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Abstract--The future fifth generation (5G) Networks are 

expected to support a huge number of connected devices with a 

various and multitude service having different Quality of Service 

(QoS) requirements. Communication in Industry 4.0 is one of the 

flagships and special applications of the 5G due to the specificity 

of the industrial environment as well as the variety of its services 

such as safety communication, robot’s communications and 

machine monitoring. In this context, we propose a new resource 

allocation for the future industry 4.0 based on SDN and NFV 

technologies, machine learning tools and the slicing paradigm 

where each slice of the network is dedicated to a category of 

services having similar QoS requirement level. The proposed 

solution ensures the allocation of the resources to the slices 

depending on their requirement in terms of bandwidth, delay and 

reliability. Toward this goal, our solution is performed in three 

main steps: 1) IoT devices assignment to the slices step based on 

OGMMC algorithm, 2) Inter-slices resources reservations step 

based on mini batch gradient descent, 3) Intra-slices resources 

allocations based on the max-utility algorithm. We performed 

extensive simulations in a realistic industrial scenario using NS3 

simulator. Numerical results show the effectiveness of our 

proposed solution in term of reducing Packet Error Rate (PER), 

energy consumption, and in terms of increasing the percentage of 

served devices in delay comparing to the traditional approaches.  

 
Index Terms--Network slicing, NFV, Machine Learning, QoS, 

SDN, Industry 4.0, Inter-slice, Intra-slice. 

 

I. INTRODUCTION 

ith the development of wireless communication 

technology, the fifth generation (5G) Wireless Networks 

are expected to support more than 50 billion of connected 

devices and machines by 2020 [1]. Therefore, the increased 

number of generated data and connectivity of smart devices, 

which are the main driver of the IoT paradigm, are rapidly 

expanding its benefits in industrial environments. This provides 

the opportunity to establish industrial cyber-physical system via 

modern and reliable information exchange technologies and 

data digitalization [2].  
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This evolution is known by the fourth industrial revolution 

thanks to the emergence of information and communication 

technologies, such as cloud computing, IoT, and network 

softwarization and virtualization, that can be integrated with a 

multitude of manufacturing processes [3].  

Following the industrial revolution and the explosive spread 

of the IoT paradigm, industrial environment is continuing to 

support an increasing number of connected objects, such as 

robot, actuators, machines, and sensors. However, this 

continuous evolution will bring a radical change of the 

industrial landscape, allowing new production models and 

promising commercial opportunities. Furthermore, today's 

industrial networks have been designed for static 

manufacturing processes where changes and configurations in 

the manufacturing workflow require lengthy maintenance 

operations. In addition, different traffic flows with a multitude 

and various QoS parameters are transmitted over heterogeneous 

industrial environments sharing the same physical resources. 

This will increase cost and data loss, and will not meet the user's 

QoS requirements. New methodologies and automation 

mechanisms in the next industrial generation are required to 

remotely verify the management process, check the QoS, and 

support new challenges such as improved user’s QoS, resource 

efficiency, and reducing cost. 

On the other hand, to support flexibility and sustainability 

expected in next generation manufacturing processes, industrial 

networks would be faced with a process of transformation. In 

this context, the 5G wireless network system is considered as a 

key enabler in this new trend by extending the network slicing 

paradigm to meet the drastic user’s requirements, over 

heterogeneous industrial domains, which represents a 

revolutionary paradigm for industrial challenges in the coming 

years.  

In this fervent area, network slicing is one of the most 

powerful solution in industry 4.0 that can bring network drastic 

improvements and fulfill diverse network requirements based 

on the unified physical infrastructure and sharing network 

resources between slices. Supported by network slicing, 

physical resources can be dynamically reserved and allocated 

to logical network slices according to the corresponding QoS 

demands. Under the network slicing mask, Software Defined 

Networking (SDN) and Network Function Virtualization 

(NFV) have been widely accepted as promising technologies. 

These mechanisms can improve decision-making and 

scalability by efficiently sharing network resources to network 

slices with different QoS types, managing multiple virtual 
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networks, and dynamically configuring parameters [3]. 

In this context, SDN is defined as a network concept that 

enables centralized and intelligent control and management that 

can on-demand modify traffic flows according to industrial 

application requirements by decoupling data and control traffic. 

While NFV is the technology that allows the virtual 

representation and deployment of logical network functions as 

Virtual Network Functions (VNFs). When these technologies 

associated with cloud computing, it can provide better solutions 

to support reliability and latency requirements, which still 

represents a major challenge of industrial 4.0 applications.  

 In that regard, great efforts have been carried out to 

integrate efficiently SDN, NFV, and network slicing based-

architectures within industrial domains or within another field. 

Authors in [4] have proposed an industrial network based on 

SDN mechanism in order to support dynamic production 

processes. Unlike traditional industrial networks, remarkable 

energy saving is achieved. A resource allocation method with 

consideration of interference management was proposed in [5], 

where different QoS requirements were guaranteed by 

optimizing jointly power and sub-channel allocation. Authors 

in [6] have discussed a 5G network architecture scheme based 

on SDN to allocate physical resources to virtual slices within a 

local area and to perform scheduling among slices. An end-to-

end network slicing methodology was proposed by authors of 

[7] in order to share horizontally physical resources whose main 

purpose is to create multiple virtual networks that can support 

industry applications. For interested readers, several 

architectures based on SDN technology for industrial networks 

and cyber-physical systems have been proposed recently in [8], 

[9], [10] and references therein. However, the majority of these 

proposed works do not deal with real and heterogeneous 

scenarios with various QoS requirement where different IoT 

devices or industrial machinery are operating in the same 

network.   

