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Highlights

e Micromechanical approach to evaluate the electro-magneto-inelastic properties in coated

long fiber composites with transversely isotropic piezoelectric-piezomagnetic behaviour

e Composite Cylinders Assemblage type of boundary conditions to obtain analytical expres-

sions of the dilute electro-magneto-mechanical concentration tensors

e Mori-Tanaka is adapted to identify i) the overall response of the composite, and ii) the

various average electro-magneto-mechanical fields of the phases

o Ability of the proposed model to predict both macroscopic and average microscopic fields

per phase when nonlinear fields take place
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Abstract

A unified micromechanical approach is proposed to evaluate the electro-magneto-mechanical re-
sponse of coated long fiber composites with transversely isotropic piezoelectric-piezomagnetic be-
haviour. The developed framework takes into account the presence of electro-magneto-mechanical
eigenfields. The multiscale strategy is based on solving spe€ific boundary value problems in the
same spirit as in the Composite Cylinders Assemblage technique. The solution of these prob-
lems provides analytical expressions of the dilute electro-magneto-mechanical concentration ten-
sors. With the help of the latter, the mean-field approach of Mori-Tanaka is adapted to identify
i) the overall response of the composite, and ii) thewvarious average electro-magneto-mechanical
fields generated in the matrix, the fiber and.the coating layers for known macroscopic fields. It
is found that the novel approach has the'same accuracy as existing homogenization techniques
in terms of electro-magneto-mechanical properties. The ability of the proposed model to predict
both macroscopic and average microscopic fields per phase when eigenfields take place is finally

demonstrated.

Keywords: Compgsite:Cylinders Assemblage; Coated long fiber composites;

Piezoelectric-piezomagnetic materials, Electro-magneto-inelastic fields;

1. Introduction

Piezoelectric and piezomagnetic materials have received much attention in the last decades

and are being increasingly used in various applications such as aerospace, biomedical, vibration

*Corresponding author.
Email addresses: georges.chatzigeorgiou@ensam.eu (George Chatzigeorgiou),
adil.benaarbia@ensam.eu (Adil Benaarbia), fodil.meraghni@ensam.eu (Fodil Meraghni)

Preprint submitted to Mechanics of Materials August 30, 2019



control and many others. These materials are extensively used as actuators, sensors and trans-
ducers. Typically, active actuator materials have the capability to convert electrical and/or mag-
netic energy into mechanical energy, while sensor materials provide an opposite conversion. To
avoid the increased weight of conventional piezoelectric or piezomagnetic materials, these smart
materials are generally combined with polymers in the form of composites. Such combination
permits to develop new transducers and sensors with high strength, increased thermal conductiv-
ity, low thermal expansion and advanced electromechanical behaviour. However, the co-existence
of piezoelectic and piezomagnetic coupling effects in such composite materials and the involve-
ment of many constituents-based parameters make the modelling of their multiphysical behaviour
complex. From a micromechanics point of view, special techniques are required to investigate the
coupling effects and the whole performance of the composite. Such modelling tools hold the key
for using these smart composites in many applications in more intelligent ways.

The modelling of the piezoelectric-piezomagnetie.composites is still an open topic (e.g., Nan,
1994; Wu and Huang, 2000; Bishay and Atluri, 2016; Ye et al., 2018; Kuo and Hsin, 2018, etc.).
Within the last 30 years, significant progress hasibéen made in the development of models that
study the combined thermo-electro-magneto-elastic behaviour of composites (Tang and Yu, 2009;
Bravo-Castillero et al., 2009; Akbarzadeh and Chen, 2014; Koutsawa, 2015). Most of the exist-
ing models in literature were focused on the thermoelastic regime and have paid particular at-
tention to the study of both ‘piezoelectric and piezomagnetic coupling effects. Dunn and Taya
(1993) have developed an/Eshelby-type approach to investigate the electroelastic behaviour of
piezoelectric compesite materials by identifying appropriate Eshelby and concentration tensors.
This approach has then been extended to consider electro-magneto-elastic responses (Huang and
Kuo, 1997;Li and Dunn, 1998; Li, 2000). Huang et al. (1998) have identified electro-magneto-
elastic'Eshelby tensors for elliptical, rod, penny and ribbon shaped inclusions. Benveniste (1995)
has studied the electro-magnetic effect in fibrous composites with piezoelectric and piezomag-
netic phases using the composite cylinders assemblage method. Aboudi (2001) has developed a
homogenization micromechanical method for the prediction of the effective moduli of coupled
electro-magneto-thermo-elastic composites, while Lee et al. (2005) have proposed numerical and

Eshelby-based analytical strategies for three phase electro-magneto-elastic composites. Moreover,
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the electro-magneto-thermo-elastic composites have extensively been studied using the periodic
homogenization theory (Bravo-Castillero et al., 2008, 2009; Challagulla and Georgiades, 2011;
Hadjiloizi et al., 2013; Kuo and Peng, 2013). Pakam and Arockiarajan (2014) have developed
a micromechanical scheme for studying ferroelectric and magnetostrictive composites reinforced
with square cross section fibers and subjected to high electro-magnetic loading conditions. Using
Hill’s interfacial operators, Dinzart and Sabar (2011) and Koutsawa et al. (2011) have proposed
micromechanical models based on Mori-Tanaka and self consistent schemes to investigate the
thermo-electro-magneto-elastic behaviour of magneto-piezoelectric composites with multi-coated
ellipsoidal particles.

This work aims at developing a unified micromechanical approach in inelasticity to analytically
express the electro-magneto-elastic and inelastic concentration tensors and effective material pa-
rameters for coated long fiber composites with transversely isotropic piezoelectric-piezomagnetic
behaviour. The coating between the matrix and the geinforcement is witnessing strong coupling
effects with complex local behaviour. Inelastic defermation mechanisms such as plasticity and/or
martensite transformation occur frequently at the ¢eating region and strongly interact with the lo-
cal damage of the matrix/reinforcement interface (Payandeh et al., 2010, 2012). To reiterate, one
of the aims of this work is to déveloprappropriate tools to assess the electro-magneto-inelastic
fields in the matrix, fibers and coating layers. The current work aims at elaborating multiscale
approaches to design more accurate damage and failure criteria for piezoelectric-piezomagnetic
composites.

A novel approachy,adapted to the Mori-Tanaka homogenization scheme, is presented in this
manuscript. The approach is based on solving specific boundary value problems, extending the
composite-eylinders model of Hashin and Rosen (1964) to account for the inelasticity. The latter
effort can be.considered as a generalization of the Dvorak and Benveniste (1992) methodology,
providing'analytical expressions of the dilute electro-magneto-mechanical concentration tensors,
which can be utilized in classical micromechanical techniques, such as Mori-Tanaka or self con-
sistent methods. The advantage of such information is that it permits to identify not only the
overall response of the composite, but also the various average electro-magneto-mechanical fields

generated in the matrix, the fiber and the coating layers for known macroscopic electro-magneto-
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mechanical conditions.

