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Highlights

• Micromechanical approach to evaluate the electro-magneto-inelastic properties in coated

long fiber composites with transversely isotropic piezoelectric-piezomagnetic behaviour

• Composite Cylinders Assemblage type of boundary conditions to obtain analytical expres-

sions of the dilute electro-magneto-mechanical concentration tensors

• Mori-Tanaka is adapted to identify i) the overall response of the composite, and ii) the

various average electro-magneto-mechanical fields of the phases

• Ability of the proposed model to predict both macroscopic and average microscopic fields

per phase when nonlinear fields take place
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Abstract

A unified micromechanical approach is proposed to evaluate the electro-magneto-mechanical re-

sponse of coated long fiber composites with transversely isotropic piezoelectric-piezomagnetic be-

haviour. The developed framework takes into account the presence of electro-magneto-mechanical

eigenfields. The multiscale strategy is based on solving specific boundary value problems in the

same spirit as in the Composite Cylinders Assemblage technique. The solution of these prob-

lems provides analytical expressions of the dilute electro-magneto-mechanical concentration ten-

sors. With the help of the latter, the mean-field approach of Mori-Tanaka is adapted to identify

i) the overall response of the composite, and ii) the various average electro-magneto-mechanical

fields generated in the matrix, the fiber and the coating layers for known macroscopic fields. It

is found that the novel approach has the same accuracy as existing homogenization techniques

in terms of electro-magneto-mechanical properties. The ability of the proposed model to predict

both macroscopic and average microscopic fields per phase when eigenfields take place is finally

demonstrated.

Keywords: Composite Cylinders Assemblage; Coated long fiber composites;

Piezoelectric-piezomagnetic materials, Electro-magneto-inelastic fields;

1. Introduction

Piezoelectric and piezomagnetic materials have received much attention in the last decades

and are being increasingly used in various applications such as aerospace, biomedical, vibration
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control and many others. These materials are extensively used as actuators, sensors and trans-

ducers. Typically, active actuator materials have the capability to convert electrical and/or mag-

netic energy into mechanical energy, while sensor materials provide an opposite conversion. To

avoid the increased weight of conventional piezoelectric or piezomagnetic materials, these smart

materials are generally combined with polymers in the form of composites. Such combination

permits to develop new transducers and sensors with high strength, increased thermal conductiv-

ity, low thermal expansion and advanced electromechanical behaviour. However, the co-existence

of piezoelectic and piezomagnetic coupling effects in such composite materials and the involve-

ment of many constituents-based parameters make the modelling of their multiphysical behaviour

complex. From a micromechanics point of view, special techniques are required to investigate the

coupling effects and the whole performance of the composite. Such modelling tools hold the key

for using these smart composites in many applications in more intelligent ways.

The modelling of the piezoelectric-piezomagnetic composites is still an open topic (e.g., Nan,

1994; Wu and Huang, 2000; Bishay and Atluri, 2016; Ye et al., 2018; Kuo and Hsin, 2018, etc.).

Within the last 30 years, significant progress has been made in the development of models that

study the combined thermo-electro-magneto-elastic behaviour of composites (Tang and Yu, 2009;

Bravo-Castillero et al., 2009; Akbarzadeh and Chen, 2014; Koutsawa, 2015). Most of the exist-

ing models in literature were focused on the thermoelastic regime and have paid particular at-

tention to the study of both piezoelectric and piezomagnetic coupling effects. Dunn and Taya

(1993) have developed an Eshelby-type approach to investigate the electroelastic behaviour of

piezoelectric composite materials by identifying appropriate Eshelby and concentration tensors.

This approach has then been extended to consider electro-magneto-elastic responses (Huang and

Kuo, 1997; Li and Dunn, 1998; Li, 2000). Huang et al. (1998) have identified electro-magneto-

elastic Eshelby tensors for elliptical, rod, penny and ribbon shaped inclusions. Benveniste (1995)

has studied the electro-magnetic effect in fibrous composites with piezoelectric and piezomag-

netic phases using the composite cylinders assemblage method. Aboudi (2001) has developed a

homogenization micromechanical method for the prediction of the effective moduli of coupled

electro-magneto-thermo-elastic composites, while Lee et al. (2005) have proposed numerical and

Eshelby-based analytical strategies for three phase electro-magneto-elastic composites. Moreover,
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the electro-magneto-thermo-elastic composites have extensively been studied using the periodic

homogenization theory (Bravo-Castillero et al., 2008, 2009; Challagulla and Georgiades, 2011;

Hadjiloizi et al., 2013; Kuo and Peng, 2013). Pakam and Arockiarajan (2014) have developed

a micromechanical scheme for studying ferroelectric and magnetostrictive composites reinforced

with square cross section fibers and subjected to high electro-magnetic loading conditions. Using

Hill’s interfacial operators, Dinzart and Sabar (2011) and Koutsawa et al. (2011) have proposed

micromechanical models based on Mori-Tanaka and self consistent schemes to investigate the

thermo-electro-magneto-elastic behaviour of magneto-piezoelectric composites with multi-coated

ellipsoidal particles.

This work aims at developing a unified micromechanical approach in inelasticity to analytically

express the electro-magneto-elastic and inelastic concentration tensors and effective material pa-

rameters for coated long fiber composites with transversely isotropic piezoelectric-piezomagnetic

behaviour. The coating between the matrix and the reinforcement is witnessing strong coupling

effects with complex local behaviour. Inelastic deformation mechanisms such as plasticity and/or

martensite transformation occur frequently at the coating region and strongly interact with the lo-

cal damage of the matrix/reinforcement interface (Payandeh et al., 2010, 2012). To reiterate, one

of the aims of this work is to develop appropriate tools to assess the electro-magneto-inelastic

fields in the matrix, fibers and coating layers. The current work aims at elaborating multiscale

approaches to design more accurate damage and failure criteria for piezoelectric-piezomagnetic

composites.

A novel approach, adapted to the Mori-Tanaka homogenization scheme, is presented in this

manuscript. The approach is based on solving specific boundary value problems, extending the

composite cylinders model of Hashin and Rosen (1964) to account for the inelasticity. The latter

effort can be considered as a generalization of the Dvorak and Benveniste (1992) methodology,

providing analytical expressions of the dilute electro-magneto-mechanical concentration tensors,

which can be utilized in classical micromechanical techniques, such as Mori-Tanaka or self con-

sistent methods. The advantage of such information is that it permits to identify not only the

overall response of the composite, but also the various average electro-magneto-mechanical fields

generated in the matrix, the fiber and the coating layers for known macroscopic electro-magneto-
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mechanical conditions.

The effect of eigenfields (inelastic strains, electric or magnetic eigenfields) on the overall re-

sponse, as well as in the average response of the phases, is important for the study of nonlinear

behaviour of composites. Indeed, while in the current manuscript the described boundary value

problems are linear, the provided solutions can be seen as the mean to include nonlinear mecha-

nisms per phase. The latter should be described through evolution laws of the nonlinear fields and

activation criteria. Via an appropriate incremental, iterative scheme, one can use the linearized mi-

cromechanics solution provided here and adapt it to account for the constitutive laws of the phases

(see for instance Pettermann et al., 1999 for purely mechanical multiscale analysis).

To fulfill the underlined objectives, a brief description of the Eshelby’s problem for coated in-

homogeneity with eigenfields at the matrix fibers and coating layers is first presented. The Eshelby

problem is then solved by considering special boundary condition problems analogue to those in-

troduced by Hashin and Rosen. Then, numerical computations are conducted and discussed in

detail. These computations have permitted to demonstrate the capabilities of the developed mi-

cromechanics technique. Several conclusions, drawn from the findings, are finally put forward.

2. Preliminaries

For small deformations and rotations, electrostatic conditions with no electric charge and mag-

netostatic conditions with no current density, the strain tensor, ε, the electric field vector, e, and

the magnetic field vector, h, can be expressed with the help of the displacement vector, u, the elec-

tric scalar potential, ae, and the magnetic scalar potential1, am, respectively, through the tensorial

relations

ε “ 1
2

“
grad u` rgrad usT‰ , e “ ´grad ae and h “ ´grad am, (1)

1In classical magnetomechanics studies, the natural choice is to introduce a vector potential. When dealing with

multiscale approaches, the absence of microscopic current density permits an alternative formalism with scalar poten-

tial, which simplifies the calculations.
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or the vector-type equations

ε “
”
ε11 ε22 ε33 2ε12 2ε13 2ε23

ıT

“
„ Bu1

Bx1

Bu2

Bx2

Bu3

Bx3

Bu1

Bx2
` Bu2

Bx1

Bu1

Bx3
` Bu3

Bx1

Bu2

Bx3
` Bu3

Bx2

T

, (2)

e “
”

e1 e2 e3

ıT
“
„
´Bae

Bx1
´Bae

Bx2
´Bae

Bx3

T

, (3)

h “
”

h1 h2 h3

ıT
“
„
´Bam

Bx1
´Bam

Bx2
´Bam

Bx3

T

, (4)

where the symbol r.sT stands for the usual vector/matrix transposes in orthogonal coordinates.

