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Power and phase dynamics of injection locked spin torque nano-

oscillators under conservative and dissipative driving signals  
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To describe all possible injection locking configurations of spin torque nano-oscillators (STNO), 
previous analytical descriptions are extended by introducing the most general form of the driving 
force: ℱ ∝  �����	 + ����� 	 . We provide the expressions of the corresponding forcing 
functions ℱ for the six basic conservative and dissipative forcing torques ( ~� × �� and ~� ×� × ��  with � = �, �, �), and demonstrate at the example of a uniform in-plane magnetized STNO, 
that the general case (|��| � |��|) as well as special cases, can occur depending on: (i) the nature 
of the forcing torque, (ii) the direction ��  with respect to the equilibrium direction, (iii) the 
harmonic order   and (iv) the operation point (dc current). These relations provide a 
straightforward means to analyze more complex forcing torques such as a rotating field or the 
superposition of damping-like and field-like spin transfer torques. Besides the phase properties 
we also address in detail the power properties of the injection locked state for which two new 
parameters are introduced: the locking power range ��  and the power angle 	� . They can 

provide important complementary information on the driving forces from experiment. The 
general description presented here is not limited to STNOs and is valid for any non-isochronous 
auto-oscillator driven by an elliptical forcing of conservative or dissipative nature.  

 

I. INTRODUCTION 

Many studies1,2,3,4,5,6,7,8,9  have experimentally demonstrated the possibility to injection lock spin torque 

nano-oscillators (STNOs) to a spin polarized rf current or an rf field. Injection locked STNOs can serve to 

overcome the problems associated with signal stability, can be efficient rf frequency dividers10 or can enhance 

the efficiency of the conversion of rf power into a dc voltage signal for energy harvesting applications11,12. They 

are also the building blocks for the development of mutually synchronized STNOs13,14,15,16,17,18 which has made 

recently, for nanocontacts19,20 and nanopillars21,22, many progress in terms of experimental feasibility.  

The injection locked STNO can be studied numerically by solving the Landau-Lifshitz-Gilbert-Slonczewski 

equation (LLGS). For example, locking to a spin polarized rf current was addressed23,24,25,26,27,28 to investigate 

hysteresis and temperature effects of the locking range, the transient states, the phase slips or the role of the 
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field like torque. Analytically injection locking was treated for several symmetrical cases and vortex STNOs by 

linearization of LLGS to derive the locking range29,30,31,32 through the well-known Adler equation33. An 

alternative analytical approach is based on the Hamiltonian formalism for spin waves34,35 which consists in the 

transformation of the LLGS equation into a general non-isochronous auto-oscillator equation for a complex 

oscillator variable. This transformation was applied first to STNOs in the autonomous regime34,36,  then 

extended to the non-autonomous regime including external driving signals35. This framework can also explain 

many properties of the injection locked STNO such as the locked phase1,2,3, the non-Adlerian transients7,26,37, 

the general concepts of fractional synchronization3 and hysteretic behavior8.  

While most of these descriptions focused on the locking to an rf spin polarized current and on the phase 

dynamics in the stationary locked state, less has been reported on: (i) the locking to rf fields3,5,8,30 or several 

locking forces acting simultaneously24, (ii) the differences or common features of all different injection locking 

configurations for conservative (rf fields) or dissipative (rf currents) driving signals, (iii) the properties of the 

locked oscillation power in addition to the locked phase26,38 and (iv) the dependence of the locking properties 

on the free running oscillation power. All these issues should be addressed in order to significantly help 

defining efficient and robust injection locking schemes for various applications of signal generation or 

detection. 

In order to answer these questions, we have extended existing analytical descriptions based on the Hamiltonian 

formalism in section II.A. The main modification to describe the dynamics of the complex oscillator variable is 

the introduction of a general forcing function ℱ ∝  �����	 + ����� 	 that is called elliptical, since the real and 

imaginary parts are unequal |��| ≠ |��|. This contrasts most descriptions of injection locked STNOs in literature 

that use circular forcings (|��| = |��|). We provide the stationary solutions of the injection locked phase as well 

as the power for a general non-isochronous auto-oscillator under elliptical forcing. Notably, the discussion of 

the power is important because it provides a new powerful tool to characterize experimentally the injection 

locking properties. In section II.B, we summarize the transformation of the LLGS equation to the general 

oscillator equation following Ref34,35. Then, we provide the corresponding transformations of the six basic 

forcing torques, which are three conservative torques (~� × ��) and three dissipative torques (~� × � × ��) 

with ��  the direction of the spin polarization or driving field and � = �, �, � . Through this, we provide the 
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corresponding expressions of the forcing parameters �� and �� for the basic forcing torques in terms of the free 

running power and in the case of STNOs the ellipticity of the precession trajectory. Any other forcing torque 

can then be derived from this through a linear combination. In section III, the analytical results will be 

compared to numerical simulations for specific cases that are of interest for experiments and applications. We 

discuss the dependence of the power deviation ��  vs detuning, the dependence of the synchronization 

properties as a function of dc current and also demonstrate that the derived expressions provide a 

straightforward means to analyze injection locking of more complex locking torques. 

 
II. THEORITICAL ANALYSIS 

A.  General non-isochronous auto-oscillator under elliptical forcing 

Stationary solutions. The dynamics of non-isochronous auto-oscillators is described by the oscillation power 

� and the angular frequency � �! = � 0! + #� where # is the non-linear frequency shift and � 0! the angular 

frequency at zero power. Under injection locking to an external driving signal of the form �$ = %$ ���&'$( 

(with amplitude %$ > 0 and the angular frequency �$), the dynamics of the forced motion expressed in the 

rotating frame through the complex variable35,39 * = +� ,�� �	/!, is given by Eq. 1.  

*. = � /� �! − �$ 1 * − 23 �!* + 24 �!* + ℱ �, 	!*                                                    1! 

Here 	 is the phase difference between the phase of the oscillator and that of the external generator 	 =  ' −
'$  and n is the harmonic order defined by the ratio between the generator to the oscillator free running 

frequency �$ ≈ � �!. 

The forcing function ℱ �, 	!, given in Eq. 2, is written as a complex elliptical function, where the real forcing 

parameters �� > 0 and ��  respectively scale the real and imaginary part that act on the power respectively 

phase.  

ℱ �, 	! = %$7�� �!��� 	 − 8 �!! + � �� �!�� 	 − 8 �!!9                                                2! 
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The angle 8 defines the orientation of the forcing in the complex plane. The exact expressions of �� �!, �� �! 

and 8 �! depend on p and  and, as in the case of STNOs, on the ellipticity of the trajectory (details see Sec. II 

B). They reflect the way the external signal source couples to the oscillator trajectory3,36,35 and therefore have 

to be derived for each type of oscillator and injection locking case separately. 

In order to obtain the stationary solution of the injection locked state, Eq. 1 is linearized around the free running 

state35  �;, �;!  assuming that �  is shifted by a small amount �� = � − �; ≪ 1 . With this, one obtains the 

expressions given in Table I for the phase difference 	  and the power deviation ��  as a function of the 

frequency detuning � = �; − �$  and the locking range  �I . As compared to Ref35, �I  and the phase 
difference 	;  at zero detuning � = 0 are generalized to the case of elliptical forcings ℱ �;!, by rescaling  the 

normalized non-linear frequency shift parameter P with the ratio ��/��. This leads to a new factor λ = P ��/��.  