Therefore, unlike previous works, we seek in our paper to 

extend network slicing benefits in industry 4.0 by considering 

QoS classes using machine learning tools. The main 

contributions of this paper are: 

1) We propose SDN and NFV based-network slicing 

architecture for industry 4.0 to meet various services 

requirements with guaranteed QoS for connected devices; 

2) We propose an adaptive and online machine learning 

algorithm to learn devices requirements and assign each 

device to the slice that meet its QoS requirements; 

3) We propose a machine learning based-dynamic inter-slicing 

algorithm; to split radio resources and reserve channels to 

slices based on required throughput; 

4) We propose an intra-slicing algorithm in order to allocate 

dynamically resources on gateways for assigned devices; 

load and reliability are considered in each gateway.  

The leftovers of this paper is organized in five sections. 

Section II is allocated to the proposed slicing architecture and 

optimization problem formulation. We introduce in section III 

the proposed slicing approach. In section IV, we provide a 

discussion about simulation results and comparisons.  Finally, 

we conclude our paper in section V. 

II. PROPOSED NETWORK SLICING ARCHITECTURE AND 

PROBLEM FORMULATION 

A. Proposed Network Slicing Architecture 

The 5G network architecture design should be built on deep 

consideration of hardware infrastructure, software control, and 

the interconnectivity between them. The network slicing, which 

can satisfy multiple service requirements based on the unified 

physical infrastructure and sharing the same physical resources, 

is considered as a critical paradigm by providing multiple 

instances that operate independently for a specific network 

functions.  

The network slicing-based 5G system architecture is given 

in Figure 1. The aim of this architecture is to support the 

creation, control, and management of multiple network slices 

over factory infrastructures in order to provide high levels of 

flexibility and scalability and meet QoS requirements for 

robots, sensors, and actuators in industrial networks.  

The infrastructure layer contains all the physical resources 

needed to perform virtualized industrial processes. We 

emphasize that the involved resources go beyond traditional 

data centers. It includes industrial equipment with sensing and 

actuation capabilities in addition to the physical computing, 

storage and network components. The virtualization layer 

includes the tools and the technologies required to provide a 

virtualization environment for hosting VNF instances. While 

the slicing layer refers to the deployed industrial slices in order 

to accommodate specific industrial machinery’s QoS. At this 

level, we define a set of  ,...,j LL l l slices based on 

throughput R (with bandwidth r ), transmission delay D , and 

urgency factor  . Each slice is responsible for serving a set of 

 ,..., NiN n n assigned IoT devices through a set of 

Figure 1: Network Slicing Architecture for industry 4.0 
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 ,..., Gkg gG  gateways. Where , ,i j k denote the binary 

value that represent the assignment success of devices i to the 

slice j through gateway k . All these layers interact with the 

general administrative control unit represented in the SDN 

controller, which can control industrial network in a centralized 

fashion. By interacting with the NFV MANO (Management 

and Orchestration), SDN controller is in charge of guaranteeing 

several industrial QoS constraints. It can acquire and allocate 

virtual resources for slices and enable industrial network 

reconfigurability, by exploiting the generated virtual flows 

from devices, in order to meet dynamically industrial devices 

QoS changes. Assume that the assigned device i to the slice j
generate a virtual flow , ,i j kf  that goes from the gateway k  to 

the SDN controller and is characterized by a utility metrics

, ,i j kU . SDN controller must define also the slice's request, 

compute the available resources, and serve slices requirements, 

in a way that avoids resources starvation. At this level, we 

denote by ,j kC  the requested physical resources for the slice j
on gateway k , while k is the total gateway capacity.  

In this work, we aim to jointly optimize industrial machinery 

QoS and network energy efficiency by providing dynamically 

slice members with the requested physical resources.  

B. Multi-Objective Optimization Model Formulation 

The purpose of this work is to optimize the performance of 

the industrial network in term of QoS and energy consumption. 

Toward this goal, the network slicing optimization concept 

consists of two main steps. Firstly, is to find the best inter-

slicing resource reservation strategy. This will impose 

challenges in aggregating necessary parameters, reconfiguring 

slices, and updating reserved resources. Secondly, is to 

establish the best intra-slicing resource allocation strategy. This 

will bring other challenges in reconfiguring devices and 

updating resource allocation. These problems are formulated 

into multi-objective functions as follows. 

1) QoS Model 

We define the QoS type in each slice based on the Data Rate

R and the Transmission Delay D . The Data Rate model 

defined in (1) is denote by the ratio between the peak rate   

and the slice members jn . The peak rate of each IoT device 

depends on many factors such as the received power rP , the 

transmit power tP , and the received SINR, which are written in 

(2), (3), and (4) respectively [11] [12]. 
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, ,i j kR  represent the Data Rate for an industrial IoT device 

i assigned to the slice j  on gateway k .  Where IP  and L are 

respectively the receiver noise and the path loss. 0L  is a 

constant, in which depends on the antenna gains and 

transmission frequency. h  denotes the random variable that 

represents the channel fading. Finally, d and  denotes 

respectively the distance between the trans-receiver and the 

path loss exponent.  