The effect of eigenfields (inelastic strains, electric or magnetic eigenfields) on the overall re-
sponse, as well as in the average response of the phases, is important for the study of nonlinear
behaviour of composites. Indeed, while in the current manuscript the described boundary value
problems are linear, the provided solutions can be seen as the mean to include nonlinear mecha-
nisms per phase. The latter should be described through evolution laws of the nonlinear fields and
activation criteria. Via an appropriate incremental, iterative scheme, one can use the linearized mi-
cromechanics solution provided here and adapt it to account for the constitutive laws of the phases
(see for instance Pettermann et al., 1999 for purely mechanical multiscale analysis).

To fulfill the underlined objectives, a brief description of the Eshelby’s problem for coated in-
homogeneity with eigenfields at the matrix fibers and coating layets is first presented. The Eshelby
problem is then solved by considering special boundary condition problems analogue to those in-
troduced by Hashin and Rosen. Then, numerical computations are conducted and discussed in
detail. These computations have permitted to demonstrate the capabilities of the developed mi-

cromechanics technique. Several conclusions, drawn from the findings, are finally put forward.

2. Preliminaries

For small deformations,and rotations, electrostatic conditions with no electric charge and mag-
netostatic conditions with.no current density, the strain tensor, &, the electric field vector, e, and
the magnetic field vector, |h, can be expressed with the help of the displacement vector, u, the elec-
tric scalar potential, a%,and the magnetic scalar potential', a™, respectively, through the tensorial

relations

1
&= [gradu + [gradu]’]. e = —grada’ and b = —grada”, (1)

'In classical magnetomechanics studies, the natural choice is to introduce a vector potential. When dealing with
multiscale approaches, the absence of microscopic current density permits an alternative formalism with scalar poten-

tial, which simplifies the calculations.



or the vector-type equations

T
& = [811 gn &3 2ep 2e13 2823]
B N O N S W S 2
0x; 0Oxy Oxz Oxp Ox; Oxz  0Ox; Oxz  0Oxp
T [ 0af o0a’ oac 1"
N i @)
B ! 2 3 B | _ﬁxl ﬁxz (9x3 ’

where the symbol [.]” stands for the usual vector/matrix transposes in orthogonal coordinates.
On the other hand, the stress tensor, o, the electric displacement, d, and the magnetic induc-

tion, b, written in the vector-type forms

T
o = [0'11 02 033, 012 013 0'23] ,
T

d = [d dap ] B=[b b 1] . 5)
obey the following equilibrium,€lectrostatic and magnetostatic equations
divo=0, divd =0 and divb =0, (6)
or, in indicial form,

0011/0x) + 001/0xy + 0or13/0x3 = 0,
00 12/0x + 002 /0x; + 003/0x3 = 0,
00 13/0x) + 0023/0x; 4+ 0033/0x3 = 0,
od, /0x; + 0dy/0xy + 0d3/0x;3 = 0,
0by/0x; + by /0xy + Obs/0x; = 0. (7)

Besides, a piezo-electro-magnetic, transversely isotropic material with eigenfields obeys the fol-



lowing constitutive laws, written in matrix-type notation?

c=Lls- o] ele-e] f[n- W]
d=e" [e—&']+k" [e—e’]+j [h—Nh"],

b=f"le-&]+j" [e—e]+k"[h-h", (8)

where the index p above a field denotes an eigenfield. Example of eigenfields are those gener-
ated by the presence of temperature (e.g. thermal expansion strain, etc.). In addition, L, k¢, k™,
e, f, j denote the elasticity, the dielectric properties, the magnetic permeabilities, the coupled
electro-mechanical, the coupled magneto-mechanical and the coupled electro-magnetic tensors,
respectively. For transversely isotropic behaviour with axis ofisymmetry parallel to the direction

3, these tensors are expressed in the following matrix-type forms

Ktr + /Jtr Ktr _ lltr l 0 O 0
Ktr _/Jtr Ktr +ﬂﬁ l 0 0 0
l i ny)0 0 O
L= , )
0 0 0 0 0
0 0 0 0 u 0
0 0 0O 0 0 u~™
[ 0 0 e ] [ 0 0 fiu |
0 0 ey 0 0 fu
0 0 e 0 O
¢ — 33 Cf= 3 , (10)
O o0 O 0O 0 O
es 0 0 fis 0 0
0 es O 0 fis O

2The symbol - in the matrix notation denotes the common matrix multiplication. The product between a scalar

and a matrix is represented without a symbol.



“ o0 0 00
K=10 « 01 K'=]0 « 0 | (1)
0 0 «5 0 0 i
jn 0 0
J=10 ju 0 | (12)
0 0 Ji

tr t a . . s
The constants K, [, n, u", u™, e3y, es3, eis, f31, f33, fis, K{|» K335 K|}, K35, ju1 and js3 are material

parameters. Equation (8) can also be written in the following compact form
L-L[E-E], (13)

where £ is the 12x 12 symmetric matrix given as

L e f
L=|¢e" —«x —§j | (14)
fT —jT L

and X, E, E? the 12x 1 vectors defined as
T r T
Z=[0'dﬂo],E=[8—e —]h],Ep:[SP —e’ —]h”]- (15)
Finally, the generalized vector
T
U={w w uy a o |, (16)

is also introduced.

In the sequel, when dealing with various material phases, the following notation is postulated
for a quantity @3, i) A superscript on the symbol of the form a9 denotes that the quantity a is
spatially dependent. ii) A subscript on the symbol of the form a, is used for constant or average

value of the.quantity. The index ¢ can take the values 0, 1 or 2.

3. Coated long fiber composites with eigenfields

Identifying the overall properties of a composite sensitive to electro-magneto-mechanical load-
ing conditions is the task of homogenization strategies and techniques. In this paper, the mean-field

approach of the Mori-Tanaka method is followed. This method relies on two aspects:
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e solving a basic (Eshelby-type) problem of a coated inhomogeneity embedded in an infinite

medium, allowing to compute the so-called “interaction” or “dilute concentration” tensors.

¢ using this information in the level of the composite for identifying the “concentration” ten-
sors, whose knowledge leads to link the microscopic and macroscopic fields in order to
obtain the macroscopic matrix L and the macroscopic eigenfield E” of the overall compos-

ite.

3.1. Eshelby’s problem for coated inhomogeneity with eigenfields in all phases

Consider a coated cylindrical inhomogeneity, embedded in an infinite medium. The medium,
the inhomogeneity and the homothetic coated layer are characterized by constant generalized mod-
uli, £y, £, and L,, respectively. The inhomogeneity occupies, the space ; with volume V/, is
bounded by the surface dQ,; and is subjected to the uniform eigenfield E7. The coating layer oc-
cupies the space €, with volume V,, is bounded by the“surfaces 0Q2; and 02, and is subjected
to the uniform eigenfield ES. The medium oceupies the space ©o, which is extended to infinity
(boundary surface 0Q), and is subjected. to the uniform eigenstrain E{. At far distance, a linear

field

Ug, El1pX1 T E1gpX2 T E13,X3
Uo, E120X1 T €20 X2 + €233
Uey = Uy, | = | E13,X1 + E239X2 + E33,X3 | (17)
aj) —@yX] — @2yXy — ©3,X3
| 5181 ]| | —Ih|O)C] — IhzOXQ — ]}130)63 )

with g, e, hi(i, ji= 1,2, 3) constant values, is applied (see Figure 1).