On the other hand, the stress tensor, σ, the electric displacement, d, and the magnetic induc-

tion, b, written in the vector-type forms

σ “
”
σ11 σ22 σ33 σ12 σ13 σ23

ıT
,

d “
”

d1 d2 d3

ıT
, b “

”
b1 b2 b3

ıT
, (5)

obey the following equilibrium, electrostatic and magnetostatic equations

divσ “ 0, div d “ 0 and div b “ 0, (6)

or, in indicial form,

Bσ11{Bx1 ` Bσ12{Bx2 ` Bσ13{Bx3 “ 0,

Bσ12{Bx1 ` Bσ22{Bx2 ` Bσ23{Bx3 “ 0,

Bσ13{Bx1 ` Bσ23{Bx2 ` Bσ33{Bx3 “ 0,

Bd1{Bx1 ` Bd2{Bx2 ` Bd3{Bx3 “ 0,

Bb1{Bx1 ` Bb2{Bx2 ` Bb3{Bx3 “ 0. (7)

Besides, a piezo-electro-magnetic, transversely isotropic material with eigenfields obeys the fol-
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lowing constitutive laws, written in matrix-type notation2

σ “ L · rε´ εps ´ e · re´ eps ´ f · rh´ hps,
d “ eT · rε´ εps ` κe · re´ eps ` j · rh´ hps,

b “ f T · rε´ εps ` jT · re´ eps ` κm · rh´ hps, (8)

where the index p above a field denotes an eigenfield. Example of eigenfields are those gener-

ated by the presence of temperature (e.g. thermal expansion strain, etc.). In addition, L, κe, κm,

e, f , j denote the elasticity, the dielectric properties, the magnetic permeabilities, the coupled

electro-mechanical, the coupled magneto-mechanical and the coupled electro-magnetic tensors,

respectively. For transversely isotropic behaviour with axis of symmetry parallel to the direction

3, these tensors are expressed in the following matrix-type forms

L “

»
————————————————————————–

Ktr ` µtr Ktr ´ µtr l 0 0 0

Ktr ´ µtr Ktr ` µtr l 0 0 0

l l n 0 0 0

0 0 0 µtr 0 0

0 0 0 0 µax 0

0 0 0 0 0 µax

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (9)

e “

»
————————————–

0 0 e31

0 0 e31

0 0 e33

0 0 0

e15 0 0

0 e15 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

, f “

»
————————————–

0 0 f31

0 0 f31

0 0 f33

0 0 0

f15 0 0

0 f15 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffifl

, (10)

2The symbol · in the matrix notation denotes the common matrix multiplication. The product between a scalar

and a matrix is represented without a symbol.
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κe “

»
———–

κe
11 0 0

0 κe
11 0

0 0 κe
33

fi
ffiffiffifl, κm “

»
———–

κm
11 0 0

0 κm
11 0

0 0 κm
33

fi
ffiffiffifl, (11)

j “

»
———–

j11 0 0

0 j11 0

0 0 j33

fi
ffiffiffifl. (12)

The constants Ktr, l, n, µtr, µax, e31, e33, e15, f31, f33, f15, κe
11, κe

33, κm
11, κm

33, j11 and j33 are material

parameters. Equation (8) can also be written in the following compact form

Σ “ L · rE´ Eps , (13)

where L is the 12ˆ12 symmetric matrix given as

L “

»
———–

L e f

eT ´κe ´ j

f T ´ jT ´κm

fi
ffiffiffifl , (14)

and Σ, E, Ep the 12ˆ1 vectors defined as

Σ “
”
σ d b

ıT
, E “

”
ε ´e ´h

ıT
, Ep “

”
εp ´ep ´hp

ıT
. (15)

Finally, the generalized vector

U “
”

u1 u2 u3 ae am
ıT
, (16)

is also introduced.

In the sequel, when dealing with various material phases, the following notation is postulated

for a quantity a: i) A superscript on the symbol of the form apqq denotes that the quantity a is

spatially dependent. ii) A subscript on the symbol of the form aq is used for constant or average

value of the quantity. The index q can take the values 0, 1 or 2.

3. Coated long fiber composites with eigenfields

Identifying the overall properties of a composite sensitive to electro-magneto-mechanical load-

ing conditions is the task of homogenization strategies and techniques. In this paper, the mean-field

approach of the Mori-Tanaka method is followed. This method relies on two aspects:
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• solving a basic (Eshelby-type) problem of a coated inhomogeneity embedded in an infinite

medium, allowing to compute the so-called ”interaction” or ”dilute concentration” tensors.

• using this information in the level of the composite for identifying the ”concentration” ten-

sors, whose knowledge leads to link the microscopic and macroscopic fields in order to

obtain the macroscopic matrix L and the macroscopic eigenfield Ep of the overall compos-

ite.

3.1. Eshelby’s problem for coated inhomogeneity with eigenfields in all phases

Consider a coated cylindrical inhomogeneity, embedded in an infinite medium. The medium,

the inhomogeneity and the homothetic coated layer are characterized by constant generalized mod-

uli, L0, L1 and L2, respectively. The inhomogeneity occupies the space Ω1 with volume V1, is

bounded by the surface BΩ1 and is subjected to the uniform eigenfield Ep
1 . The coating layer oc-

cupies the space Ω2 with volume V2, is bounded by the surfaces BΩ1 and BΩ2 and is subjected

to the uniform eigenfield Ep
2 . The medium occupies the space Ω0, which is extended to infinity

(boundary surface BΩ8), and is subjected to the uniform eigenstrain Ep
0 . At far distance, a linear

field

Uext “

»
—————————–

u01

u02

u03

ae
0

am
0

fi
ffiffiffiffiffiffiffiffiffifl

“

»
—————————–

ε110 x1 ` ε120 x2 ` ε130 x3

ε120 x1 ` ε220 x2 ` ε230 x3

ε130 x1 ` ε230 x2 ` ε330 x3

´e10 x1 ´ e20 x2 ´ e30 x3

´h10 x1 ´ h20 x2 ´ h30 x3

fi
ffiffiffiffiffiffiffiffiffifl

, (17)

with εi j0 , ei0 , hi0 (i, j “ 1, 2, 3) constant values, is applied (see Figure 1).

For this problem, which is a generalized version of the famous Eshelby inhomogeneity problem

(Eshelby, 1957) accounting for multiphysics phenomena, the constitutive law is position depen-

dent and reads

Σpxq “

$
’’’’’’&
’’’’’’%

L0 ·
“
Epxq ´ Ep

0

‰
, x P Ω0,

L1 ·
“
Epxq ´ Ep

1

‰
, x P Ω1,

L2 ·
“
Epxq ´ Ep

2

‰
, x P Ω2.

(18)

9



           

Figure 1: Cross section of coated cylindrical fiber with homothetic topology inside an infinite medium. All phases

have homogeneous material properties and are subjected to uniform eigenfields. Moreover, the medium is subjected

to linear displacement, electric potential and magnetic potential at far distance.

The boundary conditions correspond to uniform E0 at far distance.

The main goal of this problem is to compute the average fields inside the inhomogeneity and

inside the coating layer

E1 “ 1
V1

ż

Ω1

Epxqdx and E2 “ 1
V2

ż

Ω2

Epxqdx, (19)

respectively, when the applied field, E0, at far distance and the eigenfields Ep
0 , Ep

1 , Ep
2 are known.

In other words, the purpose is to evaluate the generalized, 12ˆ12 elastic and inelastic interaction

tensors, Ti and Tp
q,i for i “ 1, 2 and q “ 0, 1, 2, for which the following relations hold

Ei “ Ti · E0 `
2ÿ

q“0

Tp
q,i · Ep

q . (20)

The above expression is a direct extension of the corresponding one in the original Transformation

Field Analysis approach of Dvorak and Benveniste (1992). In purely mechanical problems, the

first term is the usual elastic interaction tensor of a phase, connecting the total strain in the phase

i with the far field applied strain. The sum of the following terms expresses the dependence of the
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total strain in the phase i from the inelastic strains of all the phases in the representative volume

element.