Moreover, the Transmission Delay , ,i j kD  of a device  

assigned to the slice j , is expressed as in (5). Where , ,i j kM  is 

the packet length that is trans-received from a device i . 
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Based on what was previously mentioned, the QoS cost is 

modeled by (6).  
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where , ,i j kQoS  is the reimbursements that should be 

maximized at each slice and at each gateway. In addition, , ,i j kR  

and , ,i j kD are adopted as a normalized values that denotes the 

Throughput and the Transmission Delay achieved by industrial 

connected device respectively.    

2) Energy Consumption Model 

The energy consumption model is considered as the required 

power to trans-received a data packet, which depends on the 

received power and the transmitted power given in (2) and (7)

respectively. In addition, the connected device consumes a 0P  

power by the communication module. In this context, the active 

and the sleep mode, as in (8), are the two energy states of an 

IoT device that need to be considered [11] [12].  
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where   denotes the electric-to-RF power conversion factor. 

, ,i j kE represents the energy consumptions for the device i
assigned to the slice j  that should be minimized for each slice. 

Addition to the energy and QoS factors, the Packet Error 

Rate (PER), formulated in (9), is an interesting factor which 

reflects the efficiency and reliability of the devices in each slice. 
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           (9)                        

where pS denotes the number of successful packets and pT is the 

number of the total packet sent. PER is the other cost function 

that should be minimized in order to guaranteed efficiency and 

reliability in each slice. 

3) Network Slicing Problem Formulation 

In this paper, network slicing optimization problem consists 

of three steps. The first one involves the admission and the 

assignment of devices to the desired slice. The second step is 

the dynamic inter-slicing resources reservation. While the third 

step is the intra-slice resource allocations. Firstly, we define 

slices based on urgency factor, delay, and throughput, and then 

we look to assign devices to the slice that meets its QoS 
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requirements. It is remarkable that the urgency factor, delay and 

throughput are the key clues for defining the device priority. 

Furthermore, there are other factors must be taken into 

consideration such as PER, reliability and the huge load rate of 

devices to the network. Secondly, we search to estimate the 

needed inter-slice capacity ,j kC  based on the required 

throughput. The purpose of the last step is to optimize the intra-

slice resources allocation for each slice members. Therefore, 

the Multi-Objective Optimization for the slicing and the 

resources allocation problem is formulated in (10). 

, ,
, ,

, ,

, ,i j k
i j k

i j ki N

E
min j L k G

QoS




         (10)   

 
subject to the following constraints: 

, , , , , , , ,max
i j k i j k i j k

i N

R R j L k G


                       (11) 

', ,
, ,r rj k j k

j L k G                         (12) 

, , , ,
0 , , ,

i j k i j k

max
t tP P j L k G i N                    (13) 

 , , 0,1 , , ,i j k j L k G i N                      (14) 

where constraint (11) guarantees that the sum of transferred 

traffic by a devices i  assigned to the slice j  should not exceed 

the maximum allocated data rate capacity. Moreover, without 

violating the non-interference principle between slices, 

constraint (12) ensures a perfect isolation between them. In 

other words, each slice has its own bandwidth, whether it was 

reserved on the same gateway or on different gateways. In 

addition, each device consumes a transmission power to 

transfer its traffic data, which should not exceed the maximum 

transmission power; this is provided by constraint (13). 

Furthermore, the binary assignment value of a device i to the 

slice j on the gateway k , is assured by constraint (14). 

III. THE PROPOSED SLICING APPROACH 

The proposed industrial network slicing-based resource 

allocation scheme, consists of three main steps. Firstly, by using 

the Online Gaussian Mixture Model Clustering (OGMMC), 

each device is assigned to the slice that meets its QoS 

requirements. At the end of this step, the mean throughput for 

each slice will be estimated. Secondly, radio resources will be 

dynamically reserved for each slice based on the dynamic Mini-

Batch Gradient Descent Algorithm (MBGD). Finally, the 

preserved radio channels for each slice will be dynamically 

allocated to the slice members based on the Max-Utility Intra-

Slice Resource Allocation algorithm.  

A. IoT devices Assignment and Mean Throughput       

Estimation: Online GMM Clustering Algorithm 

Due to the ultra-diversity of industrial 4.0 services, slices are 

defined based on urgency, energy and efficiency requirements 

to meet their objectives. Our proposed architecture is composed 

of three virtual industrial slices. The first slice called “Ultra-

high Critical of Latency and Efficiency (UCLE)” which has the 

most interest slicing priority and gives more importance to the 

QoS, efficiency, and reliability. This makes it required by 

several industrial IoT applications for safety such as emergency 

action and safeguarding systems. Where “High Critical of 

Latency and Efficiency (HCLE)” slice gives a less prominence 

to the latency and considers reliability as a first target. This 

service is required by the scale readings applications. The last 

slice is the “Low Critical of Latency and Efficiency (LCLE)”, 

which has the lowest slice priority with non-guaranteed QoS 

and efficiency. TABLE. I summarizes the key QoS 

requirements [13] [14] [15].  