For this.problem, which is a generalized version of the famous Eshelby inhomogeneity problem
(Eshelby, 1957) accounting for multiphysics phenomena, the constitutive law is position depen-
dent and.reads

-

Ly [E(x) — E}], xeQ,

E(x) =4 L-[E(x)—E], xeQ, (18)

L [E(x)—E}]|, xe,.
9
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Uext - EO'x &Qoo

Q

0,

Figure 1: Cross section of coated cylindrical fiber with homothetic topology inside an infinite medium. All phases
have homogeneous material properties and are subjected to uniformreigenfields. Moreover, the medium is subjected

to linear displacement, electric potential and magnetic poténtial at far distance.

The boundary conditions correspond to uniform E, at far distance.
The main goal of this problem.is to compute the average fields inside the inhomogeneity and

inside the coating layer

1 1
E = — E(x)dx and E, = — E(x)dx, (19)
1 Q] 2 QZ
respectively, when the applied field, E, at far distance and the eigenfields E{, E7, EY are known.
In other words, the,purpose is to evaluate the generalized, 12 x 12 elastic and inelastic interaction

tensors, T; and,T" Z ) fori = 1,2 and g = 0, 1, 2, for which the following relations hold

2
E; = T;E,+) T E (20)
g=0

The above expression is a direct extension of the corresponding one in the original Transformation
Field Analysis approach of Dvorak and Benveniste (1992). In purely mechanical problems, the
first term is the usual elastic interaction tensor of a phase, connecting the total strain in the phase

i with the far field applied strain. The sum of the following terms expresses the dependence of the
10



total strain in the phase i from the inelastic strains of all the phases in the representative volume
element.

To assist the computations, the ratio ¢ = V;/ [V, + V] is identified.

3.2. Proposed methodology: analytical solutions in special boundary value problems

The proposed methodology is motivated by the studied boundary value problems by Hashin
and Rosen (1964) in their famous composite cylinders assemblage theory. The necessary modifi-
cations on these problems, discussed in the sequel, provide the exact solution for the interaction
tensors. Similar technique has been utilized in various articles (Benveniste et al., 1989; Chatzige-
orgiou et al., 2012; Wang et al., 2016; Chatzigeorgiou and Metaghni, 2019; Chatzigeorgiou et al.,
2019) for studying the mechanical and piezoelectric response-of long fiber composites.

Before passing to the actual boundary value problems, ituis’essential to express all the fields

and the conservation laws in cylindrical coordinates.

3.2.1. Expressing the Eshelby’s inhomogeneity problem in cylindrical coordinates

r
X3 N

X2

Figure 2: Coated cylindrical fiber with homothetic topology inside an infinite medium, which is represented as a

concentric cylinder. All the fields are expressed in cylindrical coordinates.
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Inside the representative volume element the various fields generated at every phase g (¢ =

0, 1,2) depend on the spatial position, i.e
U4 (x), E@ (x), ¥ (@) (x), EP(@) (x), VxeQ,

Due to the geometry of the inhomogeneities, the problem can be transformed in cylindrical co-
ordinates, using a system of concentric cylinders for the inhomogeneity, the coating layer and
the infinite matrix (see Figure 2). In cylindrical coordinates, the axes (x,y,z) are transformed to

(r,0,z), according to the relations
X] =rcosf, x,=rsinf, x3=z.

The vectors and tensors in cylindrical coordinates are noted with an arc above the symbol. Thus,

in cylindrical coordinates, the fields are written as
i}(fl)(r’ 6,2), E@ (r,6,72), i(q)(r’ 6,2), EvP(fl)(r’ 0.2), Vro.zeQ,,
while the equilibrium, electrostatic and magnetostatic,equations are re-expressed as

55-(") l aé:ﬁz) NSNS 5.2;1)) 85'53)

rr rr

+—2 =0,
or r 06 r 0z

oG pog . 26 . oG\ .

or .00 oz

Byl @
or r 00 r oz

aa(q) 1 aaéq) a(cz) aa(q)

_ r Z O

or + r 00 + r + 0z ’
b . 1 0byY . b . b . o

or r 00 r oz

In addition,.thesstrain, electric and magnetic field components in each phase are given using the

following expressions

Z rz

[aa@ 1o @@ oa

T
g _ [553) gég) 5@ 25%) 25@) zgéz)]

or r&9+r 0z

(22)

+ = - + - +
or r 0o r or oz r 00 0z
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T [ e(q) e(q) e(q) T
Ag) _ [ NORC) wn] _| _oa 102 (a } (23)
e = - —_ —_— — 1)
% % or r 06 0z
~ oy mpn o~ 1T T pam@ 1 pam@  pam@ 1T
h@ — [ INOIENO) h(q)] T L - : (24)
r 0 E | or r 060 0z

The inhomogeneity is considered to have radius r equal to r; and the coating layer has external

radius r, (see Figure 1). Using the radii of the concentric cylinders, one obtains ¢ = r3/r;.

The continuity conditions between 1) the inhomogeneity and the coating layer, and ii) the

coating and the matrix are expressed through the relations

=
)
Al
I
59
&
—~
=
)
Al
~—
0]
I
>
S
Q
=
N

&
A
—~
~
=
)
2
N—
|
&
A
N/
—
~
=
oo
A\l
N~—
%)
I
Q
Q
=

and

S =rr,rlorrz,

~(0)

0y (1,0,2)p= 03(r2,0,2), S =rr,rforrz,
afl) (r1,6042) = agz) (r1,6,2),
A2, 0.2) = d(r2,0,2),
b, 6,2) = B (11,6, 2),
b? (ry,6,2) = b (r,6,2)

(25)

(26)

Due to the transvetse isotropy of all phases, the generalized modulus, £, retains the same form in

cylindrical coordinates.

In the, following subsections, the boundary value problems are presented and the analytical

form of the solution (in terms of the generalized vector U (Q)) is given.

3.2.2. Analytical boundary value problems

The four boundary value problems which allow to compute the interaction tensors are the

following:
13
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o Axial shear /in-plane electric and magnetic field

mglgo

—>» I 571’3 l —>»
2
€1 I D l lhl
—» €3 “La -~
0
D
1« b, 4
E— €5, E—
]hp
1
 — 0  —
S | 1 .
X3
S | !
€130

X1
Figure 3: Boundary value problem for axial shear / in-pl @and magnetic field conditions.