To assist the computations, the ratio φ “ V1{ rV1 ` V2s is identified.

3.2. Proposed methodology: analytical solutions in special boundary value problems

The proposed methodology is motivated by the studied boundary value problems by Hashin

and Rosen (1964) in their famous composite cylinders assemblage theory. The necessary modifi-

cations on these problems, discussed in the sequel, provide the exact solution for the interaction

tensors. Similar technique has been utilized in various articles (Benveniste et al., 1989; Chatzige-

orgiou et al., 2012; Wang et al., 2016; Chatzigeorgiou and Meraghni, 2019; Chatzigeorgiou et al.,

2019) for studying the mechanical and piezoelectric response of long fiber composites.

Before passing to the actual boundary value problems, it is essential to express all the fields

and the conservation laws in cylindrical coordinates.

3.2.1. Expressing the Eshelby’s inhomogeneity problem in cylindrical coordinates

Figure 2: Coated cylindrical fiber with homothetic topology inside an infinite medium, which is represented as a

concentric cylinder. All the fields are expressed in cylindrical coordinates.
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Inside the representative volume element the various fields generated at every phase q (q “
0, 1, 2) depend on the spatial position, i.e

Upqqpxq, Epqqpxq, Σpqqpxq, Eppqqpxq, @x P Ωq.

Due to the geometry of the inhomogeneities, the problem can be transformed in cylindrical co-

ordinates, using a system of concentric cylinders for the inhomogeneity, the coating layer and

the infinite matrix (see Figure 2). In cylindrical coordinates, the axes px, y, zq are transformed to

pr, θ, zq, according to the relations

x1 “ r cos θ, x2 “ r sin θ, x3 “ z.

The vectors and tensors in cylindrical coordinates are noted with an arc above the symbol. Thus,

in cylindrical coordinates, the fields are written as

(

Upqqpr, θ, zq,

(

Epqqpr, θ, zq,
(

Σ
pqqpr, θ, zq,

(

Eppqqpr, θ, zq, @r, θ, z P Ωq,

while the equilibrium, electrostatic and magnetostatic equations are re-expressed as

B (
σ
pqq
rr

Br
` 1

r

B (

σ
pqq
rθ

Bθ `

(

σ
pqq
rr ´

(

σ
pqq
θθ

r
` B

(

σ
pqq
rz

Bz
“ 0,

B (

σ
pqq
rθ

Br
` 1

r

B (

σ
pqq
θθ

Bθ ` 2

(

σ
pqq
rθ

r
` B

(

σ
pqq
θz

Bz
“ 0,

B (

σ
pqq
rz

Br
` 1

r

B (

σ
pqq
θz

Bθ `

(

σ
pqq
rz

r
` B

(

σ
pqq
zz

Bz
“ 0,

B

(

dpqqr

Br
` 1

r

B

(

d
pqq
θ

Bθ `

(

dpqqr

r
` B

(

dpqqz

Bz
“ 0,

B

(

bpqqr

Br
` 1

r

B

(

b
pqq
θ

Bθ `

(

bpqqr

r
` B

(

bpqqz

Bz
“ 0. (21)

In addition, the strain, electric and magnetic field components in each phase are given using the

following expressions

(

εpqq “
”

(

ε
pqq
rr

(

ε
pqq
θθ

(

ε
pqq
zz 2

(

ε
pqq
rθ 2

(

ε
pqq
rz 2

(

ε
pqq
θz

ıT

“
«
B (

upqqr

Br
1
r

B (

upqqθ
Bθ `

(

upqqr

r

B (

upqqz

Bz

B (

upqqθ
Br

` 1
r

B (

upqqr

Bθ ´

(

upqqθ
r

B (

upqqz

Br
` B

(

upqqr

Bz
1
r

B (

upqqz

Bθ ` B

(

upqqθ
Bz

ffT

, (22)
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(

epqq “
”

(

epqqr

(

e
pqq
θ

(

epqqz

ıT
“
„
´Baepqq

Br
´1

r
Baepqq

Bθ ´Baepqq

Bz

T

, (23)

(

hpqq “
” (

hpqqr

(

h
pqq
θ

(

hpqqz

ıT
“
„
´Bampqq

Br
´1

r
Bampqq

Bθ ´Bampqq

Bz

T

. (24)

The inhomogeneity is considered to have radius r equal to r1 and the coating layer has external

radius r2 (see Figure 1). Using the radii of the concentric cylinders, one obtains φ “ r2
1{r2

2.

The continuity conditions between i) the inhomogeneity and the coating layer, and ii) the

coating and the matrix are expressed through the relations

(

up1qs pr1, θ, zq “

(

up2qs pr1, θ, zq, s “ r, θ or z,

(

up2qs pr2, θ, zq “
(

up0qs pr2, θ, zq, s “ r, θ or z,

asp1qpr1, θ, zq “ asp2qpr1, θ, zq, s “ e or m,

asp2qpr2, θ, zq “ asp0qpr2, θ, zq, s “ e or m, (25)

and
(

σ
p1q
S pr1, θ, zq “

(

σ
p2q
S pr1, θ, zq, S “ rr, rθ or rz,

(

σ
p2q
S pr2, θ, zq “

(

σ
p0q
S pr2, θ, zq, S “ rr, rθ or rz,

(

dp1qr pr1, θ, zq “

(

dp2qr pr1, θ, zq,

(

dp2qr pr2, θ, zq “

(

dp0qr pr2, θ, zq,

(

bp1qr pr1, θ, zq “

(

bp2qr pr1, θ, zq,

(

bp2qr pr2, θ, zq “

(

bp0qr pr2, θ, zq. (26)

Due to the transverse isotropy of all phases, the generalized modulus, L, retains the same form in

cylindrical coordinates.

In the following subsections, the boundary value problems are presented and the analytical

form of the solution (in terms of the generalized vector

(

Upqq) is given.

3.2.2. Analytical boundary value problems

The four boundary value problems which allow to compute the interaction tensors are the

following:
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• Axial shear / in-plane electric and magnetic field

ε130

ε130

e10 h10

e

h

εp130
e

p
10

h

p
10

e

h

εp131
e

p
11

h

p
11

e

h

εp132
e

p
12

h

p
12

e

h

Figure 3: Boundary value problem for axial shear / in-plane electric and magnetic field conditions.

Displacement, electric and magnetic potential boundary conditions at far field (when rext

tends to infinity) are expressed using the following formulas

(

ur ext “ (

uθ ext “ 0,

(

uz ext “ βrext cos θ,

ae
ext “ ´βerext cos θ,

am
ext “ ´βmrext cos θ, (27)

where β, βe and βm are considered known. In addition, all phases are subjected to the fol-

lowing eigenfields

(

εppqq “ sq

”
0 0 0 0 cos θ ´ sin θ

ıT
,

(

eppqq “ se
q

”
cos θ ´ sin θ 0

ıT
,

(

hppqq “ sm
q

”
cos θ ´ sin θ 0

ıT
, (28)

for q “ 0, 1, 2 and the values of sq, se
q and sm

q being known. The latter expressions correspond

to uniform shear strain on the plane x1 ´ x3 and uniform electric and magnetic field in the
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x1 direction (see Figure 3). The analytical solution for the displacement field, the electric

potential and the magnetic potential at every r, θ and z takes the form

(

upqqr “ (

upqqθ “ 0,

(

upqqz “ r
2ÿ

i“1

Ξq,i

„
r
r1

ξi´1

cos θ,

aepqq “ ´r
2ÿ

i“1

Ξe
q,i

„
r
r1

ξi´1

cos θ,

ampqq “ ´r
2ÿ

i“1

Ξm
q,i

„
r
r1

ξi´1

cos θ, (29)

with ξ1 “ 1 and ξ2 “ ´1. The unknown coefficients Ξq,i, Ξe
q,i and Ξm

q,i are determined

from the boundary conditions, the interface relations (25), (26) and the condition that the

displacements, the magnetic potential and the electric potential are finite at r “ 0.

• Transverse shear strain

e
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e
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e

h
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Figure 4: Boundary value problem for transverse shear strain conditions.

