs when unfavorable environ-
mental conditions (mostly cold temperatures in temper-
ate regions) prevent bud break in early spring. The
molecular machinery involved in ecodormancy is poorly
understood, but recent studies have reported an accu-
mulation of transcripts relating to cold stress, water
deprivation and hormonal stimuli [34].

Ribosome biogenesis
In total, 17 genes belonged to this functional category, a
key component of the regulation of gene expression
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(Table 4). Thirteen of these genes were expressed in a
bud-specific manner, but four were expressed in all the
tissues studied. Most of the bud-specific genes encoded
proteins very similar to ribosomal proteins (AT2G20450,
AT2G39460.1, AT3G04920, AT3G55280, AT4G26230, AT5
G47930, AT5G60670, AT1G07070, AT1G26880, AT1G52
300 and AT3G53020), but one (AT3G60245) encoded a
zinc-binding ribosomal protein. In plants, exposure to low
temperatures rapidly leads to major changes in the prote-
ome, probably driven to some extent by changes in ribo-
some biosynthesis modulated by changes in levels of
expression of the structural components of ribosomes.
Degenhardt et al. [34] reported that the two paralogs of
the Arabidopsis thaliana RPL23 gene (also identified in
this ontology) responded coordinately to developmental
and stress stimuli, such as cold acclimation. A gene
(AT1G32990) encoding a plastid ribosome protein
(PRPL11) was also identified in this functional category.
PRPs are major components of the plastid ribosome. In
2014, Song et al. [35] showed, in a rice mutant with
PRP protein downregulated, that the accumulation of
the corresponding transcript was strongly regulated by
cold stress. They hypothesized that this gene was essen-
tial for normal chloroplast development during freezing
tolerance.
In ecodormant buds, the cells have to deal with the in-

stability of biomolecules. The synthesis of new ribo-
somes may facilitate maintenance of the translational
machinery of the cell under unfavorable conditions. In
the meantime, protein catabolism should eliminate mal-
formed or non-functional proteins. We found significant
enrichment for the term “ubiquitin-dependent protein
catabolic process”, which was represented by five genes
(“ubiquitin-dependent protein catabolic process”: UBC28,
FKF1, UBQ11, ASK2, ATUBA1, Additional file 16).

Response to cold
In total, 15 genes belonged to this functional category,
four of which were expressed specifically in buds, five of
which were overexpressed in buds (fold-change ratio ≥10
with respect to the other tissues of the panel) and six of
which were constitutively expressed (Table 4). Two
relevant transcription factors for cold acclimation
(DREB1A and CBF1) were identified in this study. These
transcription factors are known to regulate the expression
of many cold-responsive genes [36] promoting the initi-
ation of cold acclimation and freezing tolerance in plants.
Their overexpression in ecodormant buds may therefore
increase the tolerance of meristematic cells to low
temperature. A Los1 gene encoding a translation elong-
ation factor 2-like protein was also identified in this cat-
egory. This gene has been strongly implicated in the
development of freezing tolerance in Arabidopsis thali-
ana. Guo et al. [37] identified the Los1 gene as a key
regulator of the CBF1/DREB1 complex. Indeed, they
showed that a lack of expression of this gene led to a
lack of translation of the CBF1 and DREB1 transcripts,
resulting in the repression of genes involved in cold ac-
climation. Several cold-responsive genes (members of
the LTI and RCI gene families) were also identified, in-
cluding LTI30, which encodes a dehydrin protein
known to accumulate during cold stress. The expres-
sion of this gene is also tightly regulated by the CBF
transcription factors [38] and ABA, an important hor-
mone involved in seed dormancy. RCI3, which encodes
a rare cold-inducible protein, was also identified. The
precise role of RCI genes in dormancy regulation re-
mains unclear, but several studies have reported the ac-
cumulation of transcripts from these genes in the bud
during dormancy [39], suggesting a possible role in
freezing tolerance. Finally, a Fib gene, encoding a fibril-
lin protein, was also identified. Fibrillins are lipid-
binding proteins known to accumulate under cold
stress. It is thought that they may be involved in the
photoinhibition of PSII during cold stress [40], thereby
protecting the chloroplast against frost damage. This gene
is also regulated by the CBF transcription factor [41].