Here P  is defined through P =  #�;/2�  35 with the power damping rate 2� . It is noted, that from the 

expression �I/%$ given in Table I, it may be tempting to conclude that �I/%$ scales with , however since 

��, �� depend themselves on n this dependence is more complicated and an example will be discussed in Sec. 

III.C for spin torque oscillators.  

TABLE I. Summary of the solutions and the synchronization parameters (λ = P��/��) for a non-isochronous 

oscillator under elliptical forcing. 

 Phase  Power  

Solution 	 = %R��� S− ��IT + 	; �� = �� ��� U	� − %R�V% S �√�I� − ��TX  
Range �I =  %$ |��|+1 + λ�                         �� = %$  ���;Γ�                                       
Angle 	; = %R�V% −λ! + 8 + Z0,   �[  �� < 0],   �[  �� > 0        	� = 	; − 8 = %R�V% −λ! +  Z0,   �[  �� < 0],   �[  �� > 0      

 

 Table I provides the expression for the power deviation ��, introducing two new parameters: �� the locking 
power range and 	�  the power angle. The power range ��  gives the maximum power deviation ��  and 

depends on the generator amplitude %$ as well as the ratio ��/2�. The latter dependence can be interpreted as 
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the competition between the power component of the forcing �� that tries to increase the power deviation �� 

and the restoring force proportional to 2�  that tries to bring the oscillation back to the free running limit cycle 

�;.  

The power angle 	� influences strongly the shape of the power deviation �� within the locking range. This is 

demonstrated in Fig. 1 where the normalized power deviation ��/�� from Table I is plotted as a function of 

the normalized detuning �/�I for different values of 	�. For  	� = 0   or ]!, the power deviation describes a 

half circle in the positive (negative) plane, for 	� = ]/2 (or 3]/2! it is linear and for any other value of 	�  the 

shape of the power deviation is a superposition of a half circle and a linear curve. Since 	� is given by  λ  (see 

Table I) the shape of the power deviation �� within the locking range depends on λ and therefore contains 

many valuable information on the oscillator isochronicity and/or on the ratio ��/�� of the forcing parameters. 

The different limit cases of λ are discussed next for which the synchronization parameters simplify.  

 

 

FIG.1. Normalized power deviations ��/�� as a function of the normalized detuning �/�I for several values of 	� ≤ ] as 

indicated on the figure. To obtain ��/�� for 	� ≥ ] one has to use the axial symmetry ��&	� + ], �( = −�� 	� , �!, with a 2]-periodicity in 	� .  The special solution of  �� = 0 leads to �� �! = 0 (black dashed line).  

 

(i) Non-isochronous oscillator and/or power forcing |b| ≫ d: This case occurs when the system is very non-

isochronous |P| ≫ 1 and/or when the power forcing is larger than the phase forcing parameter �� ≫ ��. As a 

consequence, the forcing function Eq. 2 is approximated by a “power forcing” (�� ≠ 0, �� ≈ 0), i.e.: ℱf ≈ ℛ, ℱ!. 

Furthermore, 	� takes only two possible values 	�  =  ]/2  for #>0) and 	�  =  3]/2 (for #<0) and as shown 

in Fig. 1 the power deviation is linear and given by �� =  ��/�I!� = �/ #!. This relation expresses that in 
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the locked regime the oscillator adapts its power �� to match the frequency detuning corresponding to the non-

linear frequency-power dependence of the free running regime.  

(ii) Isochronous oscillator and/or phase forcing |b| ≪ d: This case occurs when |P| ≪ 1 and/or |��/��| ≪
1. For |P| ≪ 1, the oscillator is isochronous so that the phase difference 	 and the power deviation �� will be 

decoupled. With 	� = −%R�V% h ≈ 0  the dependence of �� i� � describes a half circle, see Fig 1. For |��/��| ≪
1, the forcing function Eq. 2 can be approximated by a “phase forcing” (�� = 0, �� ≠ 0) that only acts on the 

phase difference 	: ℱf ≈ � ℐk ℱ!. An important consequence is that in this case the variation of the power 

deviation ��  is zero (�� =0). Both situations |P| ≪ 1  and/or |��/��| ≪ 1  lead to a strong reduction of the 

locking range �I. It is emphasized that even for large |P|, this limit case can occur when the ratio |��/��| ≪ 1 

and an example will be given for STNOS in Sec. III. 

(iii) Special cases |b|~d and |b| = |l|: For the case of |λ|~1, the full elliptical forcing function Eq. 2 has to be 

considered, the locking range will be enhanced moderately by ~√2   and the power deviation ��  will be 

asymmetric with �  since 	� ≈ ]/4  or 3]/4 , (compare Fig. 1). In the case of circular forcing |λ| = |P| , the 

external driving signal will drive the phase and power with the same amplitude (~%$�� and |��| = |��|). This 

forcing has been most often considered in the literature to discuss injection locking of STNOs35,26. Note that in 

the case of large P, the circular forcing also simplifies to the power forcing discussed above. As we will see in 

Sec II.B, the circular forcing is not the only possible form of driving signal for STNOs. There are situations when 

the driving remains elliptical or reduces to a phase or power forcing. The discussion of this section on the 

elliptical forcing function and its special cases will therefore be relevant for experiments on spin torque 

oscillators as shown next.  

B. Transformation of the LLGS equation using the Hamiltonian spin wave formalism  

In the following injection locking of STNOs is considered where the example of a uniformly magnetized in-plane 

oscillator of elliptical cross-section is chosen, see Fig. 2a. The dynamics of the free layer magnetization � =
&kn , ko , kp(, subjected to a current spin polarized in the direction �q = &k�n , k�o , 0(, is governed by the 

Landau-Lifshitz-Gilbert-Slonczewski (LLGS) equation35,40,41,23: 
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�. = −rst& � × uvww( − rstx � × &� × uvww( − rst%y; z{|  � × &� × �q( +  �. !} V!                            3! 

The right hand side terms are the precession torque, the Gilbert damping torque, the spin transfer torque (STT) 

(called here damping-like torque DLT) and  �. !}  is the forcing torque. rs′ = r0/ 1 + x2!  is the modified 

gyromagnetic ratio with r; = 2.21 105 m.A-1.s-1, x the Gilbert damping constant, %y; the DLT constant and z{|  the 

injected dc current density. The field-like torque (FLT)  �. !}~� = −rs′ �z0z*�&� × �q( with the FLT constant �y;  

is, for simplicity, neglected for the free running regime but its effect on the injection locking can be prominent 

and will be considered in Sec. III.E. The effective magnetic field uvww = u{| + u{v� , defines the equilibrium 

direction ��(Fig. 2a) with u{| = �{|�n  the static applied field, u{v� = −����� the demagnetizing field, �� 

the saturation magnetization. ��  is the demagnetizing tensor, its off-diagonal components are zero and its 

diagonal components obey the relation #pp ≫ #oo > #nn . Because of this, the motion of the free layer 

magnetization is strongly elliptical around the x-axis with a small out-of-plane component kp . The material 

parameters used are summarized in Fig. 2d and some trajectories are plotted in Fig.3a. 