Displacement boundary conditions at far field (when rext tends to infinity) are expressed
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using the following equations

(

ur ext “ γrext sin 2θ,

(

uθ ext “ γrext cos 2θ,

(

uz ext “ 0, (30)

where γ is known. All phases are also subjected to the eigenstrains

(

εppqq “ 2sq

„
1
2

sin 2θ ´1
2

sin 2θ 0 cos 2θ 0 0

T

, (31)

for q “ 0, 1, 2 and the value of sq being known. The latter expression corresponds to uniform

shear strain on the plane x1´ x2 (see Figure 4). The analytical solution for the displacement

field at every r, θ and z takes the following form

(

upqqr “ r
4ÿ

i“1

Ξq,iψq,i

„
r
r1

ξi´1

sin 2θ,
(

upqqθ “ r
4ÿ

i“1

Ξq,i

„
r
r1

ξi´1

cos 2θ,

(

upqqz “ 0, (32)

with

ξ1 “ 3, ψq,1 “ Kq ´ µq

2Kq ` µq
,

ξ2 “ 1, ψq,2 “ 1,

ξ3 “ ´3, ψq,3 “ ´1,

ξ4 “ ´1, ψq,4 “ Kq ` µq

µq
. (33)

In such loading case, the unknown coefficients Ξq,i are determined from the boundary con-

ditions, the interface relations (25), (26) and the condition that the displacements are finite

at r “ 0.

• Plane strain / axial electric and magnetic field
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Figure 5: Boundary value plane strain / axial electric and magnetic field conditions. Case of uniaxial strain in the x1

direction.

Displacement, electric and magnetic potential boundary conditions at far field (when rext

tends to infinity) are expressed as follows

(

ur ext “ βrext ` γrext cos 2θ,

(

uθ ext “ ´γrext sin 2θ,

(

uz ext “ 0,

ae
ext “ ´βez,

am
ext “ ´βmz, (34)

where β, γ, βe and βm are assumed known. All phases are subjected to the eigenfields

(

εppqq “ sq,β

”
1 1 0 0 0 0

ıT

`2sq,γ

„
1
2

cos 2θ ´1
2

cos 2θ 0 ´ sin 2θ 0 0

T

,

(

eppqq “ se
q

”
0 0 1

ıT
,

(

hppqq “ sm
q

”
0 0 1

ıT
, (35)

where the values of sq,β, sq,γ, se
q and sm

q are known for q “ 0, 1, 2. The latter expressions
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correspond to uniform biaxial strain state with normal components on the x1 and x2 direc-

tions, and uniform electric and magnetic fields in the x3 direction. Two special cases are

considered here:

– uniform strain at the x1 direction, which is obtained by setting γ “ β and sq,γ “ sq,β

(see Figure 5),

– uniform strain at the x2 direction, which is obtained by setting γ “ ´β and sq,γ “ ´sq,β.

The analytical solution for the displacement field, the electric potential and the magnetic

potential at every r, θ and z takes the following form

(

upqqr “ r
4ÿ

i“1

Ξq,iψq,i

„
r
r1

ξi´1

cos 2θ ` r
2ÿ

i“1

Zq,i

„
r
r1

ζi´1

,

(

upqqθ “ ´r
4ÿ

i“1

Ξq,i

„
r
r1

ξi´1

sin 2θ,

(

upqqz “ 0,

aepqq “ ´βez,

ampqq “ ´βmz. (36)

In the above expressions, ζ1 “ 1 and ζ2 “ ´1, while ψq,i and ξi for i “ 1, 2, 3, 4 are given

by the relations described in the previous boundary value problem. Moreover, the unknown

coefficients Ξq,i, Zq,i are determined from the boundary conditions, the interface relations

(25), (26) and the condition that the displacements are finite at r “ 0.

• Hydrostatic strain / axial inelastic strain

Displacement boundary conditions at far field correspond to hydrostatic strain where

(

ur ext “ βrext,

(

uθ ext “ 0 and

(

uz ext “ βzext. (37)

All phases are subjected to the eigenstrains

(

εppqq “ sq

”
0 0 1 0 0 0

ıT
, (38)
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Figure 6: Boundary value problem for hydrostatic strain / axial inelastic strain conditions.

for q “ 0, 1, 2 and the value of sq being known. The latter expression corresponds to uniform

inelastic strain in the x3 direction (see Figure 6). The analytical solution for the displacement

field at every r, θ and z takes the following form
(

upqqr “ r
2ÿ

i“1

Zq,i

„
r
r1

ζi´1

,

(

upqqθ “ 0 and

(

upqqz “ βz, (39)

with ζ1 “ 1 and ζ2 “ ´1. The unknown coefficients Zq,i are determined from the boundary

conditions, the interface relations (25), (26) and the condition that the displacements are

finite at r “ 0.

3.2.3. Computing the interaction tensors

Solving the previously described boundary value problems, the fields

(

Epqq can be computed in

both the fiber and its coating. Consequently, the average values E1 and E2, expressed in Cartesian

coordinates, can be evaluated analytically with the help of the expressions (19). In these studies,

the values of β, γ, βe, βm, sq, sq,β, sq,γ, se
q and sm

q can be chosen properly in order to “construct” the

interaction tensors (for instance, setting one equal to 1 and zero to the rest). The four discussed

boundary value problems are sufficient for identifying all the terms of Ti and Tp
q,i. The computa-

tions are lengthy and are omitted in the current manuscript. Similar computational procedure is
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described in Chatzigeorgiou and Meraghni (2019); Chatzigeorgiou et al. (2019).

It is important to note that the general forms of the elastic and inelastic interaction tensors in

all phases are given by the expressions

T “

»
——————–

T00 T0e T0m

Te0 Tee Tem

Tm0 Tme Tmm

fi
ffiffiffiffiffiffifl
, Tp “

»
——————–

Tp00 Tp0e Tp0m

Tpe0 Tpee Tpem

Tpm0 Tpme Tpmm

fi
ffiffiffiffiffiffifl
, (40)

where the various submatrices are written as

T00 “

»
—————————————————————–

1
2

“rTxxsmec ` rTxysmec

‰ 1
2

“rTxxsmec ´ rTxysmec

‰ rTzzsmec ´ rTxxsmec 0 0 0

1
2

“rTxxsmec ´ rTxysmec

‰ 1
2

“rTxxsmec ` rTxysmec

‰ rTzzsmec ´ rTxxsmec 0 0 0

0 0 1 0 0 0

0 0 0 rTxysmec 0 0

0 0 0 0 rTxzsmec 0

0 0 0 0 0 rTxzsmec

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (41)

Tp00 “

»
—————————————————————–

1
2

”
rT p

xxsmec `
“
T p

xy

‰
mec

ı 1
2

”
rT p

xxsmec ´
“
T p

xy

‰
mec

ı
rT p

zzsmec ´ rT p
xxsmec 0 0 0

1
2

”
rT p

xxsmec ´
“
T p

xy

‰
mec

ı 1
2

”
rT p

xxsmec `
“
T p

xy

‰
mec

ı
rT p

zzsmec ´ rT p
xxsmec 0 0 0

0 0 0 0 0 0

0 0 0
“
T p

xy

‰
mec

0 0

0 0 0 0 rT p
xzsmec 0

0 0 0 0 0 rT p
xzsmec

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (42)

Te0 “

»
——————–

0 0 0 0
“
T e

xz

‰
mec

0

0 0 0 0 0
“
T e

xz

‰
mec

0 0 0 0 0 0

fi
ffiffiffiffiffiffifl
, (43)
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Tpe0 “

»
——————–

0 0 0 0 rT pe
xz smec 0

0 0 0 0 0 rT pe
xz smec

0 0 0 0 0 0

fi
ffiffiffiffiffiffifl
, (44)

Tm0 “

»
——————–

0 0 0 0
“
T m

xz

‰
mec

0

0 0 0 0 0
“
T m

xz

‰
mec

0 0 0 0 0 0

fi
ffiffiffiffiffiffifl
, (45)

Tpm0 “

»
——————–

0 0 0 0 rT pm
xz smec 0

0 0 0 0 0 rT pm
xz smec

0 0 0 0 0 0

fi
ffiffiffiffiffiffifl
, (46)

T0e “

»
————————————————————–

0 0 rTxxselc

0 0 rTxxselc

0 0 0

0 0 0

rTxzselc 0 0

0 rTxzselc 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, Tp0e “

»
————————————————————–

0 0 rT p
xxselc

0 0 rT p
xxselc

0 0 0

0 0 0

rT p
xzselc 0 0

0 rT p
xzselc 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (47)
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T0m “

»
————————————————————–

0 0 rTxxsmag

0 0 rTxxsmag

0 0 0

0 0 0

rTxzsmag 0 0

0 rTxzsmag 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, Tp0m “

»
————————————————————–

0 0 rT p
xxsmag

0 0 rT p
xxsmag

0 0 0

0 0 0

rT p
xzsmag 0 0

0 rT p
xzsmag 0

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (48)