Response to water deprivation
Eight genes belonged to this functional category (Table 4).
One was specifically expressed in the bud (ATBI-1), three
were overexpressed in the bud (fold-change ratio > 10,
DREB1A, LTI 30 and SIP 3) and four were constitutively
expressed in all the tissues of the panel. Some of these
genes were also identified in the ontology terms corre-
sponding to the response to cold stress, suggesting that
some molecular functions are common to these two bio-
logical processes. ATBI-1 encodes a Bax inhibitor 1 pro-
tein localized in the endoplasmic reticulum. Bax inhibitor
genes were identified in both animals and plants. The pre-
cise molecular function of these genes is poorly under-
stood, but they are probably involved in preventing the
cell death induced by diverse biotic and abiotic stresses
(reviewed by Ishikawa et al. [42]). This suggests that this
gene may be involved in delaying cell death in the bud
during cold stress, enabling the cell to cope with
unfavorable environmental conditions. SIP3 encodes
CBL-interacting protein kinase 6. Once activated, the
products of CBL genes transduce the calcium signal by
phosphorylating downstream signaling components. He
et al. [43] reported that the CBL-interacting protein
kinase 6 of cotton played a role in the drought stress re-
sponse, through regulation of the expression of targeted
genes. Arabidopsis mutants constitutively expressing this
gene are also characterized by an enhanced tolerance to
drought and salt stress, suggesting a possible role of
this transcription factor in adaptation to diverse abiotic
stresses. Finally, CBL9 encodes calcium sensor calcineurin
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B-like 9. Doğramaci et al. [44] reported the involvement
of this calcium sensor protein as a key component of the
ABA signaling pathway. Mutant line overexpressing this
gene was found to be hypersensitive to ABA during seed
germination and seedling growth.

Response to gibberellin stimuli
Five genes belonged to this functional category. Three
genes were overexpressed in the bud (T30D6.7, GASA1
and GASA 3, fold-change ratio from 3 to 10) and two were
constitutively expressed (Table 4). Two of the genes iden-
tified (GASA1 and GASA3) encode a GA-stimulated tran-
script (GAST) homolog. Da Silveira Falavigna et al. [39]
reported the overexpression of GAST genes in the dor-
mant buds of apple trees. A similar result was also re-
ported by Doğramaci et al. [44] for leafy spurge. The
precise role of GAST genes in dormancy regulation re-
mains poorly understood, but these authors suggested a
key role for gibberellin in dormancy regulation. The
AGL20 gene, another gene from this category, encoding a
protein very similar to the AGAMOUS-LIKE 20 protein,
was also identified. AGL-20 is a MADS box gene that has
been reported to encode an integrator of several environ-
mental stimuli. Its level of expression is correlated with
flowering time in Arabidopsis thaliana [45]. Trainin et al.
[46] reported the possible involvement of polymorphism
of this gene in the regulation of dormancy release in apri-
cot, suggesting a possible role for AGL20 in the breaking
of dormancy.

Response to high light intensity
Three genes were identified in this category. One was
specifically expressed in buds (RPL23AB, also involved
in ribosome biosynthesis), one was overexpressed in bud
(BAG6, fold-change ≥ 10) and one was constitutively
expressed (T1P17.2). BAG proteins are much less well
understood in plants than in animals. BAG proteins are
characterized by a BAG domain that interacts with the
ATPase domain of HSP 70/HSC70. In Arabidopsis thali-
ana, BAG proteins are encoded by an eight-member
multigene family thought to be involved in programmed
cell death through calcium signaling [47]. Kobayashi et
al. [48] described a possible role for plant BAG proteins
in floral transition, through activation of the expression
of the CONSTANS gene. To our knowledge, our study is
the first to report the overexpression of this gene during
ecodormancy.

Transcripts upregulated in the swelling bud
The mechanisms underlying bud break have been less
thoroughly studied than those underlying ecodormancy
and endodormancy. The ontology terms associated with
this subset of genes correspond to cell division (Additional
file 16), indicating a “restarting” of mitotic activity in the
meristematic cells. This reinitiation of mitosis must occur
before bud break, when environmental conditions become
favorable.