  

 

 

 

 

 

 

FIG.2. (a) Schematics of the in-plane uniform oscillator with (�n , �o , �p) the local coordinate system and �n  the equilibrium 
direction. (b) Frequency [; = �;/ 2]! as a function of the free running power �; (N<0), for the full range of existence of 
the in-plane precession (IPP) mode defined by: 0 < �; < 0.52 or equivalently 1 < � < 1.71 or |z|�| < |z{|| < 640. 10��/k². The inset shows the conversion of power to current density. It is noted that for �; > 0.52  the excitation mode changes 

(d) LLGS equation Analytical model 

 �� (A/m) 106 �/�  -0.91 

 �{| (A/m) 31831  [}��  (GHz) 6.441 

 x 0.02 N/(2π) (GHz) -5.030 

 %y; (m) -2.5x10-8 z|�  (A/m²) -375x109 
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to an out-of plane precession42,40 that is not considered here. (c) Normalized non-linear frequency shift |P| (left scale) and 
power damping rate Γ�/] (right scale) vs power �;. Note that |ν|≫1 for the oscillator parameters considered here. (d) Table 

of parameters used for the numerical evaluations based on equations given in the Appendix A and with dimensions of the 
free layer (in nm) �n  = 90, �o  = 80, �p  = 3.9, demagnetization factors #nn  = 0.0525, #oo  = 0.0594, #pp  = 0.880, k�n  = 
cos(165°), k�o  = sin(165°), k�p  = 0, linear damping Γ�/ 2]! ≈ 318 MHz, non-linear damping �� ≈ −0.350. For a power of �; ≈ 0.1 (corresponding to � = 1.07 and z{|  = -400x109 A/m²) one obtains: [; = 5.974 GHz, P ≈ −22 and Γ�/] = 42.36 MHz.  

 

Using the Hamiltonian formalism for spin waves described in Ref34,35, one can transform the LLGS equation Eq. 

3, into the general oscillator equation Eq. 1 for the complex variable *  where each torque of Eq. 3 has its 

equivalent in Eq. 1. The details on the precession, damping and spin transfer torque as well as the expressions 

of the corresponding prefactors of � 0!, #, 23 �!, 24 �!  of Eq. 1 are given in Appendix A; It is noted that  

� 0!, #, 23 depend on the ellipticity of the conservative orbits of � which is defined through �/� (with -1 ≤ 

�/� ≤ 1). The free running power is related to z{|  through35 �; =  � − 1!/ � + ��!, with the supercriticality 

� = z{|/z|�  and z|� = Γ�/� the critical current density above which stable limit cycles are stabilized. Fig. 2(b, c) 

shows the evolution of the free running frequency [; = �;/ 2]!, of the amplitude relaxation frequency Γ�/] 

and of the non-linear coupling parameter |P| as a function of �;. 

The corresponding transformation of the forcing torque  �. !} to the general elliptical forcing function ℱ �, 	! 

of Eq. 2 has to consider the different possible injection locking cases of STNOs. For example, a driving field 

�$���&�$V(�� , linearly polarized in a direction �� , generates a conservative forcing torque  �. !� =
 −rt; �$���&�$V( &� × ��(, while injection of a current density z$���&�$V(, spin polarized in a direction �q =
��, generates in Eq. 3 a conservative and a dissipative forcing torque  �. !�  = −rt; z$���&�$V(& �y;  � × �� +
%y; � × � × �$(  due to field-like and the damping-like torque contributions. All different types of driving 

signals can be obtained from a linear combination of only two basic forms of forcing torques: conservative 

 �. !} = %$���&�$V( � × �� or dissipative   �. !} = %$���&�$V( � ×  � × ��! each one for three directions in 

space i = x, y, z, where ��  is the static equilibrium direction and %$���&�$V(  the driving signal. The 

corresponding transformations are given by the basic forcing functions, written as ℱ �, 	! = %$��,� �, 	! 

where subscripts (i, n) indicate that the forcing depends on the direction �� and the order . For the in-plane 

STNO these transformations are listed in Table II, where we differentiate for clarity between 

conservative ��,� = ��,� �, 	! and dissipative ��,� = ��,� �, 	! forcing functions. The detailed expressions of 
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the different forcing terms are quite lengthy and are provided in Appendix B. They take the form of an elliptical 

forcing (Eq. 2):  ��,� �, 	! =  �;/2!7����� 	 − 8! + � ���� 	 − 8!9  with the power and phase forcing 

parameters �� �, �/� !, �� �, �/�! and an additional parameter �; �, �/�! that scales the strength %$ of the 

driving signal. Through �;, ��, ��  the forcings ��,�  depend on the free running power �; and the orbit ellipticity 

�/�. The detailed dependencies differ for the different orders  and directions �� , but for clarity we leave out 

the indices �,   for �;, ��, ��. From these basic forcing functions one can obtain immediately the transformation 

of any arbitrary forcing torque through a linear combination of the basic forcing terms ��,� �, 	!, as will be 

illustrated in Sect. IV.E. Before discussing explicit examples, we first discuss some general properties of the 

forcing terms ��,� �, 	! 

TABLE II. Summary of the transformations of the forcing torques  �. !�  to the forcing functions ℱ �, 	! 
expressed through the forcing terms ��,� �, 	! and ��,� �, 	! for respectively conservative and dissipative 
forcing and for the three directions �� with � = �, �, �.  The forcing terms take the form of an elliptical (ell.), 
circular (circ.) or power (pow.) forcing, see discussion in Sect. II.A. Detailed expressions for ��,� �, 	! are given 
in Appendix B.  

Forcing torque  �. !� Forcing type 
Forcing term ��,�(p,ψ) 

 =  1  =  2  =  3 

���&�$V( � × �� Conservative - �n,� �, 	! 7��R�. 9 - 

���&�$V( � × �  ‘’ �o,� �, 	! 7,��. 9 - �o,¡ �, 	! 7��R�. 9 

���&�$V( � × �¢ ‘’ �p,� �, 	! 7,��. 9 - �p,¡ �, 	! 7��R�. 9 

���&�$V( � × � × �� Dissipative - �n,� �, 	! 7��£. 9 - 

���&�$V( � × � × �  ‘’ �o,� �, 	! 7,��. 9 - �o,¡ �, 	! 7��£. 9 

���&�$V( � × � × �¢ ‘’ �p,� �, 	! 7,��. 9 - �p,¡ �, 	! 7��£. 9 

 

(i) Forcing Form: Table II shows that for STNOs all different cases of forcing can occur. More specifically, for 

 = 1 the forcings are elliptical, for  ≥ 2, the dissipative forcings ��,� �, 	! are power forcings (�. ,. �� = 0), 

whereas the conservative forcings ��,� �, 	! are circular forcings (i.e. |��/�� | = 1). For many spin torque nano-

oscillators one has P ≫ 1 and thus |λ| ≫ 1, so that the synchronization properties in the case of elliptical and 

circular forcing can be approximated by those of power forcing. As will be shown below the case of �o,� turns 

into phase forcing at specific values of the power.  
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(ii) Harmonic order: For both conservative and dissipative driving signals, injection locking occurs at even 

orders  = 2, when the driving signal is along the equilibrium direction �n  and at odd orders  = 1, 3 when it 

is along an orthogonal direction �o  or �p . This confirms experiments and simulations using rf fields and 

currents3,4,23 . 