 TABLE. I. QoS Requirements for Industrial Slices 

Slice 

type 
Latency Reliability 

Packet 

size 

Priority 

(urgency) 
Applications 

UCLE 50ms 
( 6)

1 10


   24B 1 
Emergency action, 

safeguarding systems 

HCLE 100ms 
( 6)

1 10


  512B 2 Scale readings 

LCLE 500ms 
( 6)

1 10


   250B 3 
Standard mobile 

robot 

After specifying each slice requirements, IoT devices will be 

assigned to the corresponding slices. In this context, GMM is 

adopted as a dynamic and online clustering method (OGMMC) 

to assign devices to the desired slice, by checking its QoS 

demands and estimating the mean throughput for slices [16].  

Considering a set of J  mixture multivariate Gaussian 

Distributions, indexed by the set of parameters 

 ,j j  , where  ,j j j   denotes the parameters of 

the thj Gaussian distribution, in which the mean is denoted by

j , j is the covariance, and  0,1j  is the mixing 

probabilities. Assume that all devices data point  ,..., Nin n
are independently and identically distributed according to the 

mixture probability density function  i jP n  .   is the 

parameter that will be estimated to clusters using the Maximum 

Likelihood Estimation (MLE) process, as in (15). While the 

log-likelihood is formulated in (16). 

     ,j j

i N i N

i j i j

j J

jL N P n P n   
  

 
   

 
   (15) 

   ,j j

i N

i j

j J

jlog N log P n  
 

 
  

 
                   (16) 

In view of the structural complexity of (16), the optimal    

cannot be obtained by setting the derivatives to zero. 

Expectation Maximization (EM) process [17], is a powerful 

method used to maximize the log-likelihood function and find 

the optimal parameters. The latter updates iteratively the 

parameters of individual Gaussian distributions. The given data   

are considered as incomplete data. This allows defining M 

latent variables  ,..., MiM m m where each im indicates 

which Gaussian component generates the data vector in . The 

new function that should be maximized is formulated in (17). 

    

 , ,

, j j

i N j J

i j i j

i N j J

ijlog P n

log

  

 


 

 

 


  (17)

 

where  ,i j   is the assignment of data vectors (devices) to 

the clusters. In the expectation step, EM process tends to 

calculate the probability of a device i  belongs to the cluster j  

(slice), by maximizing the  function over the assignment  

and by considering the posterior probability ,i j  formulated in 

(18).  
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 
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i j
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i

P n
P j n

P n
m






 



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(18)

 

After that, a maximization of  function over the parameter  
will be in the maximization step. As a maximization result, the 
parameters will be estimated and updated iteratively until the 
convergence. The updated mean, mixing probabilities and 
covariance are presented respectively in (19), (20), and (21).

 𝜇̂𝑗
𝑛𝑒𝑤 =

∑ 𝜔𝑖,𝑗𝑖⊂𝑁 𝑛𝑖

∑ 𝜔𝑖,𝑗𝑖⊂𝑁
   (19)        𝛼̂𝑗

𝑛𝑒𝑤 =
1

𝑛
∑ 𝜔𝑖,𝑗𝑖⊂𝑁  (20) 

∑̂𝑗
𝑛𝑒𝑤 =

∑ 𝜔𝑖,𝑗𝑖⊂𝑁 (𝑛𝑖−𝛼̂𝑗
𝑛𝑒𝑤)(𝑛𝑖−𝛼̂𝑗

𝑛𝑒𝑤)
𝑇

∑ 𝜔𝑖,𝑗𝑖⊂𝑁
                          (21) 

The optimum slicing strategy for a limited physical capacity, is 

to virtually reserve resources for each slice based on the mean 

throughput 
T
jR of its members. After the assignment step, 

OGMMC calculates 
T
jR  for slices, as in (22), with respect to 

the urgency factor.  

𝑅𝑗
𝑇 =

∑ 𝑅𝑖,𝑗,𝑘𝑖⊂𝑁

𝑛𝑖,𝑗
, ∀𝑗 ∈ 𝐿, ∀𝑘 ∈ 𝐺       (22) 

Each new device sends a connection request to the server that 

will set up the flag H, in which the Online GMMC algorithm, 

as in Pseudo-Code 1, will be re-executed. 

B. Dynamic Inter-Slicing Resources Reservation: Dynamic 

MBGD Algorithm 

After assigning IoT devices to the slice that meets its QoS 

requirements and estimating the mean throughput for slices, we 

seek in this section to reserve dynamically inter-slices channel 

resources. To reach this goal, MBGD [18] learning algorithm is 

adopted as a powerful scheme to improve QoS and minimize 

cost, in (10), by finding the optimal throughput parameter 

needed to split channel resources between slices.  

In the context of Industrial IoT (IIoT), we assume that slices 

should be ready to support and serve IoT devices. The global 

idea is to reserve a minimum capacity level ,j kC   for slices . 

Then, by checking slices requirements and learning 

dynamically devices throughput, more radio resources will be 

reserved for slices.  