DNA-dependent DNA replication initiation
Five genes belonged to this category (Table 4). None
were specifically or preferentially expressed in the highly
specialized tissues of the bud. Four of these genes
(AT5G44635, AT1G44900, AT5G46280 and AT4G02060)
encode proteins very similar to minichromosome main-
tenance proteins (MCM proteins). In plants, MCM pro-
teins have been implicated in cell division and are
responsible for ensuring that the DNA of the cell is rep-
licated only once per cell division. MCM proteins are
encoded by a six-member multigene family and they
interact with each other to form a complex. MCM pro-
teins are relatively well characterized in plants. We iden-
tified MCM6 (AT5G44635) in this study, a gene that has
been reported to be essential for normal plant growth
and development [49]. Dang et al. [50] showed that its
expression was induced during salt and cold stress. This
gene is also strongly expressed in active dividing tissue,
suggesting a major effect of MCM6 during cell cycle and
proliferation [50]. A Prolifera gene (PRL) was also found
to be upregulated. PRL also belongs to the MCM family
and encodes an essential component of the DNA repli-
cation apparatus operating during the S-phase of the cell
cycle. This gene is known to be strongly expressed dur-
ing plant development. Springer et al. [51] reported this
gene to be particularly strongly expressed in dividing
cells during embryo development. They subsequently
[52] showed that the PRL gene was also expressed in the
cells responsible for initiating flower primordia. Finally,
a CDC45 gene from this category was also identified.
Several authors have suggested that the product of the
CDC45 gene may function with the MCM complex, be-
cause several genetic and biochemical interactions be-
tween these components have been reported (reviewed
by Steven et al. [53]). Other authors (e.g. Zou et al. [54])
have demonstrated particular interactions between this
gene and the MCM2 gene (also identified in our study,
T12C22.19) in DNA elongation during the cell cycle.
These findings are consistent with a strong reinitiation
of mitotic activity in the meristematic cells of the swell-
ing bud, enabling the bud to burst when environmental
conditions become favorable.

Regulation of the cell cycle and cell division
This functional category was defined by merging two
highly similar ontologies (the cell cycle and regulation of
the cell cycle ontologies). It included 13 genes, but the re-
dundancy rate was high because most of the cyclin
(CYCB: cyclin-dependent protein kinase and CYCD: cyc-
lin D-type protein) genes were present in both ontologies
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(Table 4). As for the previous ontology, no gene was found
to be specifically and preferentially upregulated in buds.
CYCD genes are known to be upregulated during the
breaking of dormancy and their products act during the
transition from G1- to S-phase in the cell cycle. In plants,
cells in G1-phase expand and prepare for DNA replica-
tion, which occurs during S-phase, just before mitosis
(G2-phase). The transition from G1- to S-phase is well
understood in plants and several CYCD proteins have
been identified in Arabidopsis thaliana (reviewed by Hor-
vath et al. [55]). The CYCD proteins are also known to re-
spond to various stimuli, including brassinosteroids and
gibberelic acid (see the next section) or sugar (see the last
section). In non-dormant cells, the product of the CYCD
gene interacts with the cyclin-dependent protein kinase
(CDCB genes also belong to this functional category) to
form a complex. The formation of the CYCD/CYCB com-
plex induces phosphorylation the retinoblastoma protein.
This phosphorylation step triggers the release of transcrip-
tion factor-like EF2, which induces the expression of a bat-
tery of genes essential for DNA biosynthesis, leading to
transition from the S- to the G1-phase in the cell under-
going mitosis. The genes from this functional category
identified in this study suggest that the genes involved in
cell division are reactivated in swelling buds, to produce
new cells and to prepare the bud for budburst.
Response to auxin, gibberellin and brassinosteroid stimuli
This category was obtained by merging three different on-
tologies (responses to gibberellin, auxin stimulus and bras-
sinosteroid stimuli) (Table 4). Fifteen genes involved in
hormone responses were identified in the GO terms en-
richment analysis. Hormones are an essential component
of dormancy regulation in perennial species. For example,
Anderson et al. [56] reported involvement of an inter-
action between ABA and gibberellin in the loss of apical
dominance. Gibberellins are also known to regulate sev-
eral developmental processes, such as stem elongation,
seed germination and dormancy. Five genes from the re-
sponse to gibberellin stimulus ontology were found, in-
cluding i) a GASA4-encoding protein. GASA genes are
gibberellin-responsive genes involved in several develop-
mental processes in plants. GASA4 is expressed mostly in
meristematic regions, consistent with a possible role in
cell division [57]. Similar results were obtained for leafy
spurge, in which the GASA4 gene was found to be overex-
pressed in tissues undergoing active cellular division [58],
and ii) a MYB26 gene. The precise role of this transcrip-
tion factor in the regulation of dormancy regulation has
not been determined, but several authors (e.g. Skirycz et
al. [59]) have reported an essential role for this gene in an-
ther development and the regulation of its expression by
both auxin and gibberellin.
Seven genes involved in the response to auxin stimula-
tion were identified, including i) an OBP1 gene highly
similar to the gene encoding the DOF1 protein. In Ara-
bidopsis thaliana, Skirycz et al. [59] reported the in-
volvement of the DOF1 protein in the control of cell
division and showed that the overexpression of the gene
encoding this protein led to the upregulation of many
cell-cycle genes. Using SSH hybridization technology,
Derory et al. [60] also showed that some DOF genes
were upregulated in sessile oak during bud burst, and ii)
an AUX1 gene. In Arabidopsis thaliana, AUX1 belongs
to a multigene family involved in regulating various
auxin-dependent developmental processes, such as root
gravitropic responses (reviewed by Péret et al. [61]).
Other authors have reported upregulation of the Aux1
gene during seed germination, in a mechanism compar-
able to dormancy release [62]. These findings suggest
that plant hormones involved in swelling buds are es-
sential for the regulation of cell division in meristem-
atic cells.
Finally, three genes were identified in the response to

