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Abstract

Atrial flutter presents quasi-periodic atrial activity due
to circular depolarization. Given the different structure
of right and left atria, spatiotemporal variability should
be different. This was analyzed using recurrence quan-
tification analysis. Autocorrelation signals were estimated
from the unthresholded recurrence plot, calculated with a
properly processed ECG to remove variability related to
external sources (noise, respiratory motion, T wave over-
lap). Simple features were considered from the autocorre-
lation that attempts to describe the atrial activity in terms
of range of recurrence and periodicity. Linear classifica-
tion using support vector machines and logistic regression
both allowed good classification performance (max accu-
racy 0.8 for both). Feature selection showed that right and
left AFL have significantly different cycle lengths (right vs.
left: 230.63 ms vs. 206.50 ms, p < 0.01).

1. Introduction

The quasi-periodic atrial activity (AA) observed on the
electrocardiogram (ECG) during atrial flutter (AFL) is
caused by a rotating circular depolarization of the atrium.
It has been shown that beat-to-beat variability of the flutter
or F waves, quantified using vectorcardiographic parame-
ters, allowed localization of right or left atrial circuit [1].
Different variability was observed for right and left local-
ization, inducing a hypothesis of varying circuit stability.

With a beat-to-beat approach, instantaneous spatiotem-
poral information is not preserved, which may contain in-
formation about AA. In addition, both atria are known to
be remarkably different in structure. The right atrium con-
tains many large and well-defined cardiac fibers and is rel-
atively thin, whereas the left atrium is thick and multi-
layered [2]. It is expected that spatiotemporal variability
would be different.

The use of recurrence quantification analysis (RQA) has
been highlighted for spatiotemporal analysis and charac-

terization of atrial fibrillation (AF) activation propagation
[3, 4]. Of particular interest, atrial fibrillation recurrence
behavior was characterized, and was shown to be different
for recurring and non-recurring persistent AF.

In this paper, RQA is employed in order to study the
spatiotemporal variability related to the circular propaga-
tion of AFL activation in a non-invasive fashion. Several
features are extracted from the computed recurrence signal
and serves as features for classification of circuit localiza-
tion. Machine learning techniques are considered in order
to obtain practical classifiers as well as to understand the
reason why right and left AFL are different by employing
feature selection.

2. Methodology

2.1. Dataset and Preprocessing

54 ECG recordings of AFL were used, acquired using a
device (Boston Scientific, USA) at fs = 2000Hz, during
catheter ablation operation at Centre Hospitalier Princesse
Grace, Monaco. A finite-impulse response notch filter at
50Hz was applied to these signals to remove powerline in-
terference, as well as high- and low-pass filters to keep the
band between [0.5; 70]Hz. Records with missing leads,
low F wave amplitudes, low atrioventricular block ratio
(< 2 : 1) and low F wave counts were excluded from the
study. In total, there were 30 recordings with right circuit
localization and 24 with left localization.

Extraction of atrial activity is crucial for RQA. However,
in AFL the high synchronicity between atrial and ventricu-
lar activity renders most extraction methods inefficient due
to spectral overlap or source dependence. Segmentation of
each F waves is preferred as an alternative to extract atrial
activity. Since the essential activity is located fully within
the F wave duration, the remaining portion of signals are
theoretically not needed.

F waves from each recording were detected using a
method developed previously [5]. Two set of F waves,



overlapped and not overlapped with T waves, were seg-
mented. All F waves were synchronized, transformed into
VCG and removed of respiratory motion using a technique
described previously [1]. Overlapped F waves were cor-
rected using the procedure detailed in a previous study [6].

The mean of each segmented F waves are removed for
all leads. Finally, a new signal, different that the original
recording, was made by replacing each wave at the same
time index where it was originally located. The rest of the
signal not containing any F waves are padded with zeros.
This new signal represents the atrial signal free from any
external variability (see 1, top panel).

