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Abstract

A previous study showed the possibility to localize right
or left flutter circuit origin using variability contained in
vectorcardiographic loop parameters. The Inverse Dower
Transform, used to obtain the vectorcardiograms is based
on a very simplistic torso conductor model, and hence not
optimized. The present study aims to optimize the trans-
form to maximize classifier accuracy. A parametric opti-
mization model was proposed, as well as an optimization
scheme. Model parameters were obtained by iteratively
optimizing the linear SVM classifier accuracy until con-
vergence. The goal can be shown to be multimodal and
non-smooth. Therefore, a multi-instance and derivative-
free method was considered. Previous dataset of 56 flutter
recordings (31 right, 25 left) was used, considering only
non-overlapped and respiratory motion-corrected F loops.
For the SVM classifier, a 3.8% increase in accuracy was
observed (max 0.95). When the logistic regression clas-
sifier was used, an increase of 7.8% was observed (max
0.98). Comparison to a targeted transform previously de-
veloped showed an improvement by 17−19%. Observation
of the model parameter values showed amplitude reduction
applied to Lead X and rotation applied to Lead Z.

1. Introduction

Atrial flutter (AFL) is an arrhythmia involving a rapid,
rotating circular depolarization of the atrium, whose cir-
cuit may be located in either right or left atrium. Local-
ization of the circuit is an important objective in radiofre-
quency catheter ablation therapy, and it may condition the
difficulty and efficacity of the procedure. The rotating cir-
cular depolarization generates a pseudo-periodic sawtooth
waveform on the electrocardiogram (ECG); a full wave
representing one complete cycle is known as an F wave.
Our previous study showed that by using serial beat-to-
beat approach, variability features extracted from the vec-
torcardiographic (VCG) F loops obtained from the 12-lead

ECG using the Inverse Dower Transform (IDT) allowed
non-invasive localization of AFL circuits [1].

The VCG is an orthogonal 3-lead system [2], obtained
by combination of several signals from a 7-unipolar elec-
trode system. The combination weights were found from
geometric interpolations of an image surface spanned by
the 7 lead vectors, derived from a homogeneous volume
conductor model of the torso (tank filled with saline so-
lution). The Inverse Dower Transform [3] (IDT) utilizes
the same information from this image surface. Since the
image surface does not account for heterogeneity due to
organs and anatomical structures, the IDT is not optimized
for a real torso. Furthermore, electrode misplacement is
not accounted for.

Thankfully, these can be formulated in a mathematical
context, allowing for the use of estimation-optimization
techniques for finding the optimized transform coeffi-
cients. In addition, the optimization goal can be based on
e.g. localization accuracy, which is a more direct endpoint
than e.g. similarity to real VCG. However, it is expected
that the goal has non-ideal properties, since classifier accu-
racy depends greatly on the distribution of the data given
a set of considered features and classes, as well as the op-
timization coefficients, and the relation between these ele-
ments are not known.

In this paper, we propose a model of the conductor het-
erogeneity and electrode misplacement, as well as an op-
timization scheme. A proof of multimodal non-smooth
goal is made and an appropriate estimation-optimization
scheme is presented. Results were compared with a differ-
ent transform previously used with atrial signals [4].

2. Methodology

2.1. Dataset and Preprocessing

The dataset used in this study consists of 56 ECG
recordings of AFL, acquired during catheter ablation oper-
ations at Centre Hospitalier Princesse Grace, Monaco. All
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Figure 1. Diagram of the estimation-optimization scheme. Solutions here refer to the set of 6 coefficients of the model
parameters (see (2)). The bold-lined red box indicates the novel approach of optimizing the IDT transform matrix.

signals were recorded at fs = 2000Hz. A finite-impulse
response notch filter at 50Hz was applied to these signals
to remove powerline interference, and were then filtered at
[0.5; 70]Hz using type II Chebyshev high- and low-pass fil-
ters to remove baseline wander and high-frequency noises.
Records with missing leads, low F wave amplitudes, low
atrioventricular block ratio (< 2 : 1) were excluded from
the study. In total, there were 31 recordings with right cir-
cuit localization and 25 with left localization.

F waves from each recording were detected, segmented,
synchronized, transformed into VCG and removed of res-
piratory motion using a technique described previously [1].
Only F waves not overlapped within T waves were consid-
ered. For this study, only the statistics Mean(·), Var(·),
Skewness(·) and Kurtosis(·) were considered for the 4
loop parameters (total of 16 features, see [1] for details).