brassinosteroid stimulus category. Again, none was spe-
cific to or preferentially expressed in the bud. These
genes included: i) the BAS1 gene encoding a member of
the cytochrome p450 family. Arabidopsis plants in which
the BAS1 gene is downregulated have a shorter hypo-
cotyl, due to a phytochrome B defect. Neff et al. [63]
showed that these mutants were also hypersensitive to
brassinosteroids in a light-dependent manner, suggesting
that the BAS1 gene played an important role in connect-
ing the photoreceptor and the brassinosteroid signaling
pathway. Photoreceptors are essential for dormancy
regulation. Indeed, several authors have shown that phyto-
chrome and the Constans genes are essential components
of the short-day signaling pathway during growth cessa-
tion (reviewed by Karlberg et al. [64]), and ii) a T5I8.2
gene, similar to the Hercule2 gene from Arabidopsis thali-
ana. Hercule genes encode receptor protein kinases from
one of the largest known multigene families, with up to
600 members identified to date. Hercule genes are also
known to be regulated by brassinosteroids. Riou-
Khamlichi et al. [65] reported a possible role for some
Hercule genes in regulating a battery of genes involved in
plant growth and showed that Hercule genes were re-
quired for cell elongation during vegetative growth.

Response to sucrose stimulation
Three genes were identified in this category (Table 4).
Sucrose appears to be a central molecular actor in the
reinitiation of mitotic activity, as it is an essential com-
ponent in the activities of the cell. Indeed, in perennial
species, sucrose is the main source of carbon. Several
authors have suggested that sucrose is a key factor in-
volved in cell division and that there must be a specific
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mechanism for sensing cellular sugar levels in plants, to
control the cell cycle [65]. It is well known that, during
paradormancy, sugars are essential for expression of the
CYCD genes (described above but also belonging to this
category), which are involved in cell division (reviewed
by Anderson et al. [56]). Among the genes from this cat-
egory identified here was a GBF6 gene very similar to a
basic leucine zipper 11 (bZip11) gene. Hanson et al. [66]
reported that the translation of the basic leucine zipper
11 gene transcript was strongly regulated by cellular su-
crose concentration. Moreover, two key genes encoding
enzymes involved in nitrogen metabolism (asparagine
synthase and proline dehydrogenase) have been shown
to be strongly regulated by the Bzip11 transcription fac-
tor. Comparisons of ripened and dormant wheat seeds
have shown an activation of nitrogen metabolism in the
ripened seeds, suggesting a possible role of nitrogen me-
tabolism in the recommencement of cell activity in ped-
unculate oak [67]. A GASA6 gene was also identified.
Gonzali et al. (2006) reported a downregulation of the
Arabidopsis thaliana GASA6 gene after sugar applica-
tion [68]. However, there is currently no functional an-
notation for the GASA6 gene, making it difficult to
speculate on the function of the product of this gene in
dormancy regulation.

Conclusion
Oaks are cornerstone species with a fundamental role in
temperate forest ecosystems. We therefore carried out a
large-scale transcriptome analysis on two sympatric
European white oaks. The resulting reference transcript
catalog (OCV3), established with various actively grow-
ing tissues/organs, provides the most comprehensive
survey of gene expression for the Quercus genus pub-
lished to date. The information provided by this study
already has proven useful, for the development of mo-
lecular markers for high-density linkage map construc-
tion and for studies of the degree and structure of
genetic diversity in different oak species [33]. The regu-
lation of some transcripts was found to be “tissue-spe-
cific”. These transcripts may therefore be considered
good candidates for genes with specific functions in
these tissues. In particular, the gene expression networks
identified during vegetative bud release are of key import-
ance as far as the seasonal growth of oaks is concerned,
and are a valuable target for investigation in terms of the
environmental changes resulting from global warming. A
comparative analysis with Prunus persica, a phylogenetic-
ally related species, led to the detection and location of se-
quences orthologous to oak transcripts on peach
chromosomes, providing relevant anchor points for fur-
ther comparative genomics and genetic analyses of these
two genera. Finally, this atlas will serve as a useful re-
source for annotating the reference genome sequence [30]
and will provide support for forward genetics and popula-
tion genomics approaches aiming to identify genes of im-
portance for forest tree adaptation.