The adopted MBGD scheme consists of two phases; pre-

learning phase and learning phase.  In the pre-learning phase 

(line 1 to 7 in the Pseudo-Code 2), MBGD splits physical 

resources between slices, by reserving a minimum radio 

channels based on the estimated mean throughput, even there is 

no assigned devices (line 4 to 6). With respect to the slice 

urgency factor, it starts by computing the slice rate j based on 
T
jR , as in (23). This is for defining an appropriate and optimal 

resource distribution strategy and for not exceeding the 

maximum gateway capacity. Then, the defined level of physical 

resources will be reserved, as in (24). At the end of this phase, 

the process computes the unserved capacity k  on each 

gateway, as formulated in (25). 
T
j

T
j

j L

j
R

R







 (23)     , , ,j k j kC j L k G        (24)  

, , ,
j L

k k j kC j L k G 


       (25) 

 

Pseudo-Code 1: Adaptive OGMMC Algorithm 

Input: Set of IoT devices N , Set of Clusters J ,  parameter ,       

H=1, convergence criterion  . 

Output: ,i j , parameters . 
1. BEGIN 

2. while H=1 do 

3. Define clusters with initialized parameters 𝜣 

4. while convergence=false do 

5. for each cluster j do 

6. for each IoT device do  

7. Assign devices to clusters (slices):         (18) 

Maximize the log-likelihood function:   (17)  

Update the parameters:                           (19) (20) (21) 

8. if ( 1t    ) then   

9. Convergence  true 

10. else  

11. Convergence  false 

12. end  

13. end  

14. end 

15. end while 

16. end while 

17. for each slice do 

18. Compute the mean throughput:               (22) 

19. End 

20. END 

 

Noting that the slice capacity ,j kC  do not exceed the maximum 

capacity k  provided by each gateway. That is to say, that the 

mean throughput
T
jR  should not exceed the sum of requested 

throughput for all IoT devices. Therefore, (22) and (23) must 

satisfy constraints (27) and (26) respectively.  

    0 1j         (26)                              0
T T
j j

j L

R R


        (27)      

After defining a minimum capacity level for each slice, 

MBGD acts as a brain in each gateway. It learns QoS and 

energy consumption properties in order to find the best 

configuration parameter that meets slice demands. This can be 

done by tracking dynamically slices member’s throughput 

requirements and updates its radio resources capacity.  

The common chosen parameter in the learning phase (line 8 to 

17), is , ,i j kR  that can interact with QoS, energy consumption 

and PER. However, when the throughput increase, QoS will be 

maximized. This refer to the capacity that will be increased 

according to , ,i j kR  that decrease the transmission delay as 

denoted in (5). On the other hand, the activation time activeT   

of the IoT device will decrease because of the higher speed 

transmission packets in a large bandwidth. The latter has an 

effect on energy consumption by decreasing the transmission 

power and give more chance to increase the percentage of 

successful transmitted packet. This parameter will be tuned and 

configured online, using the Mean Square Error (MSE) process, 

based on the other discussed parameters (training set). In this 

context, let denote by  the current observation values and   

is the trained output value formulated in (28), where is the 

learning rate. The MSE function is defined in (29). Where j  

is the Mini-Batch size and  , ,, , 1 i j ki j kb D  .  

, ,

, ,

i j k

i j k

E

QoS
     (28) 
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 
2

2

, ,

, , , ,

1

2

1

2 j

jj

j i

i j k

i j k i j k

i

E

R b

MSE





 






 

 
 
 




    (29) 

MBGD repeatedly iterates through the training set (power, 

throughput, and delay) and update the parameter , ,i j kR  

according to the gradient error respectively in (31) and (30).  

   
, , , ,

2

, , , ,, , , ,

1

j

i j k i j k

j i j k i j ki j k i j k

R

i

E E

R bR b 

 
     

   

 (30) 

, ,, , i j k
new
i j k RR R          (31) 

Thereafter, MBGD checks resources demands for each slice 

and updates slice rate and requested capacity, formulated 

respectively in (32) and (33). Then,  it updates reserved and 

unserved capacity presented respectively by formulas (34) and 

(35). As summarized in Pseudo-Code 2, the learning phase will 

be repeated (line 8 to 17) until it serves all slices requirements 

and stops when there are no more resources to serve it or 

convergence is reached. We note that, notations with “new” 

means the predicted value by the proposed learning process. 

,
add
j kC  denote the new requested capacity to be added, ,

new
j kC  is 

the total reserved capacity, ,
new
j k  is the new unserved capacity, 

while , ,i j kR  denote the current observation parameter.  

, ,

, ,

i j k

j L

new
j

new
i j kR

R







  (32)                 ,
add new

jj k kC           (33) 

,, ,j k
new add
j k j kC C C     (34)           , ,

j L

new new
j k j kk C 



    (35)  

C. Dynamic Intra-Slicing Resources Allocation: Max-Utility 

algorithm 

After inter-slice resources reservation, we seek in this stage 

to improve and optimize intra-slice resources allocation. The 

latter is reached by maximizing utility metric , ,i j kU for IIoT 

devices, in each slice and on each gateway.  