2.2. Calculation of Recurrence Features

Recurrence quantification analysis (RQA) is a non-
linear technique that aims to quantify the properties of a
dynamic, often oscillatory system by comparison of a state
space vector x(i) of dimension K at one instant with an-
other delayed instant x(i − τ). In ECG analysis K rep-
resents the number of leads available, and x(i) the ECG
voltage at the discrete sample i . The state vector is then
the multidimensional atrial dipole, and the ECG traces, the
trajectory map of the dipole. Due to the circular depolar-
ization, the trajectory resembles a loop.

The unthresholded recurrence plot (URP) R is a sym-
metric 2D graphical plot representing a similarity measure
D of two states at different delay instants, with the mea-
sure being real-valued. This is written as:

R(i, j) = D(x(i),x(j)) (1)

One intuitive similarity measure that capture spatiotem-
poral propagation of AA is the normalized dot product:

D(x(i),x(j)) =
x(i)T x(j)

‖x(i)‖‖x(j)‖
(2)

which is related to the cosine of the angle between the two
vectors. This definition of recurrence captures not only
the similarity of two very close state vectors, but it also
captures similarity when the two vectors are in opposing
directions. This was used successfully in the case of AF to
characterize its spatiotemporal behavior [3].

A sample URP can be seen in 1 (middle panel) calcu-
lated from a 5-second sample of the post-processed AFL
signal(top panel). Due to the zero-padding of the post-
processed signal, the URP contains many undefined recur-
rence values (white area). When defined, the entries in
the main diagonal are always 1, suggesting perfect match.
Moving outwards from the main diagonal, repetitive pat-
terns can be observed in intervals.

To limit non-stationarity, the URP was processed in seg-
ments of fixed size. A segment starts at the main diagonal,
and progresses along the diagonal up to a length I . The

segment width spans from the main diagonal towards the
edge of the plot (i.e. increasing j) for up to a width J . The
delay variable can be introduced by τ = j−i⇔ j = i+τ .
A segment can be described by the equation:

Rs(i, τ) = R(i, i+ τ), i ∈ [(s− 1)I; sI] (3)

Highlights of segments can be found in Figure 1. The
choice of I and J determines the properties of the segment,
and should be considered as parameters. However, it can
be reasoned in the context of AFL, that stationarity can be
guaranteed for long periods of time due to the regularity
of F wave manifestation. For this paper, I is set to 2000
samples (1 second), and J to 4000 samples (2 seconds).
Note that τ ∈ [0; J ]. The value of J assures that > 5 AFL
cycles can be captured in the segment.

To reduce the variance of the recurrence estimate, an
average can be taken for each segment along i:

Ds(τ) =
1

I

sI∑
i=(s−1)I

Ds(i, τ) (4)

This amounts to an autocorrelation, assuming stationar-
ity within the segment. In practive, undefined recurrence
values were discarded, and for each τ , the average only
considers defined values (i.e. I is not fixed), to avoid bias
in the calculation. An example of this is shown in Figure
1 (bottom panels). It is clear that AFL has a quasi-periodic
recurrence behaviour, as shown by the high and repetitive
autocorrelation peaks.

To quantify this behavior, two parameters were consid-
ered. The first parameter S1 relates to the range of spa-
tial propagation. This is given by the peak-to-peak ampli-
tude of the autocorrelation, taken from one maximum to
the next minimum (Figure 1, bottom panel, in green). The
second parameter S2 relates to the periodicity of propaga-
tion, and is essentially an estimate to the AFL cycle length.
This is calculated by the peak-to-peak interval of the avail-
able maximums. The two parameters are calculated for all
available points in the signal, hence making a series of val-
ues.