Methods
Plant material, library construction and sequencing
For establishment of the most comprehensive catalog
of expressed genes in oak, we assembled cDNA se-
quences from five datasets (set #1-5 in Additional file 1
and Figure 1) into contigs:

– Set #1 was obtained from Ueno et al. [8] and
consisted of 26 and 14 cDNA libraries from tissue
panels for Q. robur and Q. petraea, sequenced by
the Sanger and 454 methods, respectively,

– Set #2 consisted of: i) 16 normalized and 454
sequenced libraries from leaves pooled from various
developmental stages, and roots (set #2A), with
controls and treatments including the gypsy moth
Lymantria dispar, powdery mildew Erysiphe
alphitoides, oomycete root pathogen Phytophthora
quercina, root nematode Pratylenchus penetrans,
symbiotic fungus Piloderma croceum, mycorrhizal
helper bacteria, Streptomyces sp. AcH 505 and the
springtail Protaphorura armata, and ii) non-
normalized and Illumina paired-end sequenced
cDNA pools, four from roots and one from leaves
(set #2B) of Q. robur clone DF159 [22],

– Sets #3, #4 and #5 consisted of newly sequenced
Sanger, Roche 454 and Illumina reads as follows.

Targeted sequencing of putative “full-length” cDNA clones
Set #3 consisted of reads enriched in full-length (FL)
cDNAs. Only trimmed Sanger ESTs from Ueno et al. [8]
were included in this third set. For EST clones contain-
ing reads in both directions (5’ and 3’), overlapping con-
tigs were assembled with CAP3 [69]. When the 5’ and 3’
ends of the same EST clone were sequenced and no
overlap occurred, pseudocontigs were constructed by
filling in the missing region of the EST clone with a
20 bp stretch of Ns. Singlets were defined as ESTs with
only one read from a single EST clone. Overall, 100,228
sequences (85,817 singlets, 11,179 contigs and 3,232
pseudocontigs) were aligned against the Arabidopsis thali-
ana (At) protein sequences available from uniprotKB
(http://www.uniprot.org/taxonomy/3702), with Blastx (e-
value cutoff 1e−10). The high-scoring segment pair (HSP)
of the top Blast hit was identified as the FL cDNA candi-
date when the alignment with an HSP started at the first
methionine of the At protein. This analysis resulted in the
detection of 6,910 FL cDNA candidates, 6,571 of which
satisfied the conditions for expected insert size. In a sec-
ond step, an equimolar pool of the 6,571 oak FL PCR frag-
ments, at a final concentration of 107 copies/μl, was

http://www.uniprot.org/taxonomy/3702
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prepared by pooling PCR amplicons from standard PCR
carried out with M13 forward and reverse primers. The
mean and median fragment sizes of the PCR products (as
estimated on agarose gel) were 1,382 bp and 1,212 bp, re-
spectively. DNA concentrations initially ranged from 80 to
150 ng/μl and were adjusted to 80 ng/μl, and aliquots of
3 μl of each probe were pooled in the same vial, with a
Tecan Genesis RSP 200 liquid handling workstation
(Tecan, Triangle Park, NC, USA), resulting in a total vol-
ume of 19.7 ml. This pool was split into 1 ml aliquots and
DNA was precipitated by adding 3 M sodium acetate,
pH 5.2 and 0.7 volumes of isopropanol. The DNA was col-
lected by centrifugation, the pellet was dried and resus-
pended in 50 μl MilliQ water and the DNA was cleaned
with a QIAquick PCR purification kit (Qiagen, Valencia,
USA, CA). DNA concentration was measured with a
Nanodrop 2000 spectrophotometer (Nanodrop Tech-
nologies, Wilmington, DE, USA). Finally, 75 bp paired-
end sequencing was performed with a Genome Analyzer
II x-sequencer (Illumina, San Diego, CA, USA), according
to the manufacturer’s specifications.

Extension of the EST catalog with tissues challenged with
abiotic and biotic stresses
Set #4 aimed to expand the diversity of expressed genes
by sampling tissues subjected to abiotic and biotic chal-
lenges that had not been considered in previous studies.
Two Q. petraea cDNA libraries were constructed from
the pooled leaves or roots of six-month-old seedlings ex-
posed to five abiotic stressors (10°C for 3 days, 35°C for
4 days, 700 ppm CO2, water stress, and hypoxia for
48 h). Six Q. robur libraries were established as de-
scribed in Additional file 1, from a pool of control and
treated seedlings subjected to biotic stressors, such as in-
sect herbivory (gypsy moth Lymantria dispar), a fungal
pathogen (powdery mildew Erysiphe alphitoides) and an
oomycete pathogen (Phytophthora cinnamomi).