Utility metric is modeled based on reliability weight ( rw ) and 

load weight ( ldw ). As mentioned previously in TABLE. I, 

slices are different in term of QoS. However, utility metrics can 

be expressed as follow:   

   , ,, , 0,1i j k
UCLE r r r r

max
r

SINR

SINR
U x w x x     (36) 

HCLE r ldr ldU w w        (37) 

LCLE ld ldU w           (38) 

where the highest required reliability and urgency for UCLE 

slice, is denoted by  (36). rx is considered as a minimum 

threshold guaranteed during search for the highest reliable link.  

𝜗𝑙𝑑and 𝜗𝑟 are respectively the load rate and the reliability rate. 

The algorithm summarized in Pseudo-Code 3 based on the 

Analytical and Hierarchy Process (AHP), searches for the 

efficient and reliable link that gives the highest utility metric 

and allocate resources accordingly [19]. 

Pseudo-Code 2: Dynamic MBGD Algorithm 

Input: Set of 
T

jR , gateway capacity, Mini-Batch datasets, stop criterion 𝜺,  

Output:     ,
new
j k , ,

new
j kC , , ,

new
i j kR  

1. BEGIN 

2. Sort slices in decreasing order based on  (urgency factor) 

3. for each slice 𝒍𝒋 and   𝑮𝑾𝒌 do   

4. if ( 𝑅𝑙𝑗

𝑇 =0) then 

5. Define a minimum
T Tmin
j jR R //

Tmin
jR slightly greater than zero 

6. end 
7. Define slice rate:                                 (23) 

Define an d reserve capacity:               (24) 
Compute unserved capacity:               
Erreur ! Source du renvoi introuvable. 

8. for each Mini-Batch do                                        
9. while convergence=false do 
10. Compute the gradient:                         (30)    

Update the throughput:                        (31) 

11. if (  , , & ,, ,
1

0i j k R
j L

Rj ki j kR R
new t







    ) then   

12. Compute new slice rate:                       (32)    
Compute new requested capacity:        (33) 
Update the total reserved capacity:      (34) 
Compute the new unserved capacity:   (35) 
Convergence  false 

i= i+1; //next iteration 
13. else   
14. Convergence  true 

j= j+1; //next slice  
15. end 
16. end while 
17. end                     

18. END 

Formula (37) represent the trade-off between reliability and 

load which explains the less critical latency and priority of 

HCLE slice and the massive number of connected IoT devices. 

In this case, the process goes to find the optimal link that gives 

a perfect reliability with minimum load. While LCLE slice 

modeled by (38), shows the non-guaranteed latency and QoS 

requirements. Here, the adopted algorithm seeks to find the  

virtual link without considering reliability. 

In general case, we consider a set on IoT device denoted as a 

source node assigned  to slice j , uploads traffic through 

gateways k . The goal is to find the efficient virtual flow , ,i j kf
that maximize device utility metric , ,i j kU , as in (39), in order 

to allocate efficiently resources .  

, , , , , ,i j k i j k i j kU U U          (39) 

where , ,i j kU  and , ,i j kU  are the utilities provided by each 

gateway, in which depends on reliability and load. 

Pseudo-Code 3: Max-Utility Intra-Slice Resource Allocation 

Input: Set of IoT devices, set off gateways and slices 
Output: Max-Utility flows allocation for IoT-device 

1. BEGIN 

2. for each gateway do 

3. Put slices in increasing order based on  (urgency factor) 
Initialize flow utilities to zero 

4. end 

5. for each slice do 

6. for each IoT devices do 

7. Find path with the highest utility , ,i j kU  
Allocate IoT device i to , ,i j kf   

8. end 

9. end 

10. END 
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IV. SIMULATION AND RESULTS ANALYSIS  

In this section, we study the performance of the proposed 

approach and deeply analyze results. The suggested scheme is 

implemented in NS3 simulator [20]. TABLE. II summarizes 

simulation parameters. 

TABLE. II. Simulation parameters 

Parameter Value 

Simulation area 1km2 

Power consumption Tx/Rx 25mw 

Battery capacity 230mAh 

Number of Nodes 1000 

Number of gateways (GWs) 1  

Number of channels 

Used protocol 

8 per GW 

LoRaWAN 

We consider a set of IoT devices initialized with 100 devices, 

in which increased till it reaches 1000 in a single gateway. They 

are distributed randomly in an industrial area of one square 

kilometer. We implement firstly the Slicing Methodology 

Configuration (SMC). Then, Static Configuration (SC) will be 

implemented. The latter has the same simulation parameters to 

the SMC, but it does not contain the QoS constraint. The 

objective is to study the QoS profitability for slicing strategy 

results and make a comparison with the traditional 

configuration in term of Energy Consumption (EC), 

Transmission Delay (TD), and PER. 

A. Energy Consumption Analysis 

We assume that the sleep power for IoT devices is set to 

zero. As presented in Figure 2 (a), the total energy consumption 

for each slice depends on the number of assigned devices and 

QoS configuration.   