Displacement, electric and magnetic pote '&undary conditions at far field (when rqy

tends to infinity) are expressed using the ing formulas

“@z ﬁ@ ext 0’
&xt = e COsH,
aixt =
7 =

—[BFext COS 6,
ext —B" Texi €OS 0, 27
where S, ¢ " ‘are considered known. In addition, all phases are subjected to the fol-
lowing ei ds
) !
enr = Sq[O 0 0 O cosf —sine] ,
Ar(@) !
e"? = SZ[COSO —siné 0] ,
(@) !
h”?" = 7 [ cos® —sind 0 ] : (28)

forg = 0, 1,2 and the values of s,, s7 and sy being known. The latter expressions correspond

to uniform shear strain on the plane x; — x3 and uniform electric and magnetic field in the

14
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x; direction (see Figure 3). The analytical solution for the displacement field, the electric

potential and the magnetic potential at every r, 6 and z takes the form

ﬁﬁq) _ —0,

Uy
2 r &i—1
~q)  _ = |
u’ = rZHq’llrl] cos 6,
i=1
2 L6
@ = Ee-[—] cos 6,
2 RS
amd = —pyEm [—] cos 6, (29)

with ¢, = 1 and & = —1. The unknown coefficient:
from the boundary conditions, the interface relation@,
displacements, the magnetic potential and the el@potential are finite at r = 0.

e Transverse shear strain &

i» Zq; and B7'; are determined

26) and the condition that the

y, /
e /
0 v 4
% ]
S - A
Vo v 4
Q

Figure 4: Boundary value problem for transverse shear strain conditions.

Displacement boundary conditions at far field (when re tends to infinity) are expressed
15



using the following equations

U o = YlexSin20,
Uy oy = YlextCOS20,
u = 0, (30)

z ext

where vy is known. All phases are also subjected to the eigenstrains
1 1 !
&' — 25, 3 sin 26 -3 sin20 0 cos26 0 0 ] , 31

forg = 0, 1,2 and the value of s, being known. The lattet expression corresponds to uniform
shear strain on the plane x; — x; (see Figure 4). The analytical solution for the displacement
field at every r, 6 and z takes the following form

4

¢i—1
~q)  _ = r :
u, = I"Z '—'q,il//q,i lr—ll Sin 29,

i=1

4 6]

fté‘n =Y B, [—] cos 26,

i=1 i
a0, (32)
with

K, —

fl = 3’ w 1 = 1 5

2K, +

& = -3, Va3 = —1,
Gl =t (33)
Hq
In*such loading case, the unknown coefficients Z,; are determined from the boundary con-
ditions, the interface relations (25), (26) and the condition that the displacements are finite

atr = 0.

e Plane strain / axial electric and magnetic field

16
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™
[aiy
—_
<)

e3, 5

111111
111111

X3

=
)
™
—
—
)

R

Figure 5: Boundary value plane strain / axial electric and magnetic ﬁe@it' ns. Case of uniaxial strain in the x|

direction. Q

Displacement, electric and magnetic pote '&undary conditions at far field (when 7.

tends to infinity) are expressed as follow

f@ Brext + Yrex €0s 26,
ex =

Q —YFext SIN 26,
\ ce = 0,
(bd e = Pz
Ao = B2 (34)
where 3, d B are assumed known. All phases are subjected to the eigenfields

(@) !
Q P =sqﬁ[110000]

T
1 1
+2sq,y[500329 —500329 0 —sin20 0O 0] ;
T
@P(q)=s2[001:|’
- T
e~ oo 1], (35)

where the values of sz, 54,, s; and 57’ are known for g = 0, 1,2. The latter expressions
17



correspond to uniform biaxial strain state with normal components on the x; and x, direc-
tions, and uniform electric and magnetic fields in the x; direction. Two special cases are

considered here:

— uniform strain at the x; direction, which is obtained by setting y = g and s,, = 5.5

(see Figure 5),

— uniform strain at the x; direction, which is obtained by settingy = —fand s,, = —s,3.

The analytical solution for the displacement field, the electric potential and the magnetic

potential at every r, 8 and 7 takes the following form
: 4 PR 2 PRt
~(q =
= i il — cos 20+ Z il — ,
@ = 3|7 2| ]

i=1
4 r &i—1
ﬁ((,q) _ _rZEqJ. {_] §in 26,

i=1 "
A = o,
acle)  — —Bz,
In the above expressions, {; =71 and {, = —1, while ,; and &; for i = 1,2,3,4 are given

by the relations deseribed in the previous boundary value problem. Moreover, the unknown
coeflicients &, %, ; ‘are determined from the boundary conditions, the interface relations

(25), (26) and the eondition that the displacements are finite at r = 0.

Hydrostatic:strain / axial inelastic strain

Displacement boundary conditions at far field correspond to hydrostatic strain where
ftr ext ,Bl”ext, ﬁ() ext 0 aIld ﬁ - ﬁZCXt' (37)
All phases are subjected to the eigenstrains

T
#9—-sJoo1000], (38)
18



I I I I I 153»’50:511(.

= p
R — 5332
==

P p
€33, €33,

[
—

)
[\

]

Srrrel b

Figure 6: Boundary value problem for hydrostatic strain /(axialiinelastic strain conditions.

i
TTrLrd

o = <llo

N

for g = 0, 1,2 and the value of s, being known. (The latter expression corresponds to uniform
inelastic strain in the x3 direction (see Figure 6). The analytical solution for the displacement

field at every r, 6 and 7 takes the following form

2 e
~ r ~ ~
A = r Yoz, [r—l] , Y =0 and 2 =gz, (39)
i=1
with {; = 1 and {, #,—1. Theunknown coefficients Z,; are determined from the boundary

conditions, the interface relations (25), (26) and the condition that the displacements are

finite at r = 0.

3.2.3. Computing the.interaction tensors

E(q)

Solving-the previously described boundary value problems, the fields can be computed in

both the fiber-and its coating. Consequently, the average values E; and E,, expressed in Cartesian

coordinates, can be evaluated analytically with the help of the expressions (19). In these studies,

the values of B, v, 8%, B, $4, S48, Sq.y» st and sg“ can be chosen properly in order to “construct” the

interaction tensors (for instance, setting one equal to 1 and zero to the rest). The four discussed

boundary value problems are sufficient for identifying all the terms of T'; and Tf]’ - The computa-

tions are lengthy and are omitted in the current manuscript. Similar computational procedure is

19



described in Chatzigeorgiou and Meraghni (2019); Chatzigeorgiou et al. (2019).