2.2. Error Model

The IDT describes a linear combination of a reduced
set of leads from the 12-lead ECG to the VCG Y = TX
where T is the 3×8 IDT matrix described in [3], X and Y
are the 8×N and 3×N 8-lead ECG and VCG respectively.
The 8 leads are arranged as [V1 V2 V3 V4 V5 V6 I II].

Ideally, the thorax is required to be a homogeneous con-
ductor, and the ECG electrodes should be placed at the
same locations originally indicated on the chest. How-
ever, this is an impossible feat as physical human anatomy
has heterogeneous conductivity and variations from patient
to patient, and electrode placement depends on operator
proficiency and chest shape. Both these effects can be
translated as a gain or attenuation as well as a rotation
of each lead vector. Thus, Y → Ỹ = AQY, where
A = diag(aX , aY , aZ) is a diagonal matrix of gain or
attenuation, and Q ∈ R3×3 a rotation matrix, satisfying

QT Q = I. We thus have:

AQY = TX (1)

To optimize the IDT, the errors can be compensated:

Y = A−1QT TX (2)

In practice, diag(bX , bY , bZ) = B = A−1 and
R = QT were estimated instead. R can be decomposed
into individual 3D rotation matrices RX , RY , RZ for
each of the 3 axis of the VCG leads, with each matrix
computable from the angles φX , φY , φZ respectively, and
R = RXRY RZ . The 6 parameters capture the essential
errors observed on the VCG and avoid models with large
number of parameters that would be more difficult to esti-
mate.

2.3. Outline of Optimization Procedure

The goal of parameter estimation: maximize the clas-
sifier accuracy, is different than most conventional ap-
proaches. This requires us to define it in the scope of op-
timization, to be able to decide which method is suitable
for use. Furthermore, conventional techniques do not ac-
count for the nature of data distributions given a certain
feature set: a subject particularly associated with machine
learning. The scheme presented here constitutes an origi-
nal approach that combines elements of optimization and
machine learning.

2.3.1. Properties of the Goal

The optimization goal is defined as:

maxAcc =
TP + TN

TP+ FN+ FP + TN



Note that the denominator is constant for a given set of
M data points contained in X, with a set of features F .
The numerator is essentially the number of elements in the
union {Ĝ = Right|Gtrue = Right} ∪ {Ĝ = Left|Gtrue =
Left} = G, with G being a label. The union contains data
points whose predicted labels Ĝ are similar to the true la-
bels Gtrue, for all available classes. Suppose g a binary M -
vector (entry values equal 0 or 1) with elements represent-
ing membership or not of each data point in G. Each entry
gm of g is determined by the classifier through some eval-
uation of the conditional probability P{Gm|xm,B,R, E}
that includes not only the optimization parameters, but also
the subset of features E ⊆ F that give maximum accuracy.

The final form amounts to:

max
B, R, E

Acc =
1

M
‖g(X,B,R, E)‖0 (3)

It can be shown that this goal formulation has a non-
convex and non-smooth form, by noticing that on conver-
gence, the three optimal rotation angles φ̂∗X , φ̂

∗
Y , φ̂

∗
Z can

be ±180◦ ambiguous, and that the L0 norm is not smooth.
In practice, class overlap also affects goal convexity and
smoothness.

2.3.2. Optimization Scheme

Due to the above-mentioned goal formulation and con-
straints, a multi-instance derivative-free optimization algo-
rithm should be used, to account for goal non-convexity
and non-smoothness. In this study, we employed cuckoo
search (CS) as the algorithm of choice [5]. The algorithm
requires a small number of tuning parameters and is rela-
tively simple in implementation.
n initial candidate solutions are instantiated randomly

across the solution space. For each instance, the goal is
first evaluated. Then, an update is performed, moving each
solution to another candidate solution via a Lévy random
walk. These new candidate solutions are evaluated, and
they replace the initial solutions if they have higher goal
values.

Next, a random decision is made on whether to reject
or accept the solutions. A probability pa determines the
chance of being rejected. Finally, solutions are updated
again via a biased random walk. Only accepted solutions
are updated. The algorithm iterates again with the final
solutions of iteration k − 1 used as initial candidates of
iteration k, until it satisfies a convergence criteria. At the
end of each iteration, the best value of the goal indicates
the best solution. Figure 1 summarizes the process.