As in TABLE. I, LCLE slice is configured with the lowest 

priority and nonguaranteed QoS with considering load only. As 

results, a large number of devices, will be assigned to this slice, 

in which activation time will be increased proportionally. These 

leads to increase the power consumption. While HCLE slice 

scored less power consumption. The latter is configured with a 

less critical latency but also with a guaranteed reliability and 

efficiency. As result, a little set of devices will respect this 

constraint and assigned to HCLE. The tradeoff between 

reliability and less critical latency leads to minimizing energy 

consumption compared to the previous slice. While 

configuration in UCLE slice leads to the most efficient power 

consumption compared to the others. This return to the inter and 

intra process that gives higher importance and priority for QoS 

configuration, and reliability in Utility calculation. It allows the 

little set of assigned devices to take the most reliable gateway 

with smaller duration of spectrum occupation time.  

For more evaluation, the mean EC for proposed scheme was 

compared to the EC for the SC.  As denoted in Figure 2 (b), the 

EC for static method increases exponentially while number of 

deployed devices increases. This because that all IoT devices 

are assigned to the same network without respecting reliability, 

QoS, and efficiency constraint. This prove the efficiency of the 

proposed slicing method.    

 

Figure 2: Energy Consumption evaluation 

B. Delay Variation Analysis 

Relying on QoS class in TABLE. I, each slice is configured 

with packet size constraint. It is remarkable that HCLE has the 

highest packet size than LCLE and UCLE slices. While UCLE 

slice is configured with the highest reliability and efficiency. 

This will give mores chance to UCLE slice to serves its 

members, by maximizing utility metrics and allocating more 

radio channels.  As results, throughput will be increased, 

allowing delay to be reduced to a minimum. This increases the 

percentage of devices that have not violated their delay 

threshold. This is not the case for HCLE, which is configured 

with medium priority, large packet size, and a utility depending 

on reliability and load. As the number of deployed devices 

increases, delay will increase exponentially, even if the learning 

process reserves more resources. Thus, increase the percentage 

of IoT devices that violated its delay threshold. Instead, delay 

in LCLE will be increased according to the increase of its 

member but it remains less than HCLE. This refers to the QoS 

constraint that configure LCLE with a little packet size than 

HCLE and consider the load only. Figure 3 (a) demonstrates the 

delay variation for slices, while Figure 3 (b) demonstrates the 

percentage of served devices in delay. 

Figure 3: Delay variation and percentage of Served devices 

More performances evaluations were conducted, and the 

proposed slicing method was compared to the static method in 

term of delay variation and percentage of unserved devices in 

delay. As seen in Figure 4 (a) and (b), SC had the worst results 

with highest delay varies exponentially with the increase of 

deployed devices number. Also 88% of devices did not respect 

their delay thresholds on 1000 deployed devices compared to 

32% of the SMC. This refers to the random configuration that 

did not take into consideration QoS requirements of devices.   
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Figure 4: Mean Delay variation and percentage of Unserved devices 

C. Packet Error Rate Analysis 

Figure 5 (a), shows the evolution of PER in each slice. As 
described previously, the proposed process gives more 
importance to the UCLE slice, by checking its QoS demands 
and serve it. Then, it moves to the HCLE slice, and later if there 
are unserved resources it can reserve some to LCLE slice. As 
results, UCLE slice will be frequently served, and may 
therefore limit PER of its members.  It is remarkable that PER 
in UCLE increase when devices increase at 200 and 300, then 
PER decrease at 400 devices, etc. This returns to the learning 
tools that try to avoid resource starvation in each slice and 
dynamically reserves channels following throughput demands. 
As the deployment device increases, congestion increases, and 
reserved resources will no longer be sufficient to support 
devices requirements. At this stage, PER will be increase until 
process serve its demand in future iteration. In fact, it is the 
same thing for the other two slices, but with considering less 
QoS constraint to HCLE and no QoS constraint to the LCLE 
slice. This implies that fewer radio channels will be reserved, 
in which congestion will be increased, while PER will also 
increase. By the other hand, with static configuration, PER was 
highly increased. This refers to the continuously increased 
congestion with the increase of deployment devices. This 
because the QoS configuration is not considered. Results in 
Figure 5 (b) prove the efficiency of the optimization process in 
reducing PER with 40% compared to 20% of the SC. 

 

Figure 5: Percentage of PER evaluation for both configurations 

V. CONCLUSION 

The ever-increasing exploitation of smart devices with 
improved capabilities, is leading to a radical change in the 
industrial landscape. However, low latency, reliability, and 
efficiency are required to support new Industrial 4.0 challenges. 
Network slicing paradigm benefits can be extended to address 
outrange performance requirements.  In this context, we have 
proposed industrial network slicing framework based on 
machine learning tools in order to meet QoS requirements 
online and dynamically over the industrial network.  Firstly, 

OGMMC was proposed to assign devices to the desired slice 
that meet its QoS demands and to estimate mean throughput 
slices requirements. Secondly, Mini-Batch based slicing 
scheme was proposed to reserve dynamically radio channels to 
slices. Finally, steps Max-Utility algorithm was adopted in 
order to efficient allocate the gateway resources to the slice’s 
members. Simulations results show the efficiency of the 
proposed slicing method compared to the static method in 
saving energy consumption, reducing delay, and PER. 

 REFERENCES 

[1] D. Hanes, G. Salgueiro, P. Grossetete, R. Barton, and J. Henry. (2017). 
IoT Fundamentals: Networking Technologies, Protocols, and Use Cases 
for the Internet of Things. Cisco Press. 