(iii) Ellipticity ¤/¥: The exact expressions in Appendix B show that �;, ��, ��  depend on the orbit ellipticity 

�/�. An important consequence is that for  |�/�| = 0 (i.e. for circular orbits) injection locking cannot occur at 

 ≥ 2 (power and circular forcings) since here  �� = �� = 0. This is consistent with descriptions for out-of-

plane precessions23,38 either for a driving by field or current injection. When |�/�| is non-zero, each case has 

to be analyzed separately since not only the forcing parameters ��, �� , but also the nonlinear parameters  

P and  Γ�  depend on |�/�|, see Appendix A.  

 (vi) Power dependence: An important aspect of the optimization of the injection locking is to define the 

operational conditions that for instance provide large locking ranges. Therefore one should inspect in more 

detail the dependence of the locking parameters of Table I on the power p0 or equivalently on the injected dc 

current density.  

From Appendix B the forcing terms ��,� �, 	! for  ≥ 2 are circular or power forcings that depend only on �� 

which is proportional to �;¦§   ¨ = 0,1,2  or 3). With �I~�� �;!P �;!, and P decreasing with �;, see Fig. 2c, the 

locking range �I can thus either increase or decrease with �; and each injection locking case has to be analyzed 

separately to determine the best operation. 

A more interesting situation occurs for  = 1. Here the forcings �o,��p,�, �o,��p,� (see Appendix B) are elliptical 

functions, with more complex dependencies of ��, ��  on �; . From these dependencies two critical values of 

power can be derived: �{o  for �o,� where �� = 0 and �|o  for �o,� where �� = 0. As a consequence this leads to 

singularities in the ratio |ε�/ε�| and in |h| vs. �; as shown in Fig. 3(b,c) for the in-plane oscillator (with �/� ≈
−0.91). For small powers (�; < 0.1! the ratio |��/��| ≈ 1 and �o,� , �p,�, �o,�, �p,� behave all as circular forcings. 

Upon increasing �; the forcings �p,�, �p,� remain almost circular while for �o,� and �o,� the ratio |��/��| and |h| 
vary a lot, turning �o,� into a power forcing at �|o  (|h| ≫ 1! and �o,� into a phase forcing at �{o  (|h| ≪ 1!.  While 
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in the case of �o,�one does not expect that the synchronization properties are strongly affected at �|o , in the 

case of �o,� one expects at �{o  : (i) a strong reduction of the locking range �I (absence of the non-linearity 

contribution), (ii) zero variation of power (�� = 0 %* �� = 0) and (iii) in the vicinity of �{o , a progressive 

change in the power angle 	�. These peculiar properties are confirmed in Sec. III.B by numerical simulations. 

Note that for a case of strong positive ellipticity �/� ≈ +1  the singularities would have led to a critical 

behavior in �p,�, �p,�. These findings are an important illustration of the strong interdependence between the 

forcings and the orbits and that the exact forcing function has to be derived separately for each injection locking 

case and for the different operational points. 

 

 

FIG.3. (a) 3D trajectories for the in-plane precession (IPP) mode with �/� ≈ −0.91  for several free running powers �; 

using the parameters of the in-plane oscillator given in Fig. 2. (b)  Evolution of the ratio |��/��| for four different forcings at 

n=1, �o,��p,��o,��p,� over the full range of the IPP mode existence: 0 < �; < 0.52 (1 < � < 1.71). The vertical dashed lines 

correspond to the critical powers �{o = 0.22  �|o = 0.34 (see Appendix C). (c) Evolution of |λ| = |Pε�/ε�| with �;.  

To conclude this part, we point out some limitations of the analytical description. (i) The transformation of the 

locking torques  �. !} for the in-plane uniform STNO provides resonant terms only for the locking order  =
1, 2, 3. It does not describe injection locking for  > 3 or fractional synchronization3 k�$ ≈ �s. To describe 

these situations of injection locking, the analytical description needs to include additional fast oscillating terms. 

(ii) The analytical description is limited to small amplitudes of the driving signals, leading to linear boundaries 



 
 

12 
 

of the Arnold tongue defined by �I/%$ . This results from the approximation that the forcing functions ℱ 

depend only on the free running power �; and not on the power deviation ��. For larger driving signals the 

numerical simulations43 (not shown here) reveal non-linear and asymmetrical boundaries of the Arnold tongue 

as was also found in Ref8,32,44. The derived analytical expressions permit to extend the analytical description to 

larger values of ��43 as will be described elsewhere.   

III. ANALYSIS OF SPECIFIC INJECTION LOCKING CASES 

A. Macrospin solver 

In the following the analytical description of Section II for the in-plane uniform oscillator will be applied to 

several concrete injection locking cases that are of interest for defining experiments or applications. The first 

case treats the injection locking for a dissipative forcing �o,� at n=1 applied through a spin-polarized current 

in the polarizer direction to illustrate the singular behavior at the critical power pdy. The second case compares 

the efficiency of the injection locking by a driving field ��,�  at different orders n=1, 2, 3 and the last examples 

treat the superposition of two basic forcing functions. The results will be compared to macrospin simulations 

to validate the analytical approaches. For this the LLGS equation (Eq. 3) is numerically integrated to obtain the 

time evolution of the magnetization � V!, using a 2nd order predictor scheme45,46 and the material parameters 

of Fig. 2d. The solutions � V! are then numerically transformed into �� V! and 	 V!, using the transformations 

of Sec. II.B and are averaged over one period. The solutions are analyzed for a given set of control parameters 

(applied dc field Hdc and applied dc current density Jdc) upon varying the frequency detuning � by varying the 

frequency of the generator �$. The dependencies of �� and 	 on the frequency detuning � are then fitted to the 

solutions of Table I to extract the synchronization properties ∆I, ��, 	s , 	�, which will be compared to the 

corresponding results obtained from the analytical description.   

B. Injection locking through the dissipative forcing ¬ ,d supplied by a spin polarized current 

Injection locking by an rf current density z$���&�$V( at  = 1, spin polarized along the polarizer direction �$ =
��  = &k�� , k��, 0( illustrates the forcing �o,� �, 	!. The corresponding forcing torque  �. !�  and the forcing 

function are given in Eq. 4:  
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 �. !� =  −rst  z$%y;���&�$V( /k�o� × &� × ��(1                                                                 4%! 

ℱ �, 	! = −rst  z$%y;k�o�o,� �, 	!                                                                       4�! 

with the forcing term �o,� �, 	! given in Table B4 and %$ = −rs′ z$%y;k�o. 

Fig. 4 shows the corresponding synchronization properties ∆I, ��, 	s, 	� as a function of the supercriticality 

� = z*�/z�R and for a constant ratio of z$/z*�. As expected from the discussion of Fig. 3, due to the singularity at 

the power �{o  where h → 1, and where the elliptical forcing turns into phase forcing, the locking range as well 

as the locking power are reduced by two orders of magnitude.  At the same time the phase difference at zero 

detuning 	;  exhibits a jump of ] , see Fig. 4c and the power angle 	�  goes to infinity, see Fig. 4d. These 

variations result from a sign change of �� and the ] increment of 8 at the critical point.  