It is important to note that the general forms of the elastic and inelastic interaction tensors in

all phases are given by the expressions

[ T 0 om ] [ P00 ppOe  pOm ]
T = TeO Té¢ T , TP = TpeO TPee  rem ,
TmO Tme  mm Tme TpPme  pmm
where the various submatrices are written as
1 1
E [[TXX]mec + [T«U‘]mec:l 5 [[T«*’X]mec [T«\’)’]mec] [TZZ]mec [TX«*]mec 0 0
1 1
5 [[T-\'X]mec [TX,V]mec:I E [[TX"]mec + [TX,V]mec] [TZZ]mec [Txx]mec 0 0
0 0 1 0 0
™ -
0 0 0 [TX).] mec 0
0 0 0 0 [sz]mec
0 0 0 0 0
[ 1 1 ) )
5 I:I:fo]mec + [T.fy]mec] E [[fo]mec - [Tf)']mec] [TZ]Z]mec - [TJ’CX]meC 0 0
1 1
5 [[fo]mec - [Ti?v]mec] E |:[T)1;7x]mec + [Tfy]mec] [szz]mcc - [Tﬁx]mcc 0 0
0 0 0 0 0
TpOO _
0 0 0 [T8]uee O
0 0 0 0 [T ] mec
0 0 0 0 0
0000 [rg],. O
e0
- = 10000 0 [T¢]. |
00 00O 0 0

(75 e

(40)

, (4D

, (42

(43)
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™ = 10000 0 [T¥. | (44)

™™ = 10000 o0 [ ; (45)

™" = 1000 0 & (T2 e |5 (46)
| 000 0 0
&
[0 0 m&; [ 0 0 [0y |
O O ]elc 0 0 [fo]elc

, T = ) 47)
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TOm _

Tee —

Tmm —

Tme —

Tem —

0 0
0 0
0 0
0 0
(Ticlmee O

[T;Z] elc 0 0

0 [T;Z] elc 0

0 0 1 |
)’:;] mag 0 0

0 0 0|
[TJiZ]mag 0 0 |
0 [T;Z]mag 0
0 0 0

[TXX] mag

[T-’C-\‘] mag

0m
LT —

TPee —

TPmm

TPme —

Trem —

0 0
0 0
0 0
0 0
[T%)me O
0 [T7]
[ [T,
0
| 0
ST
0
i 0
[ [12),.
0
| 0
(T2 e
0
i 0

[T)IC’X] mag

[Tfh] mag

0 0|
0 0]
[T O
0 0
0 0]
[T lae O |
0 0|
0o 0|
[T e O
0 0|

(48)

(49)

(50)

(S1)

(52)

In the above formulas, the symbols [{e}]mec, [{®}]cc and [{e}]mae denote quantities that are ac-

tivated by the presence of strains, electric fields and magnetic fields, respectively. Appendix A

presents the computational details for obtaining the various T terms.
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3.3. Alternative approach: Hill’s interfacial operators

The solution to the original problem proposed by Eshelby (1957) is valid for uncoated inho-
mogeneities of ellipsoidal shape inside a matrix material. In the case of coated inhomogeneity, the
Eshelby approach provides information for the average strain inside the inhomogeneity/coating
system. To identify the strains at each phase, one can use the concept of the interfacial operators
(Walpole, 1978; Hill, 1983). This technique has been widely utilized in the literature for com-
posites with mechanical (Cherkaoui et al., 1995; Berbenni and Cherkaoui, 2010; Chatzigeorgiou
and Meraghni, 2019), piezoelectric (Chatzigeorgiou et al., 2019), thermo-piezoelectric (Koutsawa
et al., 2010), piezoelectric-piezomagnetic (Dinzart and Sabar, 2011), and thermo-piezoelectric-
piezomagnetic (Koutsawa et al., 2011) behaviour.

The computational steps for obtaining the elastic and interaction tensors for a composite with
pure mechanical behaviour have been described in detailin Chatzigeorgiou and Meraghni (2019).
For a piezoelectric-piezomagnetic composite the procedure is similar, with the only difference
that the fields have the extended form presented/in‘section 2. It is important to point out that the
use of Hill’s interfacial operators implies implicitly the hypothesis that in the Eshelby problem
the total fields inside the inhomogeneity'are uniform. As has been illustrated in Chatzigeorgiou
and Meraghni (2019), under transverse shear conditions this hypothesis is violated in long fiber

composites and thus can provide inaccurate results in certain cases.

3.4. Mori-Tanaka approach

Once the tensors/T; and TS ,; are identified with one of the two approaches discussed previously,
one can pass to.the next step and consider the composite.

A direct approach, like for instance the generalized self consistent composite cylinders method
(Christensen, 1979), is applicable for the problem under investigation. It provides the local distri-
bution of the fields in the representative volume element, but it is quite limited, since it is designed
exclusively for unidirectional fiber composites with random distribution of the fibers. The current
work considers the Mori-Tanaka method for identifying the macroscopic response of the com-
posite. A mean-field approach is more flexible in terms of microstructural characteristics; it can
account for non-uniform distributions of the fibers, or the presence of different types of reinforce-
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ment. The restriction of the proposed methodology is that it estimates only average fields per
material phase and not their actual spatial distribution, which is the case for full field approaches.

A unidirectional coated fiber composite consists of a matrix phase in which coated fibers are
distributed randomly (see Figure 7). In this three-phase composite, the volume fractions of the
matrix, the fibers and their coating are denoted as ¢,, ¢ = 0, 1,2. Using the ratio, ¢, the following

relations can be given

02:—c1+% and cozl—%. (53)
© @PhaseO@ ©
©_® ©
© ©©©©©© Phase 2

Figure 7: Cross section of unidirectional fiber composite. The fibers are coated and all phases exhibit piezoelectric-

piezomagnetic behaviour.

According to thetbasie,principle of all multiscale methods, the macroscopic fields at a macro-
scopic point are.equal to the average of the corresponding microscopic fields over the representa-
tive volume element linked with the specific macroscopic point. In the composite considered here,

the macroscopic fields, E and I, are given by

E = C0E0+C1E1+6‘2E2,

[\l
I

C()Zo + Clzl + 6222. (54)
Moreover, the constitutive law for each phase can be written in its average form

Y, = L,-[E, —E, r=0,1,2. (55)
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In the Mori-Tanaka method, the far field, Ey, and the eigenfield, E”, of the expressions (20)
correspond to the average field and the average eigenfield of the matrix phase of the composite.

Combining (20) and (54),, and after some algebra, the following relations are derived for r =

0,1,2

E.=A E+) Al -E, (56)
q=0
with
2 —1
Ay = [cOI + ZciTi] : A, = T,-A,
2t':l 5 (57)
AVy = —Ag ) al?, AP = TIE ALY T,
i=1 i=1

forg = 0,1,2 and s = 1,2. In the above expression, Z _is the 12 x 12 identity matrix. Moreover,

combining equations (20), (56), (57) and (54),, yields

=L [E—E, (58)

with

i=0

5 2
L= ZCiLi'Ai’ EPIZﬂ§~Eg,
q=0

2
A= L7 [ch,, - Zc,-_z:i-Ag,i] . (59)
i=0

It is worth noting that non-uniform distributions of fibers can be accounted for by introducing
appropriate oriéntation distribution functions in the expressions (57) and (59). One should bear
in mind thatthe Mori-Tanaka scheme for reinforced composites with non-uniform alignment may
lead to'mon=symmetric macroscopic magneto-electro-mechanical matrix L. The symmetry issue
could bespotentially resolved by choosing another mean-field approach with similar structure, for
example the Castafieda and Willis method (Ponte-Castafieda and Willis, 1995; Giordano, 2017).
The latter assumes a unified ellipsoidal shape for the distribution of heterogeneities, which pro-
vides a consistent homogenization scheme and ensures the symmetry of the macroscopic matrix

L for non-uniform alignment of the fibers.
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4. Numerical applications

The purpose of this section is to demonstrate the developed micromechanics technique capa-
bilities. For the needs of the numerical examples, four different materials are examined: CoFe,Oy,
BaTiOs, glass and epoxy. The first one exhibits piezomagnetic behaviour, the second has piezo-
electric characteristics and the last two present a typical mechanical response without magnetome-
chanical or electromechanical couplings. The material parameters of these materials are summa-

rized in Table 1.