Tee “

»
——————–

“
T e

xz

‰
elc

0 0

0
“
T e

xz

‰
elc

0

0 0 1

fi
ffiffiffiffiffiffifl
, Tpee “

»
——————–

rT pe
xz selc 0 0

0 rT pe
xz selc 0

0 0 0

fi
ffiffiffiffiffiffifl
, (49)

Tmm “

»
——————–

“
T m

xz

‰
mag

0 0

0
“
T m

xz

‰
mag

0

0 0 1

fi
ffiffiffiffiffiffifl
, Tpmm “

»
——————–

rT pm
xz smag 0 0

0 rT pm
xz smag 0

0 0 0

fi
ffiffiffiffiffiffifl
, (50)

Tme “

»
——————–

“
T m

xz

‰
elc

0 0

0
“
T m

xz

‰
elc

0

0 0 0

fi
ffiffiffiffiffiffifl
, Tpme “

»
——————–

rT pm
xz selc 0 0

0 rT pm
xz selc 0

0 0 0

fi
ffiffiffiffiffiffifl
, (51)

Tem “

»
——————–

“
T e

xz

‰
mag

0 0

0
“
T e

xz

‰
mag

0

0 0 0

fi
ffiffiffiffiffiffifl
, Tpem “

»
——————–

rT pe
xz smag 0 0

0 rT pe
xz smag 0

0 0 0

fi
ffiffiffiffiffiffifl
. (52)

In the above formulas, the symbols rt‚usmec, rt‚uselc and rt‚usmag denote quantities that are ac-

tivated by the presence of strains, electric fields and magnetic fields, respectively. Appendix A

presents the computational details for obtaining the various T terms.
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3.3. Alternative approach: Hill’s interfacial operators

The solution to the original problem proposed by Eshelby (1957) is valid for uncoated inho-

mogeneities of ellipsoidal shape inside a matrix material. In the case of coated inhomogeneity, the

Eshelby approach provides information for the average strain inside the inhomogeneity/coating

system. To identify the strains at each phase, one can use the concept of the interfacial operators

(Walpole, 1978; Hill, 1983). This technique has been widely utilized in the literature for com-

posites with mechanical (Cherkaoui et al., 1995; Berbenni and Cherkaoui, 2010; Chatzigeorgiou

and Meraghni, 2019), piezoelectric (Chatzigeorgiou et al., 2019), thermo-piezoelectric (Koutsawa

et al., 2010), piezoelectric-piezomagnetic (Dinzart and Sabar, 2011), and thermo-piezoelectric-

piezomagnetic (Koutsawa et al., 2011) behaviour.

The computational steps for obtaining the elastic and interaction tensors for a composite with

pure mechanical behaviour have been described in detail in Chatzigeorgiou and Meraghni (2019).

For a piezoelectric-piezomagnetic composite the procedure is similar, with the only difference

that the fields have the extended form presented in section 2. It is important to point out that the

use of Hill’s interfacial operators implies implicitly the hypothesis that in the Eshelby problem

the total fields inside the inhomogeneity are uniform. As has been illustrated in Chatzigeorgiou

and Meraghni (2019), under transverse shear conditions this hypothesis is violated in long fiber

composites and thus can provide inaccurate results in certain cases.

3.4. Mori-Tanaka approach

Once the tensors Ti and Tp
q,i are identified with one of the two approaches discussed previously,

one can pass to the next step and consider the composite.

A direct approach, like for instance the generalized self consistent composite cylinders method

(Christensen, 1979), is applicable for the problem under investigation. It provides the local distri-

bution of the fields in the representative volume element, but it is quite limited, since it is designed

exclusively for unidirectional fiber composites with random distribution of the fibers. The current

work considers the Mori-Tanaka method for identifying the macroscopic response of the com-

posite. A mean-field approach is more flexible in terms of microstructural characteristics; it can

account for non-uniform distributions of the fibers, or the presence of different types of reinforce-
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ment. The restriction of the proposed methodology is that it estimates only average fields per

material phase and not their actual spatial distribution, which is the case for full field approaches.

A unidirectional coated fiber composite consists of a matrix phase in which coated fibers are

distributed randomly (see Figure 7). In this three-phase composite, the volume fractions of the

matrix, the fibers and their coating are denoted as cq, q “ 0, 1, 2. Using the ratio, φ, the following

relations can be given

c2 “ ´c1 ` c1

φ
and c0 “ 1´ c1

φ
. (53)
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Figure 7: Cross section of unidirectional fiber composite. The fibers are coated and all phases exhibit piezoelectric-

piezomagnetic behaviour.

According to the basic principle of all multiscale methods, the macroscopic fields at a macro-

scopic point are equal to the average of the corresponding microscopic fields over the representa-

tive volume element linked with the specific macroscopic point. In the composite considered here,

the macroscopic fields, E and Σ, are given by

E “ c0E0 ` c1E1 ` c2E2,

Σ “ c0Σ0 ` c1Σ1 ` c2Σ2. (54)

Moreover, the constitutive law for each phase can be written in its average form

Σr “ Lr ·rEr ´ Ep
r s, r “ 0, 1, 2. (55)
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In the Mori-Tanaka method, the far field, E0, and the eigenfield, Ep
0 , of the expressions (20)

correspond to the average field and the average eigenfield of the matrix phase of the composite.

Combining (20) and (54)1, and after some algebra, the following relations are derived for r “
0, 1, 2

Er “ Ar · E`
2ÿ

q“0

Ap
q,r · Ep

q , (56)

with

A0 “
«

c0I `
2ÿ

i“1

ciTi

ff´1

, As “ Ts · A0,

Ap
q,0 “ ´A0 ·

2ÿ

i“1

ciT
p
q,i, Ap

q,s “ Tp
q,s ´ As ·

2ÿ

i“1

ciT
p
q,i,

(57)

for q “ 0, 1, 2 and s “ 1, 2. In the above expression, I is the 12ˆ12 identity matrix. Moreover,

combining equations (20), (56), (57) and (54)2, yields

Σ “ L ·rE´ Eps, (58)

with

L “
2ÿ

i“0

ciLi · Ai, Ep “
2ÿ

q“0

Ap
q · Ep

q ,

Ap
q “ L´1 ·

«
cqLq ´

2ÿ

i“0

ciLi · Ap
q,i

ff
. (59)

It is worth noting that non-uniform distributions of fibers can be accounted for by introducing

appropriate orientation distribution functions in the expressions (57) and (59). One should bear

in mind that the Mori-Tanaka scheme for reinforced composites with non-uniform alignment may

lead to non-symmetric macroscopic magneto-electro-mechanical matrix L. The symmetry issue

could be potentially resolved by choosing another mean-field approach with similar structure, for

example the Castañeda and Willis method (Ponte-Castañeda and Willis, 1995; Giordano, 2017).

The latter assumes a unified ellipsoidal shape for the distribution of heterogeneities, which pro-

vides a consistent homogenization scheme and ensures the symmetry of the macroscopic matrix

L for non-uniform alignment of the fibers.
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4. Numerical applications

The purpose of this section is to demonstrate the developed micromechanics technique capa-

bilities. For the needs of the numerical examples, four different materials are examined: CoFe2O4,

BaTiO3, glass and epoxy. The first one exhibits piezomagnetic behaviour, the second has piezo-

electric characteristics and the last two present a typical mechanical response without magnetome-

chanical or electromechanical couplings. The material parameters of these materials are summa-

rized in Table 1.

CoFe2O4 BaTiO3 glass epoxy

n [GPa] 269.5 162 88.8 5.53

l [GPa] 170.5 78 29.6 2.97

Ktr [GPa] 229.5 121.5 59.2 4.25

µtr [GPa] 56.5 44.5 29.6 1.28

µax [GPa] 45.3 43 29.6 1.28

κe
11 [C2/N m2] 0.8¨10´10 112¨10´10 0.56¨10´10 1¨10´10

κe
33 [C2/N m2] 0.93¨10´10 126¨10´10 0.56¨10´10 1¨10´10

κm
11 [N/A2] -590¨10´6 5¨10´6 1¨10´6 1¨10´6

κm
33 [N/A2] 157¨10´6 10¨10´6 1¨10´6 1¨10´6

e31 [C/m2] 0 -4.4 0 0

e33 [C/m2] 0 18.6 0 0

e15 [C/m2] 0 11.6 0 0

f31 [N/Am] 580.3 0 0 0

f33 [N/Am] 699.7 0 0 0

f15 [N/Am] 550 0 0 0

j11 [C/Am] 0 0 0 0

j33 [C/Am] 0 0 0 0

Table 1: Electro-magneto-mechanical properties for the materials utilized in the numerical examples. The properties

of CoFe2O4, BaTiO3 and epoxy have been obtained from Lee et al. (2005). The material parameters for the glass have

been obtained from Dinzart and Sabar (2011).
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4.1. Validation