High-throughput sequencing from a tissue panel
We used the Illumina Hiseq2000 platform to sample
genes with low levels of expression. Six tissues were
studied: vegetative buds at two developmental stages
(ecodormancy and swelling bud before bud break), dif-
ferentiating secondary xylem, root, leaf, and dedifferen-
tiated in vitro callus tissues (referred to as set #5). Total
RNA was extracted as previously described [70]. We iso-
lated mRNA by selection for the polyA tail. It was then
chemically fragmented and converted into single-stranded
cDNA by random hexamer priming. The second strand
was then generated to create double-stranded cDNAs.
Paired-end libraries were prepared according to the
Illumina protocol (TruSeq Illumina DNA sample prep
kit, Illumina, San Diego, CA, USA). Briefly, fragments
were end-repaired, 3’-adenylated, and ligated to Illumina
adapters. DNA fragments (with adapters) of 300–600 bp
were amplified by PCR with Illumina adapter-specific
primers. Libraries were quantified with a Qubit
Fluorometer (Invitrogen, Milan, Italy). Library profiles
were evaluated with an Agilent 2100 bioanalyzer (Agilent
Technologies, Inc., Santa Clara, CA, USA). Each library
was sequenced by 101 base-read length chemistry, in a
paired-end flow cell, on the Illumina HiSeq2000 (Illumina,
San Diego, CA, USA). Three libraries per lane were
pooled to obtain about 130 million sequences per tissue
type.

Sequence processing
Sequences from the putative “full-length” cDNA-enriched
library (set #3)
After base-calling with Phred [71], we eliminated vector
and adapter sequences with cross_match (http://www.
phrap.org/phredphrap/general.html), with the following
parameters: −minmatch 10 -minscore 15. The vector
database contained five vector sequences: pBluescriptSK
(−) (X52324.1), a phagemid excised from lambda ZAP,
pCR4-TOPO (Invitrogen, Carlsbad, CA, USA), pDNR-
LIB, PDONR222.T, pGM-T_Easy. Low-complexity re-
gions (mononucleotide repeats, PolyA) were then
masked with RepeatMasker [72]. Using cross_match
(−minmatch 10 -minscore 25), we then eliminated con-
taminants by comparison with several sequence data-
bases, including Univec, and databases for the budding
yeast and E. coli genomes. Valid sequences, with a
PHRED-score of more than 20 over at least 100 bp
lengths (to exclude potentially uninformative sequences)
were retained for further analysis.

Sanger and 454 sequences (sets #1, #2A and #4)
All available Sanger ESTs were retrieved from the
SURF database (http://genotoul-contigbrowser.tou-
louse.inra.fr:9092/Quercus_robur) and trimmed with
Seqtrim 0.110 [73] to remove the library-specific clon-
ing vector, to mask low-complexity sequences and to
eliminate contaminants, mitochondrial sequences and
poor-quality sequences. All 454 Roche sequences from
this and previous [8,9] studies were cleaned up with
SeqtrimNext 2.0.59 (http://www.scbi.uma.es/ingebiol/
session/new/seqtrimnext).

Illumina sequences (sets #2B and #5)
Illumina paired-end reads were cleaned in a three-step
procedure: i) sequencing adapters and low-quality nucle-
otides (quality value < 20) were removed, ii) sequences
between the second unknown nucleotide (N) and the
end of the read were removed, iii) reads shorter than 30
nucleotides after trimming were discarded, together with
reads and their mates mapping onto run quality control
sequences (PhiX genome).

http://www.phrap.org/phredphrap/general.html
http://www.phrap.org/phredphrap/general.html
http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur
http://genotoul-contigbrowser.toulouse.inra.fr:9092/Quercus_robur
http://www.scbi.uma.es/ingebiol/session/new/seqtrimnext
http://www.scbi.uma.es/ingebiol/session/new/seqtrimnext
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De novo transcript assembly
A schematic diagram of data processing for this study is
shown in Figure 1. Short reads and long reads were sub-
jected to different bioinformatic treatments, as described
below.