CoFe, 04 BaTiO; glass epoxy
n [GPa] 269.5 162 88.8 5.53
[ [GPa] 170.5 78 29.6 297
K" [GPa] 229.5 121.5 59.2 4.25
1" [GPa] 56.5 445 29.6 1.28
u* [GPa] 45.3 43 29.6 1.28
&, [CYNm?] 08107 2124107 0.56-107"° 1.107'°
K55 [CP/Nm?] 0.93-10° 1126-1071° 0.56:107"° 1.1071°
K [N/A?] -590-10-6 51076 11076 11076
K5 [N/A?] 157.107° 10-10-6 1-107° 1-107°
e3 [C/m?] 0 -4.4 0 0
ex; [C/m?] 0 18.6 0 0
efs [G/m?] 0 11.6 0 0
31 IN/Am] 580.3 0 0 0
733 [N/Am] 699.7 0 0 0
fis [N/Am] 550 0 0 0
Ju [C/Am] 0 0 0 0
J33 [C/Am] 0 0 0 0

Table 1: Electro-magneto-mechanical properties for the materials utilized in the numerical examples. The properties
of CoFe, 04, BaTiO5 and epoxy have been obtained from Lee et al. (2005). The material parameters for the glass have
been obtained from Dinzart and Sabar (2011).
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4.1. Validation

In the first subsection, the electro-magneto-elastic properties of long fibers composites with

and without coating layer are computed with the proposed method and are compared with the

predictions of other methods in the literature.
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Figure 8: Material properties as a function of the fiber volume fraction for a composite consisting of CoFe, O, matrix

and BaTiOs; long fibers: (a) mechanical, (b) piezoelectric and (c) electromagnetic coefficients. Comparison of the

developed method predictions (solid lines) with numerical results obtained by Lee et al. (2005) (points).
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In the first example, a composite consisting of CoFe,04 matrix and BaTiO; long fibers is
analyzed and the results are compared with the periodic homogenization predictions provided by
Lee et al. (2005). The mechanical stiffness coefficients, the piezoelectric coupling terms and the
electromagnetic coupling terms are demonstrated in Figure 8 as a function of the fiber volume
fraction. The numerical results for the periodic homogenization analyses have been obtained only
for two different volume fractions, 40% and 60% percent. As it can be observed, the new model

simulations are in excellent agreement with the full field homogenization results.
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Figure 9: Electromagnetic propertiesias a function of the coated fiber volume fraction of a composite consisting of
CoFe,04 matrix and glass fibers'coated with BaTiO3 coating layer: Comparison of the developed method predictions

(solid lines) with numerical results obtained by Dinzart and Sabar (2011) (points).

The second example illustrates results from studies in Dinzart and Sabar (2011). In that paper,
an Eshelby-based micromechanics technique was developed using the Hill’s interfacial operators.
In their analysis, glass fibers coated with BaTiO; coating layer are embedded in CoFe,O, matrix.
The aspect ratio of the fibers (length to radius diameter) is 100, which is quite large and can serve
for the purpose of this paper as almost long fiber. The ratio ¢ for the coated fibers is taken equal
to 82.645%. Figure 9 illustrates the electromagnetic coupling terms of the composite as a function

of the fiber volume fraction. The results of both methods are in good agreement and the small
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difference is mainly due to the finite value of the fibers’ aspect ratio.

The above preliminary examples demonstrate that the new approach has the same accuracy
with existing homogenization techniques in terms of electro-magneto-mechanical properties. The
following numerical studies demonstrate the ability of the model to predict both macroscopic and

average microscopic fields per phase when nonlinear fields take place.

4.2. Applied thermal strains

A typical example of inelastic deformation is the appearance of thermal strains. Consider
a composite made of CoFe,O, matrix and glass fibers coated*with BaTiO; coating layer. The
composite is assumed free from external loading and only a temperature difference of 1 K is
applied. The thermal expansion coefficients for the matrix, the fiber and the coating are taken
equal to 107> 1/K, 5 - 107® 1/K and 6.4 - 10~® 1/K respectively.

According to the general principles of homogenization of composites subjected to thermome-
chanical processes, the microscopic and macroscopic temperature coincide (Chatzigeorgiou et al.,
2018), i.e. all material phases in the RVE/are subjected to the same temperature difference of 1 K.

This leads to the development of inelastic (thermal) strains in all phases:

T
g = | 107975107 107 0 0 0] ,

r T
g < h5710° 5.10° 5-10° 0 0 0] ,

r T
£, =] 64-100° 64-10° 64-10° 0 0 0] .

Figure 10 1illustrates the non zero terms of the macroscopic stress tensor, the electric displace-
ment vector and the magnetic induction vector that are generated due to the thermal strains as a
function of the fiber volume fraction. Considering the coating, two different ratios ¢ are consid-
ered: ¢ = 50% and ¢ = 80%. From these results one observes that the stresses and the magnetic
induction increase with the increase of c¢;, while the electric displacement initially has a small

increase and then decreases as the fiber volume fraction obtains high values.

29



Journal Pre-proof

1 1
OpETTE e, Sl R s A H e Foeg g _A—*-*.-ﬁ-»#%-***'* e
@ e **.*2—0«&;‘; -
o 1r A e e ~ 7 ‘%’ 1r 2 b - o Ba. @
— _&_,_w. . =5 " e Sag &_ﬁw
e T = g, g 9] o ol qrg {n..s
P o sl - % o5 oo
2r B B L= 2k st
9) e ¥
- > _Jp;.&‘ =N (’_)‘ ggﬁ/
o A7 = o &-_-!i'
6} 3t e Gl , by 3t ¥
9] s a 3 rg
0 P o 7
8 -4k 4 \'1-\.&, 8 4l 9“&
g A [oon MPa) g =-ou [MPal
=l s . MP z -=- 022 [MPa]
o & 022 [MPa] 1 "
& - - # ~+-033 [MPa]
S o33 [MPa] ¥ o )
S -e-ds [1075 C/m?] P -edlg [1077 C/m”]
“6re -+-bs [10~2 N/Am] ] -6f% b [107% N/Am]
-7 L L L L -7 | L L
0 10 20 30 40 50 0 20 40 60 80
Fiber volume fraction [%] iber volume fraction [%]
(@) Q (b)
Figure 10: Composite consisting of CoFe,04 matrix and glass fib ted with BaTiO3 coating layer. Macroscopic

stress, electric displacement and magnetic induction fields, ¢ d by thermal strains: (a) ratio ¢ = 50% and (b) ratio

¢ = 80%.