In the first subsection, the electro-magneto-elastic properties of long fibers composites with

and without coating layer are computed with the proposed method and are compared with the

predictions of other methods in the literature.
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Figure 8: Material properties as a function of the fiber volume fraction for a composite consisting of CoFe2O4 matrix

and BaTiO3 long fibers: (a) mechanical, (b) piezoelectric and (c) electromagnetic coefficients. Comparison of the

developed method predictions (solid lines) with numerical results obtained by Lee et al. (2005) (points).
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In the first example, a composite consisting of CoFe2O4 matrix and BaTiO3 long fibers is

analyzed and the results are compared with the periodic homogenization predictions provided by

Lee et al. (2005). The mechanical stiffness coefficients, the piezoelectric coupling terms and the

electromagnetic coupling terms are demonstrated in Figure 8 as a function of the fiber volume

fraction. The numerical results for the periodic homogenization analyses have been obtained only

for two different volume fractions, 40% and 60% percent. As it can be observed, the new model

simulations are in excellent agreement with the full field homogenization results.
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Figure 9: Electromagnetic properties as a function of the coated fiber volume fraction of a composite consisting of

CoFe2O4 matrix and glass fibers coated with BaTiO3 coating layer: Comparison of the developed method predictions

(solid lines) with numerical results obtained by Dinzart and Sabar (2011) (points).

The second example illustrates results from studies in Dinzart and Sabar (2011). In that paper,

an Eshelby-based micromechanics technique was developed using the Hill’s interfacial operators.

In their analysis, glass fibers coated with BaTiO3 coating layer are embedded in CoFe2O4 matrix.

The aspect ratio of the fibers (length to radius diameter) is 100, which is quite large and can serve

for the purpose of this paper as almost long fiber. The ratio φ for the coated fibers is taken equal

to 82.645%. Figure 9 illustrates the electromagnetic coupling terms of the composite as a function

of the fiber volume fraction. The results of both methods are in good agreement and the small
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difference is mainly due to the finite value of the fibers’ aspect ratio.

The above preliminary examples demonstrate that the new approach has the same accuracy

with existing homogenization techniques in terms of electro-magneto-mechanical properties. The

following numerical studies demonstrate the ability of the model to predict both macroscopic and

average microscopic fields per phase when nonlinear fields take place.

4.2. Applied thermal strains

A typical example of inelastic deformation is the appearance of thermal strains. Consider

a composite made of CoFe2O4 matrix and glass fibers coated with BaTiO3 coating layer. The

composite is assumed free from external loading and only a temperature difference of 1 K is

applied. The thermal expansion coefficients for the matrix, the fiber and the coating are taken

equal to 10´5 1/K, 5 ¨ 10´6 1/K and 6.4 ¨ 10´6 1/K respectively.

According to the general principles of homogenization of composites subjected to thermome-

chanical processes, the microscopic and macroscopic temperature coincide (Chatzigeorgiou et al.,

2018), i.e. all material phases in the RVE are subjected to the same temperature difference of 1 K.

This leads to the development of inelastic (thermal) strains in all phases:

εp
0 “

”
10´5 10´5 10´5 0 0 0

ıT
,

εp
1 “

”
5 ¨ 10´6 5 ¨ 10´6 5 ¨ 10´6 0 0 0

ıT
,

εp
2 “

”
6.4 ¨ 10´6 6.4 ¨ 10´6 6.4 ¨ 10´6 0 0 0

ıT
.

Figure 10 illustrates the non zero terms of the macroscopic stress tensor, the electric displace-

ment vector and the magnetic induction vector that are generated due to the thermal strains as a

function of the fiber volume fraction. Considering the coating, two different ratios φ are consid-

ered: φ “ 50% and φ “ 80%. From these results one observes that the stresses and the magnetic

induction increase with the increase of c1, while the electric displacement initially has a small

increase and then decreases as the fiber volume fraction obtains high values.

29



           

Fiber volume fraction [%]

0 10 20 30 40 50

M
a
c
r
o
s
c
o
p
i
c
 
f
i
e
l
d
s

-7

-6

-5

-4

-3

-2

-1

0

1

σ11 [MPa]
σ22 [MPa]
σ33 [MPa]
d3 [10´5 C/m2]
b3 [10´2 N/Am]b

d

b Fiber volume fraction [%]

0 20 40 60 80

M
a
c
r
o
s
c
o
p
i
c
 
f
i
e
l
d
s

-7

-6

-5

-4

-3

-2

-1

0

1

σ11 [MPa]
σ22 [MPa]
σ33 [MPa]
d3 [10´5 C/m2]
b3 [10´2 N/Am]

b

d

b

(a) (b)

Figure 10: Composite consisting of CoFe2O4 matrix and glass fibers coated with BaTiO3 coating layer. Macroscopic

stress, electric displacement and magnetic induction fields, caused by thermal strains: (a) ratio φ “ 50% and (b) ratio

φ “ 80%.
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Microscopic fields (c1 “ 20%, φ “ 50%)
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Figure 11: Composite consisting of CoFe2O4 matrix and glass fibers coated with BaTiO3 coating layer. Average

microscopic stress, electric displacement and magnetic induction fields per phase, caused by thermal strains, for fiber

volume fraction 20% and ratio φ “ 50%.
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The average microscopic fields per phase for fiber volume fraction 20% and ratio φ “ 50% are

demonstrated in Figure 11. As it can be observed, the electric displacement for the matrix and the

fiber are zero. This phenomenon is explained by the structure of the interaction tensors (40) and the

constitutive relations (8). The terms Te0 and Tpe0 are linked with the development of electric fields

inside the fiber and the coating due to the presence of mechanical strains. Similarly, the terms Tm0

and Tpm0 are linked with the development of magnetic fields inside the fiber and the coating due

to the presence of mechanical strains. As it can be seen by the expressions (43), (44), (45) and

(46) for these terms, elastic or inelastic normal strains cannot produce electric or magnetic field

in the phases. Thus, according to the constitutive law relations (8), the development of electric

displacement can appear only in phases with non zero piezoelectric coupling tensor e, as it is the

case for the coating (BaTiO3). The glass and the CoFe2O4 have zero piezoelectric coefficients, and

thus no electric field can be generated in these materials under only thermal strain conditions. For

completely analogous reasons, magnetic induction can only be generated in the matrix (CoFe2O4)

and not in the fiber or the coating. Contrarily to the microscopic scale, electric displacement and

magnetic induction parallel to the fiber axis direction are generated at the macroscopic response,

as it has already been shown in Figure 10.

4.3. Applied inelastic fields

Thermal strains are a special case of eigenfields. When nonlinear mechanisms like plasticity

are activated, the mechanical inelastic strains may appear only on certain phases and do not act as

a volumetric expansion.

Consider a composite consisting of epoxy matrix and CoFe2O4 fibers coated with BaTiO3

coating layer. For this material system, two specific cases where the matrix phase is subjected to

inelastic strains are discussed:

• Case 1: Inelastic normal strains εp
110
“ ´2εp

220
“ ´2εp

330
“ 0.001.

Figure 12 shows the macroscopic and average microscopic responses of the investigated

composite under inelastic normal strains in the matrix. The evolution of the macroscopic

normal stresses, axial electric displacement and axial magnetic induction with respect to the
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Figure 12: Composite consisting of epoxy matrix and CoFe2O4 fibers coated with BaTiO3 coating layer, subjected to

inelastic normal strains. Stress, electric displacement and magnetic induction, caused by inelastic normal strains, for

ratio φ “ 50%: (a) macroscopic fields and (b) average microscopic fields per phase for fiber volume fraction 20%.
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fiber volume fraction c1 is illustrated in Figure 12a for ratio φ “ 50%. It can be noticed

that all macroscopic fields present significant change tendency at very high fiber volume

fractions (i.e., when the matrix volume fraction is close to zero). For the microscopic fields

(Figure 12b), similar results to those of the previous study (presence of thermal strains) are

observed. Thus, electric displacement and magnetic induction parallel to the fiber axis di-

rection are generated only in phases where piezoelectric and piezomagnetic coupling terms,

respectively, are non zero.

• Case 2: Inelastic shear strain εp
130
“ 0.001.