According to the discussion on Fig. 1, the strong change of 	� with � is expected to lead to a strong variation of 

the power deviation �� �! with the supercriticality �. This is confirmed in Fig. 5(a-c). For small � = 1.06, the 

elliptical forcing function ℱ can be approximated by a power forcing using ℱf = ℛ, ℱ! because for the STNO 

considered here P ≫ 1. This leads to 	�  close to 3]/2  (see Sect. IIA) and a linear dependence of �� �!, as 

shown in Fig. 5a. Increasing the supercriticality  to � = 1.19 the power forcing starts to turn into a phase forcing 

and 	�  takes a value between 3]/2  and 2] , explaining the transition from a linear to a tilted parabolic 

dependence of �� �!, see Fig. 5(b,c). At the critical power �{o ≈ 0.22, corresponding to � ≈ 1.2, compare Fig. 

3b, the analytical model predicts a pure phase forcing ℱf = ℐk ℱ!, leading to �� =0 and hence ��=0.  However, 

the simulated power range �� in Fig. 4b and the power deviation �� in Fig. 5d are small but not equal to zero, 

the solutions are asymmetric with the detuning � and the phase difference 	 (inset of Fig. 5d) does not show 

the typical arcsine shape predicted from the Adler equation. From this, it is concluded that in the close vicinity 

of the critical power pdy, the synchronization cannot be fully described by the analytical solutions of Fig. 1 

because non-resonant terms have been neglected in the transformation (see Sec. II.B) that might start to 

become important to correctly describe the power variation �� around pdy, 
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Except these deviations for �� at the critical power, there is otherwise a very good agreement between the 

analytical description using �o,�and the numerical results for all locking parameters, see Fig. 4 and the power 

deviation see Fig. 5 throughout the full range of super-criticalities considered here. This confirms the validity 

of the analytical description, in particular the occurrence of the critical power. It is an important finding 

relevant for experiments since the corresponding value of the supercriticality lies in the range used in common 

experiments.  

With respect to experiments we would like to make a general comment on the power deviation �� . The 

oscillation power � discussed up to now relates to the theoretical oscillation amplitude of the complex variable 

d: p=|d|². This should not be confused with the experimentally measured electrical power which in the case of 

STNOs can be the power spectral density measured on a spectrum analyzer1,2,3,47 or a dc rectified signal11,12 

measured by a voltmeter. In magneto-resistive nanopillars the electrical power is given by the projection of the 

free layer magnetization on the polarizer magnetization. Thus for a given STNO configuration it is in principle 

possible to establish a relation between the oscillation power p=|d|² and the measured electric signals, even 

though this might not be straightforward for all STNO configurations. Independent of the details of this relation, 

an analysis of the experimentally measured power deviation as a function of detuning should reflect the 

dependencies of the theoretical power deviations �� presented in Fig. 1. In particular for the case of power 

forcing (P and/or h ≫ 1) where the power deviation �� varies linearly, it is expected that the experimentally 

measured power deviation vs. detuning is linear with a slope that reflects the relation between the free running 

frequency and power. Similarly, in the case of pure phase forcing, the electrical measured power deviation is 

expected to be zero. This analysis provides valuable additional information on the oscillator and its 

synchronization properties, an aspect that has been neglected in most descriptions on injection locking.  
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FIG.4. Injection locking using a spin polarized current polarized along �� for  = 1. (a) locking range �I, (b) power range 

��, (c) phase shift at zero detuning 	s , (d) power angle 	�  are shown as a function of �, in the range of 1 < � < 1.41 (0 < �; 

< 0.39) with  z$/z{|= -3x10-3. For larger driving amplitudes, the model induces an asymmetry of the Arnold tongue and is 

no longer valid. All other parameters are the same as in Fig. 2. Results are compared for simulations (open dots) and 

analytical calculations using the elliptical forcing (red line) ℱ ∝ ��,1 Eq. 4b.  

 

FIG.5. Power deviation �� versus the normalized detuning �/∆Ω for different � using parameters of Figs. 2,4. Black dots 

correspond to the simulation results. Red line is a fit to the solutions of Table 1 used to extract ��  and 	�  from the 



 
 

16 
 

simulations. (a) � = 1.06, 	�  = 277°. Grey dashed line: prediction by the exact forcing ℱ using 	�  = 275° with ��≈�/N. (b) 

� = 1.17, 	�  = 316°. (c) � = 1.19, 	�  = 337°. (d) � = 1.20 corresponding to the critical power �{o≈0.22. Grey dashed line: 

prediction by the exact forcing ℱ = ℐk ℱ! with ∆Π=0 and �� = 0. The insets in all figures show 	 vs. the detuning �.  

 

C. Injection locking through the conservative forcings ° ,d, °�,±, ° ,²  supplied by a magnetic field 

The next example will compare the efficiency of the injection locking to an external field at different orders  =
1, 2, 3. We consider a linearly polarized driving field �$���&�$V(�$, see Fig. 6a, where the field direction �$ =
 ��� ³!, �� ³!, 0! lies in the � − � plane of the layer with ³ the angle between the applied field and the x-axis. 

For this case, we focus only on the phase properties �I and 	;. For the simulation, the forcing torque is given 

by Eq. 5a whereas the analytical model gives three different forcings Eq. 5(b-d) depending on the order  (see 

Table II):  

 �. !� =  −rst   �$���&�$V( &��� ³!� × �� + �� ³!� × �o(                                                        5%! 

�V  = 1,   ℱ �, 	! = −rst  �$�� ³!�o,� �, 	!                                                                         5�! 

�V  = 2,   ℱ �, 	! = −rst  �$��� ³!�n,� �, 	!                                                                         5�! 

�V  = 3,   ℱ �, 	! = −rst  �$�� ³!�o,¡ �, 	!                                                                         5*! 

The expressions of the forcing terms �o,� �, 	!, �n,� �, 	! and �o,¡ �, 	! are given in Tables B1, B3), using %$ =
−rst  �$�� ³! for  = 1, 3 and %$ = −rst  �$��� ³! for  = 2.  

To compare the efficiency, the corresponding locking ranges are normalized by the driving field amplitude and 

the ratio �I/�$ is called here coupling sensitivity. Fig. 6(b-c), shows the evolution of the coupling sensitivity 

�I/�$  and of the phase difference 	;  as a function of the angle ³  of the driving field. As can be seen the 

coupling sensitivities �I/�$  are ]-periodical with ³ and the phase differences 	;  are 2]-periodical. This is 

consistent with reported experiments3 and simulations48 where the locking range for  = 1, 3 is maximum 

when the field is collinear with �  (³ = 90°) and maximum for  = 2 when the field is applied along �� (³ =
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0!. When the coupling sensitivity goes to zero, the corresponding phase difference 	; exhibits a jump of ] due 

to the sign change of ��³ and respectively ���³.  

Note that for the operating point (� = 1.06) in Fig. 6, the maximum locking range for =1 (³ = 90°) is larger 

than for  =2 (³ = 0°), which is larger than for  =3 (³ = 90°): �I�µn,�¶� >  �I�µn,�¶� > �I�µn,�¶¡, see Fig. 