/

<

Microsco ﬁelss (c1 =20%, ¢ = 50%)

o (b

ds [107° C/m?] bs [1072 N/Am)]

Figure 11: Composite consisting of CoFe,04 matrix and glass fibers coated with BaTiO; coating layer. Average

microscopic stress, electric displacement and magnetic induction fields per phase, caused by thermal strains, for fiber

volume fraction 20% and ratio ¢ = 50%.
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The average microscopic fields per phase for fiber volume fraction 20% and ratio ¢ = 50% are
demonstrated in Figure 11. As it can be observed, the electric displacement for the matrix and the
fiber are zero. This phenomenon is explained by the structure of the interaction tensors (40) and the
constitutive relations (8). The terms T¢° and 77 are linked with the development of electric fields
inside the fiber and the coating due to the presence of mechanical strains. Similarly, the terms 7"
and T"™ are linked with the development of magnetic fields inside the fiber and the coating due
to the presence of mechanical strains. As it can be seen by the expressions (43), (44), (45) and
(46) for these terms, elastic or inelastic normal strains cannot produce electric or magnetic field
in the phases. Thus, according to the constitutive law relations (8), the development of electric
displacement can appear only in phases with non zero piezoelectric coupling tensor e, as it is the
case for the coating (BaTiO3). The glass and the CoFe, O, have zero piezoelectric coefficients, and
thus no electric field can be generated in these materials under only thermal strain conditions. For
completely analogous reasons, magnetic induction ¢an only be generated in the matrix (CoFe,04)
and not in the fiber or the coating. Contrarily to the microscopic scale, electric displacement and
magnetic induction parallel to the fiber axis, direction are generated at the macroscopic response,

as it has already been shown in Figure,10.

4.3. Applied inelastic fields

Thermal strains are a special case of eigenfields. When nonlinear mechanisms like plasticity
are activated, the mechanical inelastic strains may appear only on certain phases and do not act as
a volumetric expansions

Consider a composite consisting of epoxy matrix and CoFe,0, fibers coated with BaTiO3
coating layer.\For this material system, two specific cases where the matrix phase is subjected to

inelasticistrains are discussed:

e Case 1: Inelastic normal strains &/ W= —23‘;20 = —2(9?30 = 0.001.

Figure 12 shows the macroscopic and average microscopic responses of the investigated
composite under inelastic normal strains in the matrix. The evolution of the macroscopic

normal stresses, axial electric displacement and axial magnetic induction with respect to the
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fiber volume fraction c; is illustrated in Figure 12, for ratio ¢ = 50%. It can be noticed
that all macroscopic fields present significant change tendency at very high fiber volume
fractions (i.e., when the matrix volume fraction is close to zero). For the microscopic fields
(Figure 12,), similar results to those of the previous study (presence of thermal strains) are
observed. Thus, electric displacement and magnetic induction parallel to the fiber axis di-
rection are generated only in phases where piezoelectric and piezomagnetic coupling terms,

respectively, are non zero.

Case 2: Inelastic shear strain sf = 0.001.

30
Figure 13 shows the macroscopic and average microscopic responses of the investigated
composite under inelastic axial shear strains in the matrix:»The evolution of the macro-
scopic axial shear stress, transverse electric displacement-and transverse magnetic induction
with respect to the fiber volume fraction c; is,given.in Figure 13, for ratio ¢ = 50%. It can
be noticed that all macroscopic fields present significant change tendency at very high fiber
volume fractions (i.e., when the matrix#olume fraction is close to zero). For the micro-
scopic fields (Figure 13,) one observes that all phases experience electric displacement and
magnetic induction. Thisds explained by the fact that, according to the interaction tensors
forms (43), (44), (45) and (46), axial shear strain can activate electric and magnetic field.
Thus, electric displacement and magnetic induction can also be generated in phases where

electromechanical or magnetomechanical couplings do not exist.

5. Concluding comments

Admicromechanical method was proposed for the evaluation of the electro-magneto-inelastic

properties of coated long fiber composites with transversely isotropic piezoelectric-piezomagnetic

behaviour. The method was based on solving specific boundary value problems (axial shear/in

plane electric and magnetic field, transverse shear strain, plane strain/axial electric and magnetic

field, hydrostatic strain/axial inelastic strain) and was adapted to the Mori-Tanaka homogenization

scheme. The capabilities of the proposed micromechanics technique were verified through several
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numerical applications. Four materials with different behaviours have been examined (CoFe,O4
as a piezomagnetic material, BaTiO; as a piezoelectric material and both glass and epoxy as me-
chanical material without magneto- or electro-mechanical coupling) for the needs of the numerical
applications. A comparison with existing homogenization techniques in terms of electro-magneto-
mechanical properties of long fiber composites was first conducted. The simulation results of the
proposed approach were in good agreement with the full field homogenization results. Small
difference has been observed when comparing the electromagnetic coupling terms with studies
conducted by Dinzart and Sabar (2011). This difference was mainly attributed to the finite value
of the fibers’ aspect ratio. The ability of the model to predict both macroscopic and average mi-
croscopic fields per phase when nonlinear fields are activated was then demonstrated. Three cases
of applied inelastic fields were considered: thermal strains, inelastic normal strains and inelastic
shear strains. The effect of the inelastic fields on the overall response, as well as in the average
response of the phases, was then explicitly investigated., The proposed micromechanics approach
is able to handle microstructures with aligned ormon-aligned fiber composites with piezoelectric-

piezomagnetic behaviour under inelasticity conditiens.

A. Computational steps for obtaining the interaction tensors

The unknown constants =,; and\Z,; of the boundary value problems presented in subsection
3.2 are identified using i) the boundary conditions at r = re — 0, ii) the consistency condition
that the fields should be finite at » = 0, and iii) the interface conditions (25) and (26) between the
material phases.

Before presenting the solution of the four boundary value problems, the following helpful

matrices and'vectors are introduced: Let’s consider an arbitrary material parameter w. For the
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three phases this parameter becomes w, for g = 0, 1, 2. The next matrices and vectors

wWo

1 -1
w; —wW)
0 1
0 [O))
, Fﬁix _

—1

W)

wWo

0

wop

mix
, K, =

0

1
. F,

0 0 0
—W? w) 0
0 0 0
wy —w wd |
0 0
w1 ’ F(ZU _ —w-
0 0
0 (00}

(A.1)

, (A2)

have general description for the arbitrary w and they become specific, once the w, are assigned to

proper material parameters.