Figure 13 shows the macroscopic and average microscopic responses of the investigated

composite under inelastic axial shear strains in the matrix. The evolution of the macro-

scopic axial shear stress, transverse electric displacement and transverse magnetic induction

with respect to the fiber volume fraction c1 is given in Figure 13a for ratio φ “ 50%. It can

be noticed that all macroscopic fields present significant change tendency at very high fiber

volume fractions (i.e., when the matrix volume fraction is close to zero). For the micro-

scopic fields (Figure 13b) one observes that all phases experience electric displacement and

magnetic induction. This is explained by the fact that, according to the interaction tensors

forms (43), (44), (45) and (46), axial shear strain can activate electric and magnetic field.

Thus, electric displacement and magnetic induction can also be generated in phases where

electromechanical or magnetomechanical couplings do not exist.

5. Concluding comments

A micromechanical method was proposed for the evaluation of the electro-magneto-inelastic

properties of coated long fiber composites with transversely isotropic piezoelectric-piezomagnetic

behaviour. The method was based on solving specific boundary value problems (axial shear/in

plane electric and magnetic field, transverse shear strain, plane strain/axial electric and magnetic

field, hydrostatic strain/axial inelastic strain) and was adapted to the Mori-Tanaka homogenization

scheme. The capabilities of the proposed micromechanics technique were verified through several
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Figure 13: Composite consisting of epoxy matrix and CoFe2O4 fibers coated with BaTiO3 coating layer, subjected to

inelastic normal strains. Stress, electric displacement and magnetic induction, caused by inelastic axial shear strains,

for ratio φ “ 50%: (a) macroscopic fields and (b) average microscopic fields per phase for fiber volume fraction 20%.
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numerical applications. Four materials with different behaviours have been examined (CoFe2O4

as a piezomagnetic material, BaTiO3 as a piezoelectric material and both glass and epoxy as me-

chanical material without magneto- or electro-mechanical coupling) for the needs of the numerical

applications. A comparison with existing homogenization techniques in terms of electro-magneto-

mechanical properties of long fiber composites was first conducted. The simulation results of the

proposed approach were in good agreement with the full field homogenization results. Small

difference has been observed when comparing the electromagnetic coupling terms with studies

conducted by Dinzart and Sabar (2011). This difference was mainly attributed to the finite value

of the fibers’ aspect ratio. The ability of the model to predict both macroscopic and average mi-

croscopic fields per phase when nonlinear fields are activated was then demonstrated. Three cases

of applied inelastic fields were considered: thermal strains, inelastic normal strains and inelastic

shear strains. The effect of the inelastic fields on the overall response, as well as in the average

response of the phases, was then explicitly investigated. The proposed micromechanics approach

is able to handle microstructures with aligned or non-aligned fiber composites with piezoelectric-

piezomagnetic behaviour under inelasticity conditions.

A. Computational steps for obtaining the interaction tensors

The unknown constants Ξq,i and Zq,i of the boundary value problems presented in subsection

3.2 are identified using i) the boundary conditions at r “ rext Ñ 8, ii) the consistency condition

that the fields should be finite at r “ 0, and iii) the interface conditions (25) and (26) between the

material phases.

Before presenting the solution of the four boundary value problems, the following helpful

matrices and vectors are introduced: Let’s consider an arbitrary material parameter ω. For the
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three phases this parameter becomes ωq for q “ 0, 1, 2. The next matrices and vectors

Kω “

»
—————————————–

1 ´1 ´1 0

ω1 ´ω2 ω2 0

0 1 φ ´φ

0 ω2 ´ω2φ ω0φ

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

, Kmix
ω “

»
—————————————–

0 0 0 0

ω1 ´ω2 ω2 0

0 0 0 0

0 ω2 ´ω2φ ω0φ

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (A.1)

Fω “

»
——————–

0

0

1

ω0

fi
ffiffiffiffiffiffifl
, Fmix

ω “

»
——————–

0

0

0

ω0

fi
ffiffiffiffiffiffifl
, F0

ω “

»
——————–

0

0

0

´ω0

fi
ffiffiffiffiffiffifl
, F1

ω “

»
——————–

0

ω1

0

0

fi
ffiffiffiffiffiffifl
, F2

ω “

»
——————–

0

´ω2

0

ω2

fi
ffiffiffiffiffiffifl
, (A.2)

have general description for the arbitrary ω and they become specific, once the ωq are assigned to

proper material parameters.

A.1. Axial shear / in-plane electric and magnetic field

For this boundary value problem, the boundary conditions and the fact that all fields should be

finite at r “ 0 yield

Ξ1,2 “ Ξe
1,2 “ Ξm

1,2 “ 0, Ξ0,1 “ β, Ξe
0,1 “ βe, Ξm

0,1 “ βm. (A.3)

The rest of unknown constants are given by the solution of the system

Kq xz ·Ξq “ βFq xz ` βeFqe
xz ` βmFqm

xz `
2ÿ

q“0

”
sqFq p,q

xz ` se
qFq pe,q

xz ` sm
q Fq pm,q

xz

ı
, (A.4)

where

Ξq “

»
——————–

Ξ

Ξe

Ξm

fi
ffiffiffiffiffiffifl
, Fq xz “

»
——————–

Fxz

Fe
xz

Fm
xz

fi
ffiffiffiffiffiffifl
, Fqe

xz “

»
——————–

´Fe
xz

Fee
xz

Fem
xz

fi
ffiffiffiffiffiffifl
, Fqm

xz “

»
——————–

´Fm
xz

Fem
xz

Fmm
xz

fi
ffiffiffiffiffiffifl
, (A.5)
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Fq p,q
xz “

»
——————–

Fp,q
xz

Fpe,q
xz

Fpm,q
xz

fi
ffiffiffiffiffiffifl
, Fq pe,q

xz “

»
——————–

´Fpe,q
xz

Fpee,q
xz

Fpem,q
xz

fi
ffiffiffiffiffiffifl
, Fq pm,q

xz “

»
——————–

´Fpm,q
xz

Fpem,q
xz

Fpmm,q
xz

fi
ffiffiffiffiffiffifl
, (A.6)

and

Kq xz “

»
———–

Kxz ´Ke
xz ´Km

xz

Ke
xz Kee

xz Kem
xz

Km
xz Kem

xz Kmm
xz

fi
ffiffiffifl , (A.7)

with

Ξ “

»
——————–

Ξ1,1

Ξ2,1

Ξ2,2

Ξ0,2

fi
ffiffiffiffiffiffifl
, Ξe “

»
——————–

Ξe
1,1

Ξe
2,1

Ξe
2,2

Ξe
0,2

fi
ffiffiffiffiffiffifl
, Ξm “

»
——————–

Ξm
1,1

Ξm
2,1

Ξm
2,2

Ξm
0,2

fi
ffiffiffiffiffiffifl
. (A.8)

The various vectors and matrices are given in Table A.1

The solution of this system can be written in the form

Ξq “ βΞqmec ` βeΞqelc ` βmΞqmag `
2ÿ

q“0

”
sqΞq p,q

mec ` se
qΞ
q p,q

elc ` sm
qΞ
q p,q

mag

ı
, (A.9)

which can be split in three parts,

Ξ “ βΞmec ` βeΞelc ` βmΞmag `
2ÿ

q“0

“
sqΞ

p,q
mec ` se

qΞ
p,q
elc ` sm

qΞ
p,q
mag

‰
,

Ξe “ βΞe
mec ` βeΞe

elc ` βmΞe
mag `

2ÿ

q“0

“
sqΞ

pe,q
mec ` se

qΞ
pe,q
elc ` sm

qΞ
pe,q
mag

‰
,

Ξm “ βΞm
mec ` βeΞm

elc ` βmΞm
mag `

2ÿ

q“0

“
sqΞ

pm,q
mec ` se

qΞ
pm,q
elc ` sm

qΞ
pm,q
mag

‰
. (A.10)

The average strains, electric fields and magnetic fields in the fiber and the coating are given by

εi “ Λi
xz

”
0 0 0 0 1 0

ıT
,

ei “ Λe,i
xz

”
1 0 0

ıT
,

hi “ Λm,i
xz

”
1 0 0

ıT
, i “ 1, 2, (A.11)
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ω

µax e15 f15 κe
11 κm

11 j11

Kω Kxz Kee
xz Kmm

xz

Kmix
ω Ke

xz Km
xz Kem

xz

Fω Fxz Fee
xz Fmm

xz

Fmix
ω Fe

xz Fm
xz Fem

xz

Fq
ω Fp,q

xz Fpe,q
xz Fpm,q

xz Fpee,q
xz Fpmm,q

xz Fpem,q
xz

Table A.1: Axial shear / in-plane electric and magnetic field: matrices and vectors used to compute the unknown

constants. Each element in this table is computed by substituting to the general matrices or vectors a specific parameter

for ω. The superscript q takes the value 0, 1 or 2.

with

Λ1
xz “ Ξ1,1, Λ2

xz “
β` rΞ0,2 ´ Λ1

xzsφ
1´ φ

,

Λe,1
xz “ Ξe

1,1, Λe,2
xz “

βe ` rΞe
0,2 ´ Λe,1

xz sφ
1´ φ

,

Λm,1
xz “ Ξm

1,1, Λm,2
xz “

βm ` rΞm
0,2 ´ Λm,1

xz sφ
1´ φ

. (A.12)

The Λi
xz, Λe,i

xz and Λm,i
xz can be expressed in the same forms as (A.10).