15 instances we used to simultaneously search the solu-
tion space. The probability pa is set to 0.25, as was sug-
gested by the authors of CS. No attempt was made to find
the best value of pa or n. Convergence was set to occur
when an accuracy of 1 is achieved or the best goal does

not change for 10 iterations. A boundary is imposed after
each generation or update of solution to avoid non-sensical
solutions. The scale parameters b were limited to values in
the range [0.001; 5] and rotation parameters φ to values in
the range [−179.999; 180]◦.

For each evaluation, a set of candidate b̂X , b̂Y , b̂Z and
φ̂X , φ̂Y , φ̂Z were obtained. For each F wave of each
recording, the optimization detailed in (2) is applied, loop
features were calculated and an exhaustive wrapper eval-
uation of feature combination up to a length of 7 features
was performed. For each feature combination, the accu-
racy was calculated. The maximum accuracy was taken as
the current solution’s goal value. The linear support vec-
tor machine (SVM) classifier is due to simplicity and low
training time. Blue boxes with dashed lines in Figure 1
summarizes this process.

3. Results and Discussion

3.1. Pre- versus post-optimization compar-
ison of classifier performance
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Figure 2. Maximum accuracy of the SVM (top) and LOG
(bottom) classifiers pre- and post-optimization of the IDT
(IDT and Opt-IDT). Results of the PLSV transform is also
shown for comparison.

The maximum SVM classification accuracy is shown
in Figure 2 (top diagram). An improvement can be ob-
served, starting as early as 4 combination of features.



The maximum improves from 0.91 to 0.95 ((Se,Sp) =
(0.97, 0.92)). This is an improvement of 3.8% from the
previous result (Acc = 0.91, (Se,Sp) = (0.94, 0.88)).
The result illustrates the validity of the approach.

The same optimized dataset was evaluated with the lo-
gistic regression (LOG) classifier. The bottom diagram of
Figure 2 shows the maximum accuracy of this classifier
when operating on the optimized dataset. An even bigger
improvement can be seen (7.8% accuracy increase, opti-
mized Acc = 0.98 and (Se,Sp) = (0.96, 1.00)), suggest-
ing that parameters can be transferred to other classifiers,
and that it may also result in better improvements.

3.2. Performance of alternative transform

Alternatives to the IDT are available [4]. These trans-
forms target atrial activity specifically: it is suggestive that
they may produce better results than ours. To investigate
this matter, classifier performance results using the PLSV
transform were also obtained. The processing scheme is
similar to the one detailed in [1], except that the IDT is
replaced by the PLSV transform.

The result for both SVM and LOG classifiers are shown
in Figure 2. As can be seen, performance is low and does
not even match the unoptimized IDT. Compared to the op-
timized IDT, there is a difference of 17−19% in maximum
performance. This shows that the IDT is still useful in the
context of localization using beat-to-beat approach, and
that its optimization results in increased performance as
opposed to using alternative transforms.

3.3. Transform coefficients

The optimal parameter values represent the optimal
scaling and rotation applied to each VCG lead. After nor-
malization of the scale values by the largest b̂, and ad-
dition of ±180◦ to the rotation values, the strongest ef-
fects were observed on lead X (right-to-left component)
and lead Z (front-to-back component; b̂∗X = 0.72 and
φ̂∗Z = −12.52◦). The remaining parameters did not
present strong effects (scale values close to 1, rotation val-
ues close to 0). The two optimization is regarded as suf-
ficient to increase separation between right and left AFL
variability. Furthermore, feature selection returned similar
relevant features as previously found in addition to other
previously irrelevant features, further reinforcing this fact.

3.4. Limitations

The model parameters were obtained using a very small
sample size and is not representative of the actual popu-
lation of AFL circuits. It is expected to be unoptimized
on datasets different than the one employed here. Further-
more, no cross-validation was attempted.

The optimization procedure required a very long run-
time (total of ∼ 90 hours using an 4-core Intel i5 running
at 3.3 GHz with parallel processing) due to the use of the
exhaustive wrapper evaluation scheme. Shorter runtimes
can be achieved using more cores.

4. Conclusion

An original approach of optimizing the Inverse Dower
Transform for better localization of right or left flutter cir-
cuit is presented. An error compensation model was pro-
posed. Estimation of the model parameters was made con-
sidering a more direct endpoint (maximizing localization
accuracy). Optimization goals and properties were dis-
cussed and a procedure was proposed. This resulted in
an increase in classification accuracy (up to 7.8%), also
shown to be transferable to other classifier models. Perfor-
mance using an alternative transform showed inferior per-
formance of 17 − 19% less compared to the optimization
proposed here.
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