A.l. Axial shear /in-plane electric and'magnetic field

For this boundary value problem, the boundary conditions and the fact that all fields should be

finite at r = 0 yield

— =14 —_m —_— —e e —_m m
= = \:1’2 = :1’2 — U, —0.1 — ﬁ, :0,1 - ﬁ N =0,1 - ﬁ . (A.3)
The rest of unknown constants are given by the solution of the system
2
W= _ ok e Ire m Jan P e Jope.q m Japm.g
KE = pF + pF + B7FL + Y [P 4 st snF | (A4)
q=0
where
p— e m
= F., —F, —F7.
= _ —c o e e _ ee o _ em
= = = ’ FXZ - sz ) sz - sz B sz - sz ’ (A'S)
=i m em mm
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The various vectors and matrices are given in Table A.1

The solution of this system can be written in the form
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ﬁ"'meo

[

which can be split in three parts,
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=m
=22
=m
L ._‘0’2 -
D9 € Pq mre=p.q
mee T Sg2ae + 54 mag] (A.9)
=pPq enmp.q mr=p.q
Sg=mec T S '-elc + 5 :mag] ,
.—peq e.—pe,q m.—peq
Sq=mee T S,= + 5 _mag]
.—pm,q e r=pDN1,g m .—pm,q
SqBmes + SSBITT + sPBRAT] . (A.10)

The average strains, electric fields and magnetic ﬁelds in the fiber and the coating are given by

&;
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u* o eis  fis KTy K Ji1
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Ry | P | P | P | P | PO | pee

Table A.1: Axial shear / in-plane electric and magnetic field: matrices and vectors used to compute the unknown
constants. Each element in this table is computed by substituting to the general matrices or vectors a specific parameter

for w. The superscript g takes the value 0, 1 or 2.

with
+ 1202 — A

A)lcz = El,la Aiz = ﬁ [ 10’2 ¢ XZ]¢a

el ~ e ﬁe + [582 - Afczl](p

sz = ‘:‘1,1’ sz = 1 — ¢ P

B + 55, — A l¢

AINEE AT = =5, ~ A< )0 (A.12)
, 1 — ¢

The A%, A% and/AZ%' can be expressed in the same forms as (A.10).

A.2. Transverse'shear

The'boundary conditions and the fact that the displacement should be finite at » = 0 yield

0, Zo2=v. (A.13)

u
w
Il
[1]
N
|
[
I

The rest of unknown constants are given by the solution of the system

2
ny'E = nyy + Z sqF%;q» (A14)
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with

- T
= = i B o Eop 3z Eog Ho3 E0,4] )
- T
F, = i 0 00O0T11 2,115r 2,ug] ,
- T
0 r T
Fﬁy = _0 00 O0O0DO0 —2;15 —2;1})] ,
- T
Fol = |0 0 2uf 247 0 00 0] ,
- T
Fi2 = [0 0 —2ur —our 0 0 2u8 o | (A.15)
and
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Ky K» Kz Ky K5 K | O 0
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K, = , (A.16)
0 0 yoi/do, 1 —¢* youd ¢ —houd
040 7 1/ 1 ¢ ¢ - —¢
0, O Kz Ku Kis K K Kig
| W0 0 Ks3  Kss Kss Ky Ks7 Ksg |
with

K3y = 2K\[2y1) — 1]+ 2uy[1 + ¥, Ks =247,
Kz = —2Ky[2¢01 — 1] =251 + ¥a1], Kz = —2p5,

Kis = —6uy, Kzq=2u5[os — 1] +2K7,

Ky = 2u{[1 +¢11], Ka =247,
Kz = —2u5[1 + 1], Ku= 243,

Kis = 6p5, Kis =2u5[1 — 4],
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K;; = [2K§r[21//2,] - 1] + 2’ut2r[1 + w2,1]] /¢’ K74 = zlutZr’
K75 = 6ﬂg¢2, K76 = — [2p45 [Y24 — 1] + ZKg] ¢,

Ky = —6u§¢’, Kz = [2ug[vos — 1] + 2K{] 6,

=
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2651 +i1]/¢,  Ksa = 2443,
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Ky; = 6u3¢®, Ksg =2ui[1 — Yoalg.

=
I

The solution of this system can be written in the form
E = yEme + Z 4B (A.17)
The average strains in the fiber and the coating are given by
. T
Si:2A;y|:0 0 010 O] ) (A.18)
with

AL = H = A= ——
Xy ) Ei1 + Eipy Ay 1_¢l7+[

The A;y can be expressed in the same form as (A.17).

A.3. Plane strain / axial electrie.and magnetic field

The boundary conditions/and the fact that the displacement should be finite at r = 0 yield

[1]
[1]

13=214 =801 =212=0, Epp=7vy, Zp) =p. (A.20)

The rest of unknown constants are given by the solution of two systems:

1. The first is written as

Ko Z = BFo + BF, + B"F" + Z 506 FP9 4 SCFIS9 4 SPFPM] . (A21)
with
T
Z = [ Ziy Loy ZLrn Zop ] ) (A.22)
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F.=F, and F’?=F? for w=2K", (A.23)
2
F, =>'F, and F9=—F! for w=ey,
q=0

2
FI,=>'F, and FI'" =—F! for w= fy, (A.24)
q=0

and

1 —1 —1 0

2K —2KY 2t 0
K, - . (A.25)
0 1 0} —

0 2K, 2uSd 2ug

The solution of this system can be written imsthe'form

2
Z = Bl +BZac tB" L B [s4Zhi + 52050 + sPZNL] . (A26)
q=0

2. The second is written as

Ky -

1

2
= YFy+ ) 50,28, (A.27)
q=0

where E, F,,, FI:are given by (A.15) and K, is given by (A.16).

Xy
The average strains, electric fields and magnetic fields in the fiber and the coating are given by
. T . T
& = A;x[l 1 OOOO] +A}y[l —1 0000},

T

T
ei=ﬁe[001],lh,-=ﬁ’"[001], (A.28)
with
Zos — A
A)]cx = Zl,]’ A)Zcx:ﬂ+[1(),2 ¢ XX]¢

and A! Aiy are the same with those of the expressions (A.19). The A’ can be expressed in the

xXy?

) (A.29)

same form as (A.26).
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A.4. Hydrostatic strain

For this boundary value problem, the boundary conditions and the fact that the displacement

should be finite at » = 0 yield
Zi,=0, Zy =8

The rest of unknown constants are given by the solution of the system

2
Kxx'Z ZIBFZZ + Z Squ’q

2z
q=0

with

T

T
Z:|:Z171 ZZ,I Zz’g Zo,z] » Fzz:|:0 lz—ll 1 2K(t)r+lo—lz] )

FP1 = F1 for yw =

and K, is the same with (A.25). The solution of this'system can be written in the form

2
Z = ﬁzmec + Z SrZIn){gc-

q=0

The average strains in the fiber and the coating are given by
. . T
&=B| AL AL 1000/,

with

B+ [ZO,Z - A;z]¢

1 2
Azz = lel’ Azz = 1—¢

The A;Z can be expressed in the same form as (A.34).
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A.5. Interaction tensors

Regrouping the results of the previous subsections, one finds that the interaction tensor com-

ponents in (41)-(52) are given by the expressions
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