A.2. Transverse shear

The boundary conditions and the fact that the displacement should be finite at r “ 0 yield

Ξ1,3 “ Ξ1,4 “ Ξ0,1 “ 0, Ξ0,2 “ γ. (A.13)

The rest of unknown constants are given by the solution of the system

Kxy ·Ξ “ γFxy `
2ÿ

q“0

sqFp,q
xy , (A.14)
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with

Ξ “
”

Ξ1,1 Ξ1,2 Ξ2,1 Ξ2,2 Ξ2,3 Ξ2,4 Ξ0,3 Ξ0,4

ıT
,

Fxy “
”

0 0 0 0 1 1 2µtr
0 2µtr

0

ıT
,

Fp,0
xy “

”
0 0 0 0 0 0 ´2µtr

0 ´2µtr
0

ıT
,

Fp,1
xy “

”
0 0 2µtr

1 2µtr
1 0 0 0 0

ıT
,

Fp,2
xy “

”
0 0 ´2µtr

2 ´2µtr
2 0 0 2µtr

2 2µtr
2

ıT
, (A.15)

and

Kxy “

»
——————————————————————————————————–

ψ1,1 1 ´ψ2,1 ´1 1 ´ψ2,4 0 0

1 1 ´1 ´1 ´1 ´1 0 0

K31 K32 K33 K34 K35 K36 0 0

K41 K42 K43 K44 K45 K46 0 0

0 0 ψ2,1{φ 1 ´φ2 ψ2,4φ φ2 ´ψ0,4φ

0 0 1{φ 1 φ2 φ ´φ2 ´φ

0 0 K73 K74 K75 K76 K77 K78

0 0 K83 K84 K85 K86 K87 K88

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

, (A.16)

with

K31 “ 2Ktr
1 r2ψ1,1 ´ 1s ` 2µtr

1 r1` ψ1,1s, K32 “ 2µtr
1 ,

K33 “ ´2Ktr
2 r2ψ2,1 ´ 1s ´ 2µtr

2 r1` ψ2,1s, K34 “ ´2µtr
2 ,

K35 “ ´6µtr
2 , K36 “ 2µtr

2 rψ2,4 ´ 1s ` 2Ktr
2 ,

K41 “ 2µtr
1 r1` ψ1,1s, K42 “ 2µtr

1 ,

K43 “ ´2µtr
2 r1` ψ2,1s, K44 “ ´2µtr

2 ,

K45 “ 6µtr
2 , K46 “ 2µtr

2 r1´ ψ2,4s,
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K73 “ r2Ktr
2 r2ψ2,1 ´ 1s ` 2µtr

2 r1` ψ2,1ss {φ, K74 “ 2µtr
2 ,

K75 “ 6µtr
2φ

2, K76 “ ´ r2µtr
2 rψ2,4 ´ 1s ` 2Ktr

2 s φ,
K77 “ ´6µtr

0φ
2, K78 “ r2µtr

0 rψ0,4 ´ 1s ` 2Ktr
0 s φ,

K83 “ 2µtr
2 r1` ψ2,1s{φ, K84 “ 2µtr

2 ,

K85 “ ´6µtr
2φ

2, K86 “ ´2µtr
2 r1´ ψ2,4sφ,

K87 “ 6µtr
0φ

2, K88 “ 2µtr
0 r1´ ψ0,4sφ.

The solution of this system can be written in the form

Ξ “ γΞmec `
2ÿ

q“0

sqΞ
p,q
mec. (A.17)

The average strains in the fiber and the coating are given by

εi “ 2Λi
xy

”
0 0 0 1 0 0

ıT
, (A.18)

with

Λ1
xy “ 1` ψ1,1

2
Ξ1,1 ` Ξ1,2, Λ2

xy “
1

1´ φ

„
γ `

„
1` ψ0,4

2
Ξ0,4 ´ Λ1

xy


φ


. (A.19)

The Λi
xy can be expressed in the same form as (A.17).

A.3. Plane strain / axial electric and magnetic field

The boundary conditions and the fact that the displacement should be finite at r “ 0 yield

Ξ1,3 “ Ξ1,4 “ Ξ0,1 “ Z1,2 “ 0, Ξ0,2 “ γ, Z0,1 “ β. (A.20)

The rest of unknown constants are given by the solution of two systems:

1. The first is written as

Kxx · Z “ βFxx ` βeFe
xx ` βmFm

xx `
2ÿ

q“0

“
sq,βFp,q

xx ` se
qFpe,q

xx ` sm
q Fpm,q

xx

‰
, (A.21)

with

Z “
”

Z1,1 Z2,1 Z2,2 Z0,2

ıT
, (A.22)
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Fxx “ Fω and Fp,q
xx “ Fq

ω for ω “ 2Ktr, (A.23)

Fe
xx “

2ÿ

q“0

Fq
ω and Fpe,q

xx “ ´Fq
ω for ω “ e31,

Fm
xx “

2ÿ

q“0

Fq
ω and Fpm,q

xx “ ´Fq
ω for ω “ f31, (A.24)

and

Kxx “

»
—————————————–

1 ´1 ´1 0

2Ktr
1 ´2Ktr

2 2µtr
2 0

0 1 φ ´φ

0 2K2 ´2µtr
2φ 2µtr

0φ

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (A.25)

The solution of this system can be written in the form

Z “ βZmec ` βeZelc ` βmZmag `
2ÿ

q“0

“
sqZp,q

mec ` se
qZp,q

elc ` sm
q Zp,q

mag

‰
. (A.26)

2. The second is written as

Kxy ·Ξ “ γFxy `
2ÿ

q“0

sq,γFp,q
xy , (A.27)

where Ξ, Fxy, Fp,q
xy are given by (A.15) and Kxy is given by (A.16).

The average strains, electric fields and magnetic fields in the fiber and the coating are given by

εi “ Λi
xx

”
1 1 0 0 0 0

ıT
` Λi

xy

”
1 ´1 0 0 0 0

ıT
,

ei “ βe
”

0 0 1
ıT
, hi “ βm

”
0 0 1

ıT
, (A.28)

with

Λ1
xx “ Z1,1, Λ2

xx “
β` rZ0,2 ´ Λ1

xxsφ
1´ φ

, (A.29)

and Λ1
xy, Λ2

xy are the same with those of the expressions (A.19). The Λi
xx can be expressed in the

same form as (A.26).
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A.4. Hydrostatic strain

For this boundary value problem, the boundary conditions and the fact that the displacement

should be finite at r “ 0 yield

Z1,2 “ 0, Z0,1 “ β. (A.30)

The rest of unknown constants are given by the solution of the system

Kxx · Z “ βFzz `
2ÿ

q“0

sqFp,q
zz , (A.31)

with

Z “
”

Z1,1 Z2,1 Z2,2 Z0,2

ıT
, Fzz “

”
0 l2 ´ l1 1 2Ktr

0 ` l0 ´ l2

ıT
, (A.32)

Fp,q
zz “ Fq

ω for ω “ l, (A.33)

and Kxx is the same with (A.25). The solution of this system can be written in the form

Z “ βZmec `
2ÿ

q“0

sr Zp,q
mec. (A.34)

The average strains in the fiber and the coating are given by

εi “ β
”

Λi
zz Λi

zz 1 0 0 0
ıT
, (A.35)

with

Λ1
zz “ Z1,1, Λ2

zz “
β` rZ0,2 ´ Λ1

zzsφ
1´ φ

. (A.36)

The Λi
zz can be expressed in the same form as (A.34).
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A.5. Interaction tensors

Regrouping the results of the previous subsections, one finds that the interaction tensor com-

ponents in (41)-(52) are given by the expressions

“
T i

xx

‰
mec
“ “

Λi
xx

‰
mec

,
“
T i

zz

‰
mec
“ “

Λi
zz

‰
mec

,

“
T i

xy

‰
mec
“ “

Λi
xy

‰
mec

,
“
T i

xz

‰
mec
“ “

Λi
xz

‰
mec
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