Calculation of these parameters can be done for each
segment. However, the existence of long periods of unde-
fined values can be troublesome, since long segments of
discontinuity is present. In order to combat this problem,
the autocorrelations were aggregated by calculating their
median value:

D̃ = medianSs=1Ds (5)

The result is a single continuous autocorrelation func-
tion. In some patients, the function D̃ was unfortunately
still discontinuous due to prolonged undefined periods.
This did not hinder the calculation of the parameters,
though.
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Figure 1. Top panel: 5-second sample ECG (lead V1). Thin broken line indicates the post-filtered ECG, whereas thick
green line indicates the ECG after all processing steps. Middle panel: unthresholded recurrence plot calculated from the
new ECG. Bottom panel: autocorrelation functions derived from their respective plots by averaging of single segments.
First segment is shown (thick line) along with the subsequent segment (thin broken line). See Section 2.2 for details.

From the two parameters, several features were cal-
culated, that aim to capture spatiotemporal variability in
AFL: the 1) mean, 2) standard deviation, 3) variance, 4)
skewness, and 5) kurtosis of the two series. The features
are in fact statistical moments, and characterizes the prop-
erties of the series distribution. In total, there were 10 fea-
tures considered.

2.3. Learning Protocol

The set of data and features were used as learning inputs
to the linear support vector machine (SVM) and logistic re-
gression (LOG) classifiers. Due to the small sample size,
no validation schemes were considered. In order to eval-
uate the relevance of the feature, a wrapper approach was
employed by evaluating all possible combinations of fea-

tures from 1 to 10. Relevance of the feature was deter-
mined by counting the participation of each feature in the
combinations that produced the highest accuracy, from a
combination length of 1 to 10, and summing the participa-
tion score.

3. Results and Discussion

The result of classification is shown in Figure 2. As
can be seen, recurrence quantification gave features that
are discriminating with respect to AFL localization. Good
performance can be achieved, as seen by accuracies> 0.6,
and increases as more features are added. Maximum per-
formance was obtained by all classifiers at 6 combinations
of features (accuracy = 0.8, sensitivity and specificity =
(0.67, 0.90) and (0.90, 0.67) for LOG and SVM classi-
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Figure 2. Maximum classifier accuracy of the considered
classifiers.

fier respectively). This was obtained using linear clas-
sifiers and with a small amount of features, suggesting
that overfitting was avoided. The 6 features used were
[F1 F2 F3 F6 F7 F9] for LOG, and [F1 F2 F5 F6 F7 F9]
for SVM (refer to Table 1 for feature indices).

Table 1. Feature Scores
Index Feature LOG SVM

F1 Mean(S1) 8 6
F2 Stdev(S1) 7 7
F3 Var(S1) 7 8
F4 Skewness(S1) 4 1
F5 Kurtosis(S1) 4 7
F6 Mean(S2) 10 10
F7 Stdev(S2) 7 6
F8 Var(S2) 5 5
F9 Skewness(S2) 7 9
F10 Kurtosis(S2) 4 6

Further analysis of the relevant features was performed
by counting the score of each feature: if the feature was
involved in any combinations of length l that produced the
maximum accuracy, then it is assigned a score of 1, else
0. The total score is the sum of scores from combination
length 1 to 10. The largest possible score is then 10, and
lowest 0.

Table 1 shows the feature score for each classifier. The
highest participation was found to be of the feature F6.
This suggests that this feature presents a significant con-
tribution in determining right or left localization. Interpre-
tation of the feature indicates that right flutter have sig-
nificantly larger cycle lengths (mean 230.63 ms) than left
flutter (mean 206.50 ms; p < 0.01, Mann-Whitney U test).
However, this does not conclude on whether if AA propa-
gation was faster in left AFL or that the circuit was larger.
Further investigation is required to clarify this matter.

4. Conclusion

It has been shown that the ensemble of processing steps
were able to extract meaningful characteristic parameters
of the AFL AA propagation, and allowed localization to
be performed with a good degree of performance. Recur-
rence quantification analysis allowed access to spatiotem-
poral characteristics of AFL, which was shown to be differ-
ent for each localization. Inspection of the features showed
that different AFL localization produced significantly dif-
ferent propagation cycle lengths.
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