Assembly of Illumina reads from putative full-length cDNAs
(set #3)
A total of 17,196,106 Illumina paired-end reads bearing
no similarity to vector sequences were assembled with
Velvet V1.1.03 [74] and kmers 37, 41, 45, 49, 53, 57 and
61. A meta-assembly of the resulting contigs of more
than 100 bp in length was then generated with TGICL
V2.1 [75]. In total, 4,359 contigs were generated from
the 6,571 cDNA clones initially amplified, and these
contigs were subsequently cleaned up, with the removal
of the remaining vector sequences with crossmatch
(−minmatch 10 -minscore 15).

Pre-assembly of long reads (sets #1, #2A and #4)
We used MIRA V3.4.0 [76,77] to assemble 75,957 Sanger
sequences, 2,790,004 Roche 454 reads and the de novo
Illumina pre-assembly of 4,359 contigs. Contigs of less
than 100 bp in length were filtered out. The CD-hit-EST
V4.5.4 clustering algorithm [78,79] was used to reduce re-
dundancy within this long-read pre-assembly (sequence
identity threshold 0.95; word length 8). BLAT V34 was
then used to validate this assembly, by mapping the initial
Sanger and Roche-454 reads onto the long-read contigs.
The minimum identity threshold was set to 98%.

Pre-assembly of short reads (sets #2B and #5)
The de novo assembly of the whole dataset was time-
consuming due to memory issues, so we used Diginorm
(Digital normalization with khmer, [80]) to normalize
the raw data digitally. This process greatly decreases the
size of shotgun data sets and the memory and time re-
quirements for de novo sequence assembly, with no sig-
nificant impact on the contigs generated. Diginorm was
used to eliminate redundant reads. The coverage of each
read was estimated (kmer-based approach) and reads with
a coverage of less than 20 x were retained. Reads were as-
sembled with Velvet V1.2.07 and Oases V0.2.8, using kmer
51. Potential fungal sequence contamination was identi-
fied by aligning the contigs with the sequences in the
NCBI GenBank non-redundant protein sequence data-
base (release 21/11/2012) with Blastx V2.2.15 (e-value
cutoff 1e−04). Redundancy was reduced with CD-hit-
EST (sequence identify threshold 0.95; word length 8).

Short- and long-read meta-assembly
The contigs from the long- and short-read pre-assemblies
were assembled with MIRA V3.4.0, resulting in a final as-
sembly named oak contigs v3 (OCV3) to distinguish it
from two previous assemblies (OCV1 from [8], OCV2
from [22]). Redundancy among contigs was decreased
with CD-hit-EST (sequence identity threshold 0.95; word
length 8). We then filtered out contigs of less than 100 bp
in length. We estimated chloroplast and mitochondrial
contamination by BLAST searches with blastall V2.2.26
(e-value cutoff 1e−5) against the chloroplast genome of
oak and a set of 162 contigs considered to correspond to
the mitochondrial genome (both kindly provided by GG
Vendramin, Institute of Biosciences and Bioresources,
CNR, Sesto Fiorentino, Florence, Italy).

Functional annotation and categorization of the oak
proteome by comparative genomics
We compared the 192,097 oak contigs (referred to as
OCV3-192 k) with six protein datasets, including Swis-
sprot (release 02–2013) [81] and five plant proteomes:
Prunus persica V1.0 (27,864 proteins, [82]), Populus tri-
chocarpa V2.0 (40,668 proteins, [83]), Vitis vinifera V1.0
(26,346 proteins, [84]), Eucalyptus grandis V1.1 (36,376
proteins, [85]), Arabidopsis thaliana V9.0 (27,416 pro-
teins, [86]). We used the BlastX program implemented
in the blast + tool [87]. For each database, alignments
with a score greater than 300 (BLOSUM62, gapo = 10,
gape = 1, e-value = 1e10−5) were retained and the best
alignment was used to identify the probable open read-
ing frame to be considered for subsequent analysis. On
the basis of these criteria, 90,786 oak transcripts
(OCV3-91 k) were retained.
We established a first set of Gene Ontology (GO)

terms [88] based on the best hit with Swissprot and the
At proteome. We retrieved the GO terms associated
with Swissprot and TAIR best hits from the Gene Ontol-
ogy Annotation (GOA) project [89]. A second set of GO
terms was associated with OCV3-91 K contigs by com-
parison of the 90,786 sequences with the Pfam V27.0
protein family database, using InterProScan V4.8 [90,91].
The GO terms were mapped onto plant GOslim terms
with Blast2GO software [92]. The ontology level was set
to 2. Due to the computational limitations of Blast2GO
software, we retained only GO terms associated with at
least 100 contigs.