6b. However, this is not the case for all values of �, for instance for � = 1.4 (not shown here) it is �I�µn,�¶� >
 �I�µn,�¶¡ > �I�µn,�¶�. Hence, the locking parameters strongly depend on the operational point � (i.e. on the 

power) and it is not straightforward to predict for which order n, injection locking will be more efficient. This 

is a further demonstration that the exact expressions of the forcing are needed to correctly describe the 

injection locking behavior and to compare specific configurations.  

 

FIG.6. Injection locking using a linearly polarized driving field applied in the ( ��, �  ) plane. (a) Schematic of the 

configuration. ³ is the angle between the field direction �� and the equilibrium direction ��. Dependence on the angle ³ of 

(b) the coupling sensitivity �I/�$ and (c) the phase difference at zero detuning 	;, for injection locking at different orders 

 = 1, 2, 3 (blue, red, green respectively). The supercriticality is � = 1.06  (corresponding to �; ≈ 0.1 ) and all other 

parameters are the same as in Fig. 2.  

D. Injection locking through two simultaneous conservative forcings ° ,d and °¢,d, supplied by a 

magnetic field  

The analytical model presented here provides a straigthforward means to address more complicated injection 

locking cases that are a superposition of the basic forcing torques and consequently of the basic forcing 

functions defined in Table II. As an example we consider the injection locking to a rotating driving field �$�$ V! 
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at  = 1 , where the dynamic direction �$ V!  = /0, ·o���&�$V(, ·p���&�$V − '¸(1  lies in the plane (�o , �p ), 

orthogonal to the equilibrium direction of the magnetization. Here '¹  is a fixed phase delay. 

The forcing torque  �. !� and the analytical forcing function ℱ �, 	! are given in Eq. 6, where the analytical 

description is simplified under the assumption that |h| ≫ 1 (only power forcings): 

 �. !� =  −rst   �$ &·o���&�$V(� × �  + ·p���&�$V + '¹(� × �¢(                                                     6%! 

ℱ �, 	! = −rst   �$ /·o�′�,o���&	 − 8o( + ·p�′�,p��� 	 − 8p − '¹!1                                                     6�! 

This case is more elaborated because now, two basic forcing torques ���&�$V( � × �   and ���&�$V(� × �¢ 

contribute simultaneously to the synchronization. The related basic forcing functions are ℛ, /�o,� �, 	!1 =
�′�,o���&	 − 8o( and ℛ, /�p,� �, 	!1 = �′�,p��� 	 − 8p! with �′�,o = �;,o��,o/2 and �′�,p = �;,p��,p/2 (Table B3). 

The phase delay '¹ between the two directions �  and �¢  induces a polarization of the driving field. In what 

follows, we will focus on: (i) a linear polarized field ('¹ = 0 (]), similar to Sec. III.C) and (ii) a circular polarized 

field ('¹=±]/2 and ·o  = ·p).  

(i) Linear polarized field  

The driving field is linearly polarized along the fixed direction �$ = &0, ·o, ·p( = &0, �� ¼!, ��� ¼!(, defined by 

the angle ¼, see Fig. 7a. The linear combination of the two power forcings Eq. 6b can be reduced to the form of 

one power forcing: ℱ ∝ ��̃���&	 − 8f(, where ��̃ and 8f depend on the parameters of the two basic forcings ·� , 
��,�t , 8� with � = �, �  and with the ratio ·o/·p = V% ¼!. The locking range �I and the phase difference at zero 

detuning 	; are then given by Eq. 7: 

�I = ¾ ·p�Ip!� + &·o�Io(� = |·p�Ip|¿1 + À·o��,ot·p��,pt Á�                                                          7%! 

	; =
ÂÃÄ
ÃÅ	Æ − � %R�V% À�t�,o/�t�,p·p/·o Á            �[ ·p��,pt > 0

	Æ − � %R�V% À�t�,o/�t�,p·p/·o Á + ]   �[ ·p��,pt < 0                                                             7�! 
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Here �I� =  r�′  �$ �1,�′  |P| is the locking range when �$ = ±�� , with � = �, �, the angle 	Æ is constant and defined 

by 	Æ = &�Ç #!] + 8o + 8p + � ]/2(/2 with � = +1 if '¹ = ], or −1 if '¹ = 0. Due to the assumption of |h| ≫
1 the power range is �� = �I/ #! and 	� = 3]/2 is a constant.  

The angular variation of the coupling sensitivity �I/�$  and the phase difference at zero detuning 	;  are 

illustrated for the in-plane STNO in Fig. 7(b-c) for a supercriticality � = 1.06. The analytical description (red 

line) agrees very well with the simulation (dots). According to Eq. 7a, the coupling sensitivity evolves ] -

periodically with the angle ¼ and it is bounded between the maximum value �Io/�$ at ��= ±�  (ℱ ∝ ℛ,&�o,�(, 
¼=]/2  (or 3]/2)) and the minimum value �Ip/�$  at �� = ±�¢  (ℱ ∝ ℛ,&�p,�( , ¼=0  (or ])). The difference 

between �Io  and �Ip  is determined by the ratio of the power forcings ��,ot /��,pt  which in the case of STNOs 

depends on the ellipticity �/� (see Table B3). For the in-plane STNO considered here with �/� = −0.91, this 

leads to a forcing ratio of �′�,p/�′�,o ≈ 0.2. Consequently, injection locking is by a factor of  ≈ 5 more efficient 

when the driving field is applied along �  as compared to �¢. For the special case of circular orbits with �/� =
0, the ratio becomes ��,ot /��,pt  = 1 and the locking range �I is independent of ¼. 

The angular variation of the phase difference 	; in Fig. 7c (full line for �/� = −0.91 ) shows an abrupt change 

around ��= ±�¢  but varies smoothly around ��= ±�  . These peculiar variations reflect the influence of the 

geometry of the orbit on the synchronization properties. For comparison, the dashed line in Fig. 7c shows the 

special case of circular orbits with �/� = 0, where 	; varies linearly with the angle ¼ over a 2]-range. Such a 

linear dependence of the phase difference can be of interest to develop a tunable phase shifter. Upon varying 

the field angle, the phase shift of the oscillator can be tuned linearly over a range of 2]. A similar result has 

been discussed in Ref48 by numerical simulations.  
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 FIG.7. (a-c) Injection locking at  = 1 to a linear polarized driving field applied in the (� , �¢) plane with '¹ = 0 : (a) 

Schematic with ¼  the angle between with the driving field direction ��  and �¢ . Evolution as a function of ¼  of (b) the 

coupling sensitivity �I/�$ and (c) the phase difference at zero detuning 	; for the supercriticality � = 1.06 (�; ≈ 0.1! and 

other parameters as in Fig. 2.  (d-f) Injection locking at  = 1 to a circularly polarized driving field applied in the (� , �¢) 

plane with '¹ = ]/2 and ·o = ·p : (d) Schematics to indicate the rotation sense of the rotating driving field �� with respect 

to the magnetization m: plus (minus) sign means the same (opposite) rotation sense. (e) Coupling sensitivity �I/�$ and 

(f) phase shift at zero detuning 	; as a function of supercriticality �.  