[2] A. Colombo, W. Karnouskos, S. Kaynak, O. Y. Shi, and S. Yin. (2017). 
Industrial cyberphysical systems: A backbone of the fourth industrial 
revolution. IEEE Industrial Electronics Magazine, 11(1), pp. 6-16. 

[3] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck. (2018). 
Network slicing and softwarization: A survey on principles, enabling 
technologies, and solutions. IEEE Communications Surveys & 
Tutorials, 20(3), pp. 2429-2453. 

[4] D. Li, M. T. Zhou, P. Zeng, M. Yang, Y. Zhang, and H. Yu. (2016). Green 
and reliable software-defined industrial networks. IEEE Communications 
Magazine, 54(10), pp. 30-37. 

[5] H. Zhang, C. Jiang, N. C. Beaulieu, X. Chu, X. Wen, and M. Tao. (2014, 
July). Resource allocation in spectrum-sharing OFDMA femtocells with 
heterogeneous services. IEEE Transactions on Communications, 62(7), 
pp. 2366-2377. 

[6] V. Yazici, U. C. Kozat, and M. O. Sunay. (2014, Nov). A New Control 
Plane for 5G Network Architecture with a Case Study on Unified 
Handoff, Mobility, and Routing Management. IEEE Commun. Mag, 
52(11), pp. 76–85. 

[7] Q. Li, G. Wu, A. Papathanassiou, and U. Mukherjee. (2016). An end-to-
end network slicing framework for 5G wireless communication 
systems. arXiv preprint arXiv:1608.00572.  

[8] E. Molina, and E. Jacob. (2018). Software-defined networking in cyber-
physical systems: A survey. Computers & Electrical Engineering, 66, pp. 
407-419 

[9] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos. 
(2016). Software-defined industrial internet of things in the context of 
industry 4.0. IEEE Sensors Journal, 16(20), pp. 7373-7380. 

[10] J. Wan, C. F. Lai, H. Song, M. Imran, and D. Jia. (2019). Software-
Defined Industrial Internet of Things. Wireless Communications and 
Mobile Computing. 

[11] B. Al Homssi, A. Ai-Hourani, K. G. Chavez, S. Chandrasekharan, and S. 
Kandeepan. (2018, December). Energy-Efficient IoT for 5G: A 
Framework for Adaptive Power and Rate Control. 12th International 
Conference on Signal Processing and Communication Systems 
(ICSPCS), IEEE, pp. 1-6.  

[12] A. Al-Hourani, S. Kandeepan, and E. Hossain. (2016). Relay-assisted 
device-to-device communication: A stochastic analysis of energy saving. 
IEEE Transactions on Mobile Computing, 15(12), pp. 3129-3141. 

[13] A. E. Kalør, R. Guillaume, J. J. Nielsen, A. Mueller, and P. Popovski. 
(2018). Network slicing in industry 4.0 applications: Abstraction methods 
and end-to-end analysis. IEEE Transactions on Industrial 
Informatics, 14(12), pp. 5419-5427. 

[14] M. Lucas-Estañ, M. Sepulcre, T. Raptis, A. Passarella, and M. Conti. 
(2018). Emerging Trends in Hybrid Wireless Communication and Data 
Management for the Industry 4.0. Electronics, 7(12), pp. 400. 

[15] A. E. Kalør, R. Guillaume, J. J. Nielsen, A. Mueller, and P. Popovski. 
(2017). Network slicing for ultra-reliable low latency communication in 
industry 4.0 scenarios. arXiv preprint arXiv:1708.09132. 

[16] G. Celeux, and G. Govaert. (1995). Gaussian parsimonious clustering 
models. Pattern recognition, 28(5), pp. 781-793. 

[17] T. K. Moon. (1996). The expectation-maximization algorithm. IEEE 
Signal processing magazine, 13(6), pp. 47-60. 

[18] S. Ruder. (2016). An overview of gradient descent optimization 
algorithms. arXiv preprint arXiv:1609.04747. 

[19] S. Dawaliby, A. Bradai, and Y. Pousset, (2019). Adaptive dynamic 
network slicing in LoRa networks. Future Generation Computer 
Systems, 98, pp. 697-707. 

[20] G. Carneiro. (2010, April). NS-3: Network simulator 3. In UTM Lab 

Meeting, 20, pp. 4-5. 

200 400 600 800 1000
0

20

40

60

80

100
(b)

U
n

se
rv

ed
 d

ev
ic

es
 i

n
 D

el
ay

(%
)

Deployed devices

 Unserved devices : SMC

 Unserved devices : SC 

200 400 600 800 1000
0

50

100

150

200

250

300
M

ea
n

 D
el

ay
 (

m
s)

Deployed devices

 Mean Delay : SMC

 Mean Delay : SC 

200 400 600 800 1000
0

20

40

60

80

100

120

%
 o

f 
P

E
R

Deployed devices

 % of PER: SMC

 % of PER: SC

200 400 600 800 1000
0

5

10

15

20

25

30

35

40

45

50

%
 o

f 
P

E
R

Deployed devices

 UCLE:% of PER

 HCLE:% of PER

 LCLE:% of PER