Identification of orthologous gene pairs between Quercus
and malvids/fabids: inference of the timing of speciation
OCV3-91 k was aligned (BlastX, best match, e-value =
1e−10) with gene models for Prunus persica, Populus
trichocarpa, Vitis vinifera, Eucalyptus grandis and Ara-
bidopsis thaliana. The calculation of Ks values (rate of
synonymous substitution) between these contigs and
gene models required sequences without stop codons
and degenerate bases. We therefore translated the oak
contigs into their six open reading frames and those
without stop codons and degenerate bases were retained.



Lesur et al. BMC Genomics  (2015) 16:112 Page 19 of 22
The ClustalW [93] and PAML [94] packages were then
used to calculate Ks.

Detection of genes differentially expressed in different
tissues and at different stages of vegetative bud
dormancy release, enrichment analysis
The BWA V 0.6.1 aligner was used to map Illumina
paired-end reads onto the OCV3 assembly. If one or
both paired reads mapped to the same contig, the result
was recorded as a hit. When two reads from the same
pair mapped to different contigs, they were not consid-
ered to constitute a hit. For the identification of contigs
differentially expressed between the six Illumina libraries
(ecodB: ecodormant buds, swB: swelling buds, XY: differ-
entiating secondary xylem, RO: roots, LE: leaves, CA:
in vitro dedifferentiated callus of Q. robur DF159 clone
[95]), we assumed that the number of reads mapping
onto a contig was proportional to the level of expression
of the corresponding gene.
We first clustered the six tissues on the basis of their

transcriptomic distances, by Ward’s linkage method [96].
The two pairwise distance metrics used (Pearson’s cor-
relation coefficient and Euclidean distance) gave essen-
tially identical results, so the results for only one of
these methods are presented in the results section. Hier-
archical clustering was performed with the R package
pvclust [97] and the robustness of the clusters was
assessed by multiscale bootstrap resampling (10,000) to
obtain unbiased p-values. We used Log2(n + 1) normal-
ized RPKM data (reads per kilobase of exon model per
million mapped reads) to take contigs with no mapped
read into account.
We applied different statistical tests to raw count, to de-

tect differentially expressed genes: i) R statistics [98], ii)
DESeq [99] and iii) EdgeR [100]. The last two of these
methods were performed with the Bioconductor package.
In R statistics, each contig was associated with an R value
and was considered to be significantly differentially
expressed with a type-I error risk of 2% if R ≥ 8. As there
were no replicated libraries from which to estimate bio-
logical variability, we set the dispersion to 0.6 in the EdgeR
package and used the exact test method. We applied a
false discovery rate (FDR) of 0.05 with both these software
suites. Contigs identified as significantly differentially
expressed with at least two of the three methods were
retained for further biological interpretation. Given the
high rate of validation (based on RT-qPCR) of the in silico
expression data obtained in a previous study based on the
RNA-seq approach with stringent statistical criteria [32],
we considered the data generated in this study to be ac-
curate for the prediction of gene expression in vitro.
We then carried out an enrichment analysis for path-

ways and groups (EAPG) for selected genes differentially
expressed between the ecodB and swB libraries,
corresponding to two different phenological phases of
vegetative bud release, with Pathway Studio 9 Desktop
edition Software and the Resnet Plant Version 4 database
(www.elsevier.com/online-tools/pathway-studio/plant-data-
base). EAPG executes a Fisher’s exact test on each pathway
or group and returns information relating to overlap-
ping entities, together with the p-value of the statistical
test. EAPG was executed against Gene Ontology and
AraCyc plant metabolic pathway [101,102] data. The
“Find subnetworks enriched with selected entities”
function (FSNE) was also used to identify the set of en-
tities (subnetworks) organized by specific relationships,
with Fisher’s exact test.

WEB portal
Quercus portal: https://w3.pierroton.inra.fr/QuercusPortal/.
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Additional file 13: Dendrogram of the distances between six
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tree indicates the mean distance (inverse of similarity) between members
of the two branches joined at each node. The robustness of the clusters
was assessed by multiscale bootstrap resampling (10,000) to obtain
unbiased p-values. In red: AU p-values (approximately unbiased,
Multiscale bootstrap resampling), in green: BP values (bootstrap
probability).

Additional file 14: List and annotation of 23 OCV3 contigs
differentially expressed, as shown by three statistical methods
(R statistics, EdgeR and DESeq), between ecodB (ecodormancy)
and swB (swelling bud) libraries.

Additional file 15: List and annotation of 862 differentially expressed
OCV3 contigs (663 contigs from OCV3-91 k and 199 contigs from
OCV3-101 k) identified by at least two statistical methods (R statistics,
EdgeR, and DESeq).

Additional file 16: Result of the enrichment analysis for pathways
and groups.
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