  

(ii) Circular polarized field  

We now add a constant phase delay between the y- and z- components of the driving field in Eq. 6a to generate 

a circularly polarized magnetic field in the plane (�o , �p). Choosing ·o  = ·p = · and a phase delay '¹ = ±]/2 

one arrives at two configurations indicated in Fig. 7d: for '¹ =+]/2  the driving field rotates in the same 

direction as the dynamical component of the magnetization and for '¹ = −]/2  it rotates in the opposite 

direction. In these cases, the forcing of Eq. 6b after reformulation, leads with � = ±1  for '¹ = ±]/2  to the 
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expressions of Eq. 8 that show that the locking range �I is now a linear superposition of the locking ranges 

�Ip and �Io , while 	; is constant, as shown in Fig. 7f. 

�I = �Ip + ��Io  = �Io À1 + � �′�,p�′�,oÁ                                                                        8%! 

	; = ]                                                                                                             8�! 

The important result here is that upon adjusting the phase delay '¹  it is possible to enhance or reduce the 

locking range: an identical rotation sense (s=+1) of the magnetization and the driving field increases the locking 

range whereas an opposite rotation sense (s=-1) reduces it. This is illustrated in Fig. 7e for the corresponding 

coupling sensitivity �I/�$ as a function of supercriticality. Fig. 7e furthermore shows that for s=+1 �I/�$ is 

larger than the largest of the two locking ranges which is �Io , and that overall �I/�$  decreases with 

increasing supercriticality � . Finally, there is a good agreement between the analytical model and the 

simulation.  

This configuration is very important for practical applications, notably the mutual synchronization of STNOs. 

The understanding of their coupling through the generated dynamic dipolar fields will be crucial to define a 

robust array of mutually synchronized oscillators. For instance, the situation described in Fig. 7(d-f) would 

correspond to two in-plane STNOs whose time varying y- and z- components of the magnetization define a 

circularly polarized dipolar field in the y-z-plane.  Other configurations are the out-of-plane precession mode 

or a vortex STNO21 that generate a circularly polarized field in the x-y-plane.  Based on the results in Fig. 7e, it 

is predicted that the coupling is more efficient when each oscillator sees a global dipolar field, rotating in the 

same direction as the magnetization. This is actually found in experiments on dipolar coupling of vortex 

oscillators21.  

E. Injection locking through two simultaneous forcings  

To finish, we generalize the method in Sec. III.C-D of combining two forcings to any sum of two functions �É  and 

�Ê  of Table II. For this it is necessary to define a “global phase delay” Ë written: Ë = 8É − 8Ê − '¹ , where the 

two most important cases are Ë = ]/2 (3]/2) and Ë = 0  ]!:    
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(i) Ì = Í/2 or 3Í/2: In this case the combination of two forcing �É  and �Ê  leads to the properties of Eq. 7a 

and Eq. 7b, where the locking range depends in a non-trivial manner on the individual locking ranges and the 

phase difference  	; can be continuously tuned via the driving components ·É , ·Ê of the two involved forcings.  

An important example for the case of Ë = ]/2 (3]/2) is the injection locking at  = 2, using a spin polarized 

current with a spin polarization component along the x-axis, i.e. �$. �n ≠ 0. Considering besides the damping-

like torque (DLT) also the field-like torque (FLT) the total forcing torque is  �!. } V! ∝  z$���&�$V(Î%y; � ×
� × �n + �y;� × ��Ï and the corresponding forcing function (see Table II) is ℱ ∝ %y;ℛ,&�n,�( + �y;ℛ,&�n,�(. 
Here %y; and  �y;  are respectively the DLT and the FLT coefficients. With Ë = 8{n� − 8|n� = 3]/2 and '¹ = 0, 

the zero detuning phase difference 	; is modified as given in Eq. 9 for the in-plane STNO. It depends on the 

ratio of the two torque components �y;/%y; and the ratio of the corresponding power forcings ��,|n� and ��,{n�.   

	; =  %R�V% À��,|n���,{n�
�y;%y;Á + ]/2 + &] �[ %y;��,{n� < 0(                                                     9! 

In the case of a strong FLT (�y; ≫  %y;) this will add a phase shift of ±]/2 to 	;. However, even if the FLT is 

small, but ��,|n� ≫ ��,{n�, there will be a non-negligible contribution to the zero detuning phase difference. A 

similar result has been found to explain injection locking and mutual locking of vortex oscillators7,22. It was 

shown that the field like torque cannot be neglected to interpret the experimental results. Injection locking can 

thus provide important information on the presence and value of the field like spin transfer torque.  

(ii) For Ì = Ð or Í, the injection locking properties of the combined forcing simplify to Eq. 8a and Eq. 8b. As a 

consequence, similar to the rotating field discussed in Fig. 7(d-f), the locking range will be enhanced or reduced 

depending on the rotation sense. For example, this can be useful to elaborate more complicated injection 

locking schemes, where at the same time, a driving current and a field synchronize the system. The model states 

that an optimal increase (or resp. decrease) of the locking range is possible, when the condition Ë = 0 (or resp. 

]) is fulfilled. This can be obtained by choosing an adequate forcing and phase delay '¹ .    

 

IV. CONCLUSION 
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In summary, in order to treat analytically all possible injection locking configurations for STNOs, we have 

introduced the most general form of the forcing function ℱ, which is elliptical : ℱ ∝  �����	 + ����� 	 with 

|��| ≠ |��|. We first provide for such elliptical forcing the stationary solutions (Sec. II.B) for the phase difference 

	 and the power deviation �� . They are fully described by the four locking parameters �I, ��, 	;, 	�  that 

depend on the forcing parameters ��  and ��  as well as on the non-linear oscillator parameters P and 2�  (see 

Table I) that can be varied through the free running power �;. Here we have introduced: (i) the power range 

 ��, that defines the largest power deviation �� within the locking range, (ii) the power angle 	� that defines 

its shape (Fig. 1) and (iii) the enhancement factor h that rescales the non-linear coupling parameter P, and 

through this modifies previous expressions of �I, 	; . Since the analytical oscillation power �  and the 

experimentally measured electrical signal can be related, it is expected that one can obtain important additional 

information on the locking forces from experiments when analyzing the power in the injection locked state. 

The results for a general elliptical forcing ℱ are valid for any non-isochronous auto-oscillator. Here they are 

applied to the specific case of a uniformly in-plane magnetized STNO, although this can be easily transferred to 

other STNO configurations by appropriate choice of the coordinate system. An important output of the paper 

is that we provide for the six basic forcing torques (three conservative ~� × �� and three dissipative ~� ×
 � × �� ) the explicit expressions of the corresponding forcing functions ℱ ∝  �����	 + ����� 	  (Table II), 

where the forcing parameters ��, ��  depend on the free running power �;  (or supercriticality �  ) and the 

ellipticity �/� of the STNO trajectory. With this, one straightforwardly obtains the dependence of the injection 

locking properties �I, ��, 	;, 	�  as a function of �; (or �) and �/�. This allows the analysis and comparison 

of different injection locking configurations vs. external control parameters (dc current and via �/� applied 

magnetic dc field) or the anisotropy (defining �/� ). The full potential of the analytical description is 

demonstrated when superposing two external rf driving signals at the same frequency and with a fixed phase 

delay. For the example of a rotating rf magnetic field we show that the locking range depends on the rotation 

sense. Rotating rf fields occur when considering mutual synchronization of STNOS via dipolar fields. The 

analytical description is expected to provide a better understanding of the mutual synchronization of several 

STNO devices via dipolar field and/or rf currents and will help to define robust synchronization schemes, that 

are also relevant for rf signal detection.  
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APPENDIX A: TRANSFORMATION of LLGS 

The effective field of the STNO takes the following form using reduced parameters: 

 

uÑÒÒ  = �ÓÔÕ ÀÖ×3ÖØÙ�Ù4ÖØÚ�Ú4ÖØÛ�Û Á  £�Vℎ 
ÂÄ
Å �Ý = r;t�{|�Þn = −r;t��#nn�Þo = r;t��#oo�Þp = r;t��#pp

                                                       �1!      
 
 
The parameters of the spin wave transformation are summarized in Table A1 and the equivalent expressions 

in the d-variable of each torque of the LLGS equation, Eq. 3, are shown in Table A2. The parameters of the 

conservative and dissipative terms are defined in Table A3. More details on the transformations can be found 

in Refs37,43. 

 

TABLE A1. Transformations of the spin wave formalism. 

Transformations % = ko + �kp+2 1 + kn! � = ß% + i%à � = ¿ ��}�� � 

Parameters 

ß = ¿� + �}��2�}�� ,        i = ��Ç �!¿� − �}��2�}��  ,    �á�â = ¾�2 − �2 

 � = �Þn + �Ý + �Þo + �Þp2 ,     � = �Þo − �Þp2  

 

Note 1: ß, i can be expressed only through the ellipticity of the precession trajectory �/�. 

Note 2: The non-linear factor 1/√1 − %%à coming from the first transformation is neglected in all calculations.  

 

TABLE A2. Transformation of precession, damping and STT torques.  
 

 Precession Damping Damping-like STT Forcing 



 
 

25 
 

�. = −rst& � × uvww( −rst x � × &� × uvww( −rst%y; z{|  � × &� × �q( +  �. !} V! 

*. = � /� �! − �$ 1 * −23 �!* +24 �!* +ℱ �, 	!* 

 � �! = �}�� + #� 23 �! = 2� 1 + ���! Γ4 �! = �z{| 1 − �! Sect. II.B 

 

TABLE A3. Coefficients of the analytical model. 

Linear damping Γ$ = x� 

Linear spin transfer � = −r;t%y;k�n , 

Non-linear damping 
parameter 

�� = − /�}���� 1 ã3ßi&−�Þo + �Þp( +  ß� + i�! S3�Þn + 32 &�Þo + �Þp( + �ÝTä 

Non-linear frequency 
shift coefficient 

# = − /�}��� 1 Î3ßi ß� + i�!&�Þp − �Þo( +  ßå + iå + 4ß�i�!&2�Þn + �Þo + �Þp(Ï 
Power relaxation rate Γ� = &ΓÇ�1 + �z*�(�0 

 

APPENDIX B: FORCING FUNCTIONS 

TABLE B1. Circular forcings at  = 2, 3 with æ �! = √1 − �� and for �/� > 0 (If �/� < 0 add +] to 8). 

Forcings ��,� �, 	! = 12 �� �!,4� ç4è! 

�n,� �, 	! �� �! = |�/�|æ �/�! 8 =  ]2 

�o,¡ �, 	! �� �! = U+1 + æ �/�! − é�Ç �/�!+1 − æ �/�!æ �/�! X |�/�|2√2 +� 8 = ]2 

�p,¡ �, 	! �� �! = U+1 + æ �/�! + é�Ç �/�!+1 − æ �/�!æ �/�! X |�/�|2√2 +� 8 = ] 

 

TABLE B2. Power forcings at  = 2, 3 with æ �! = √1 − �� and for �/� > 0 (If �/� < 0 add +] to 8). 

Forcings  ��,� �, 	! = �� �� �! ��� 	 − 8! 

�n,� �, 	! �� �! = |�/�|� 8 =  0 
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�o,¡ �, 	! �� �! = ê¿À1 + æ S ��TÁ − é�Ç S ��T ¿À1 − æ S��TÁë |�/�|2√2 �+� 8 =  0 

�p,¡ �, 	! �� �! = ê¿À1 + æ S ��TÁ + é�Ç ��!¿À1 − æ S ��TÁë |�/�|2√2 �+� 8 = ]2 

 

TABLE B3. Conservative elliptical forcings at  = 1 with æ �! = √1 − �� and with é�Ç �! = 1 [�R � > 0,é�Ç �! = −1 [�R � < 0 and S�Ç �! = 0 [�R � = 0.  
Forcings ��,� �, 	! = 12 �; �!7�� �!��� 	 − 8! + � �� �!�� 	 − 8!9 

�o,� �, 	! 

�; �! = U+1 + æ �/�!  −  é�Ç �/�!+1 − æ �/�!æ �/�! X 12+2� 

�� �! = 1 − �  ,      �� �! = − S1 − S2 − ��T �T 

8 = ]/2 

�p,� �, 	! 

�; �! =  U+1 + æ �/�! + é�Ç �/�!+1 − æ �/�!æ �/�! X 12+2� 

�� �! = 1 − �  ,    �� �! = − S1 − S2 + ��T �T 

8 = ] 

 

TABLE B4. Dissipative elliptical forcings at  = 1 with æ �! = √1 − ��, and with é�Ç �! = 1 [�R � > 0, é�Ç �! =−1 [�R � < 0 and S�Ç �! = 0 [�R � = 0.  
Forcings ��,� �, 	! = 12 �; �!7�� �!��� 	 − 8! + � �� �!�� 	 − 8!9 

�o,� �, 	! 

�; �! = U+1 + æ �/�! + é�Ç �/�!+1 − æ �/�!æ �/�! X 12+2� 

�� �! = ì1 − 3 S1 − ��T � + S1 − ��T S2 − ��T ��ì    �� �! = −1 

8 = ] 

�p,� �, 	! 

�; �! = U+1 + æ �/�! − é�Ç �/�!+1 − æ �/�!æ �/�! X 12+2� 

�� �! = ì1 − 3 S1 + ��T � + S1 + ��T S2 + ��T ��ì �� �! = −1 

8 = 3]2  

Note 1: Expression of ��,� given for � < �{�  with i = y, z. Otherwise, multiply �� by -1 and add +] to 8.  
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APPENDIX C: CRITICAL POWERS  

The elliptical forcing �o,� �, 	! becomes a phase forcing when �� �{o! = 0 :  

�{o = 32 S 12 − �/�T ê1 − ¿1 − 49 S2 − �/�1 − �/�Të   £�Vℎ  �� ∈ ã−1, 15ä                                         î1! 

The elliptical forcing �o,� �, 	! becomes a power forcing when �� �|o! = 0:   

�|o = 12 − �/�  £�Vℎ  �� ∈ ã−1, 12ä                                                                                î2! 

From symmetry, the critical power �|p of �p,� is given by : �|p �/�! = �|o −�/�!, with �/� ∈ 7−1/5,19 and 

the critical power �{p  of �p,� is given by  �{p �/�! = �{o −�/�! with �/� ∈ 7−1/2,19.  
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